當前位置:首頁 » 挖礦知識 » 挖礦演算法nist5

挖礦演算法nist5

發布時間: 2021-04-28 00:14:06

Ⅰ Advanced Encryption Standard(AES) 加密演算法簡介

AES(The Advanced Encryption Standard)是美國國家標准與技術研究所用於加密電子數據的規范。它被預期能成為人們公認的加密包括金融、電信和政府數字信息的方法。美國國家標准與技術研究所(NIST)在2002年5月26日建立了新的高級數據加密標准(AES)規范。AES是一個新的可以用於保護電子數據的加密演算法。

1998年National Institute of Standards and Technology(NIST)開始AES第一輪分析、測試和徵集,共產生了15個候選演算法。其中包括CAST-256, CRYPTON, DEAL, DFC, E2, FROG, HPC, LOKI97, MAGENTA, MARS,RC6, Rijndael, SAFER+, Serpent, Twofish。 其中五個候選演算法進入第二輪: MARS, RC6, Rijndael, Serpent, andTwofish. 1999年3月完成了第二輪AES2的分析、測試,最終確認Rijndael演算法獲得勝利。NIST於2002年5月26日制定了新的高級加密標准(AES)規范。

AES是典型的對稱加密演算法,應用廣泛。數據發信方將明文和加密密鑰一起經過特殊加密演算法處理後,使其變成復雜的加密密文發送出去。收信方收到密文後,若想解讀原文,則需要使用加密用過的密鑰及相同演算法的逆演算法對密文進行解密,才能使其恢復成可讀明文。在對稱加密演算法中,使用的密鑰只有一個,發收信雙方都使用這個密鑰對數據進行加密和解密,這就要求解密方事先必須知道加密密鑰。其優點是對稱加密演算法的特點是演算法公開、計算量小、加密速度快、加密效率高。不足之處是,雙方都使用同樣鑰匙,安全性得不到保證。

在此扯一下題外話,不對稱加密演算法,比如著名的RSA演算法,使用兩把完全不同但又是完全匹配的一對鑰匙----公鑰和私鑰。在使用不對稱加密演算法加密文件時,只有使用匹配的一對公鑰和私鑰,才能完成對明文的加密和解密過程。加密明文時採用公鑰加密,解密密文時使用私鑰才能完成,而且加密者知道收信方的公鑰,只有解密者才是唯一知道自己私鑰的人。

AES演算法基於排列和置換運算。排列是對數據重新進行安排,置換是將一個數據單元替換為另一個。AES使用幾種不同的方法來執行排列和置換運算。AES是一個迭代的、對稱密鑰分組的密碼,它可以使用128、192和256位密鑰,並且用128位(16位元組)分組加密和解密數據。與公共密鑰加密使用密鑰對不同,對稱密鑰密碼使用相同的密鑰加密和解密數據。通過分組密碼返回的加密數據的位數與輸入數據相同。迭代加密使用一個循環結構,在該循環中重復置換和替換輸入數據。密碼學簡介據記載,公元前400年,古希臘人發明了置換密碼。1881年世界上的第一個電話保密專利出現。在第二次世界大戰期間,德國軍方啟用「恩尼格瑪」密碼機,密碼學在戰爭中起著非常重要的作用。

AES加密過程是在一個4×4的位元組矩陣上運作,這個矩陣又稱為「state」,其初值就是一個明文區塊(矩陣中一個元素大小就是明文區塊中的一個Byte)。加密時,各輪AES加密循環(除最後一輪外)均包含4個步驟:

1.AddRoundKey — 矩陣中的每一個位元組都與該次round key做XOR運算;每個子密鑰由密鑰生成方案產生。
2.SubBytes — 通過一個非線性的替換函數,用查找表的方式把每個位元組替換成對應的位元組。
3.ShiftRows — 將矩陣中的每個橫列進行循環式移位。
4.MixColumns — 為了充分混合矩陣中各個直行的操作。這個步驟使用線性轉換來混合每內聯的四個位元組。

Ⅱ 演算法有五個方面的重要特徵,包括輸入,確定性,輸出,能行性還有

演算法有五個方面的重要特徵包括有窮性、確切性、輸入項、輸出項、可行性。

1、有窮性(Finiteness)

演算法的有窮性是指演算法必須能在執行有限個步驟之後終止;

2、確切性(Definiteness)

演算法的每一步驟必須有確切的定義;

3、輸入項(Input)

一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定出了初始條件;

4、輸出項(Output)

一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的;

5、可行性(Effectiveness)

演算法中執行的任何計算步驟都是可以被分解為基本的可執行的操作步驟,即每個計算步驟都可以在有限時間內完成(也稱之為有效性)。

(2)挖礦演算法nist5擴展閱讀

1、迪傑斯特拉演算法(又譯戴克斯特拉演算法)

這種圖搜索演算法具有多種應用方式,能夠將需要解決的問題建模為圖,並在其中找到兩個節點間的最短路徑。

2、RSA 演算法

該演算法由 RSA 公司的創始人們開發而成,使得密碼學成果得以供世界上的每個人隨意使用,甚至最終塑造了當今密碼學技術的實現方式。

3、安全哈希演算法

這實際上並不是真正的演算法,而是由 NIST(美國國家標准技術研究所)所開發的一系列加密散列函數。然而,該演算法家族對於世界秩序的維持起到了至關重要的作用。

4、比例微積分演算法

該演算法旨在利用控制迴路反饋機制以最大程度控制期望輸出信號與實際輸出信號間的誤差。其適用於一切存在信號處理需求的場景,包括以自動化方式通過電子技術控制的機械、液壓或者熱力系統。

5、數據壓縮演算法

很難確定哪種壓縮演算法的重要性最高,因為根據實際應用需求,大家使用的演算法可能包括 zip、mp3 乃至 JPEG 以及 MPEG-2 等等。

Ⅲ 怎麼看懂使用nist匹配後的結果

怎麼將質譜數據和nist資料庫匹配

  1. 建立用戶自命名的配置文件:可以從Options菜單中選擇Options/Save options命令, 將當前集成開發環境的所有配置存入一個由用戶命名的配置文件中。下次啟動TC時只要在DOS下鍵入:

  2. tc/c<用戶命名的配置文件名>

  3. 就會按這個配置文件中的內容作為Turbo C 2.0的選擇。

  4. 2. 若設置Options/Environment/Config auto save 為on, 則退出集成開發環境時, 當前的設置會自動存放到Turbo C 2.0配置文件TCCONFIG.TC中。Turbo C 在啟動時會自動尋找這個配置文件。

  5. 3. 用TCINST設置Turbo C的有關配置, 並將結果存入TC.EXE中。Turbo C 在啟動時, 若沒有找到配置文件, 則取TC.EXE中的預設值。

  6. ?c語言 2

  7. 2 程序的靈魂—演算法

  8. 2.1 演算法的概念

  9. 2.2 簡單演算法舉例

  10. 2.3 演算法的特性

  11. 2.4 怎樣表示一個演算法

  12. 2.4.1 用自然語言表示演算法

  13. 2.4.2 用流程圖表示演算法

  14. 2.4.3 三種基本結構和改進的流程圖

  15. 2.4.4 用N-S流程圖表示演算法

  16. 2.4.5 用偽代碼表示演算法

  17. 2.4.6 用計算機語言表示演算法

  18. 2.5 結構化程序設計方法

  19. 2 程序的靈魂—演算法

Ⅳ 高二英語必修5 Unit1 Great Scienist閱讀Nicolaus copernicus的翻譯

可以請樓主附上原文嗎

Ⅳ 怎麼將質譜數據和nist資料庫匹配

怎麼將質譜數據和nist資料庫匹配
1. 建立用戶自命名的配置文件:可以從Options菜單中選擇Options/Save options命令, 將當前集成開發環境的所有配置存入一個由用戶命名的配置文件中。下次啟動TC時只要在DOS下鍵入:
tc/c<用戶命名的配置文件名>
就會按這個配置文件中的內容作為Turbo C 2.0的選擇。
2. 若設置Options/Environment/Config auto save 為on, 則退出集成開發環境時, 當前的設置會自動存放到Turbo C 2.0配置文件TCCONFIG.TC中。Turbo C 在啟動時會自動尋找這個配置文件。
3. 用TCINST設置Turbo C的有關配置, 並將結果存入TC.EXE中。Turbo C 在啟動時, 若沒有找到配置文件, 則取TC.EXE中的預設值。
c語言 2
2 程序的靈魂—演算法
2.1 演算法的概念
2.2 簡單演算法舉例
2.3 演算法的特性
2.4 怎樣表示一個演算法
2.4.1 用自然語言表示演算法
2.4.2 用流程圖表示演算法
2.4.3 三種基本結構和改進的流程圖
2.4.4 用N-S流程圖表示演算法
2.4.5 用偽代碼表示演算法
2.4.6 用計算機語言表示演算法
2.5 結構化程序設計方法
2 程序的靈魂—演算法

Ⅵ 以下哪一項不屬於nist雲計算架構5大角色之一 a,雲消費者 b,雲供應商 c,雲運

選C。NIST雲計算架構參考模型定義了5種角色,分別是雲服務消費者、雲服務提供商、雲服務代理商、雲計算審計員和雲服務承運商。每個角色可以是個人,也可以是單位組織。

雲服務消費者可以從雲服務代理商或者雲服務提供商那裡租賃雲服務產品,而雲計算審計員必須能從雲服務消費者、雲服務提供商和雲服務代理商那裡獲取信息,以便獨立開展審計工作。

(6)挖礦演算法nist5擴展閱讀:

NIST的雲計算定義是業界廣泛接受的,包括了雲計算的三種基本服務模式(PaaS、SaaS、IaaS)、四種部署模式(私有雲、社區雲、公有雲和混合雲)、以及五個基本特徵(按需自服務、廣泛地網路接入、資源池化、快速伸縮、服務可度量)。

NIST簡潔明了的雲計算定義對雲計算技術和雲服務的理解非常有幫助,服務和交付構成了雲計算的核心。作為雲計算定義的延伸,NIST在2011年發布了雲計算參考架構,這個參考架構是基於Actor/Role模型,列出了雲計算架構的核心元素。

Ⅶ 什麼是SHA256

SHA 家族
SHA (Secure Hash Algorithm,譯作安全散列演算法) 是美國國家安全局 (NSA) 設計,美國國家標准與技術研究院 (NIST) 發布的一系列密碼散列函數。正式名稱為 SHA 的家族第一個成員發布於 1993年。然而現在的人們給它取了一個非正式的名稱 SHA-0 以避免與它的後繼者混淆。兩年之後, SHA-1,第一個 SHA 的後繼者發布了。 另外還有四種變體,曾經發布以提升輸出的范圍和變更一些細微設計: SHA-224, SHA-256, SHA-384 和 SHA-512 (這些有時候也被稱做 SHA-2)。
SHA-0 和 SHA-1
最初載明的演算法於 1993年發布,稱做安全散列標准 (Secure Hash Standard),FIPS PUB 180。這個版本現在常被稱為 "SHA-0"。它在發布之後很快就被 NSA 撤回,並且以 1995年發布的修訂版本 FIPS PUB 180-1 (通常稱為 "SHA-1") 取代。根據 NSA 的說法,它修正了一個在原始演算法中會降低密碼安全性的錯誤。然而 NSA 並沒有提供任何進一步的解釋或證明該錯誤已被修正。1998年,在一次對 SHA-0 的攻擊中發現這次攻擊並不能適用於 SHA-1 — 我們不知道這是否就是 NSA 所發現的錯誤,但這或許暗示我們這次修正已經提升了安全性。SHA-1 已經被公眾密碼社群做了非常嚴密的檢驗而還沒發現到有不安全的地方,它現在被認為是安全的。
SHA-0 和 SHA-1 會從一個最大 2^64 位元的訊息中產生一串 160 位元的摘要然後以設計 MD4 及 MD5 訊息摘要演算法的 MIT 教授 Ronald L. Rivest 類似的原理為基礎來加密。
SHA-0 的密碼分析
在 CRYPTO 98 上,兩位法國研究者展示了一次對 SHA-0 的攻擊 (Chabaud and Joux, 1998): 散列碰撞可以復雜到 2^61 時被發現;小於 2^80 是理想的相同大小散列函數。
2004年時,Biham 和 Chen 發現了 SHA-0 的近似碰撞 — 兩個訊息可以散列出相同的數值;在這種情況之下,142 和 160 位元是一樣的。他們也發現了 SHA-0 在 80 次之後減少到 62 位元的完整碰撞。
2004年8月12日,Joux, Carribault, Lemuet 和 Jalby 宣布了完整 SHA-0 演算法的散列碰撞。這是歸納 Chabaud 和 Joux 的攻擊所完成的結果。發現這個碰撞要復雜到 2^51, 並且用一台有 256 顆 Itanium2 處理器的超級電腦耗時大約 80,000 CPU 工作時 。
2004年8月17日,在 CRYPTO 2004 的 Rump 會議上,Wang, Feng, Lai, 和 Yu 宣布了攻擊 MD5、SHA-0 和其他散列函數的初步結果。他們對 SHA-0 攻擊復雜到 2^40,這意味著他們攻擊的成果比 Joux 還有其他人所做的更好。該次 Rump 會議的簡短摘要可以在 這里找到,而他們在 sci.crypt 的討論,例如: 這些結果建議計劃使用 SHA-1 作為新的密碼系統的人需要重新考慮。
更長的變種
NIST 發布了三個額外的 SHA 變體,每個都有更長的訊息摘要。以它們的摘要長度 (以位元計算) 加在原名後面來命名:"SHA-256", "SHA-384" 和 "SHA-512"。它們發布於 2001年的 FIPS PUB 180-2 草稿中,隨即通過審查和評論。包含 SHA-1 的 FIPS PUB 180-2,於 2002年以官方標准發布。這些新的散列函數並沒有接受像 SHA-1 一樣的公眾密碼社群做詳細的檢驗,所以它們的密碼安全性還不被大家廣泛的信任。2004年2月,發布了一次 FIPS PUB 180-2 的變更通知,加入了一個額外的變種 "SHA-224",定義了符合雙金鑰 3DES 所需的金鑰長度。
Gilbert 和 Handschuh (2003) 研究了新的變種並且沒有發現弱點。
SHAd
SHAd 函數是一個簡單的相同 SHA 函數的重述:
SHAd-256(m)=SHA-256(SHA-256(m))。它會克服有關延伸長度攻擊的問題。
應用
SHA-1, SHA-224, SHA-256, SHA-384 和 SHA-512 都被需要安全散列演算法的美國聯邦政府所應用,他們也使用其他的密碼演算法和協定來保護敏感的未保密資料。FIPS PUB 180-1 也鼓勵私人或商業組織使用 SHA-1 加密。Fritz-chip 將很可能使用 SHA-1 散列函數來實現個人電腦上的數位版權管理。
首先推動安全散列演算法出版的是已合並的數位簽章標准。
SHA 散列函數已被做為 SHACAL 分組密碼演算法的基礎。
SHA-1 的描述
以下是 SHA-1 演算法的偽代碼:
(Initialize variables:)
a = h0 = 0x67452301
b = h1 = 0xEFCDAB89
c = h2 = 0x98BADCFE
d = h3 = 0x10325476
e = h4 = 0xC3D2E1F0
(Pre-processing:)
paddedmessage = (message) append 1
while length(paddedmessage) mod 512 > 448:
paddedmessage = paddedmessage append 0
paddedmessage = paddedmessage append (length(message) in 64-bit format)
(Process the message in successive 512-bit chunks:)
while 512-bit chunk(s) remain(s):
break the current chunk into sixteen 32-bit words w(i), 0 <= i <= 15
(Extend the sixteen 32-bit words into eighty 32-bit words:)
for i from 16 to 79:
w(i) = (w(i-3) xor w(i-8) xor w(i-14) xor w(i-16)) leftrotate 1
(Main loop:)
for i from 0 to 79:
temp = (a leftrotate 5) + f(b,c,d) + e + k + w(i) (note: all addition is mod 2^32)
where:
(0 <= i <= 19): f(b,c,d) = (b and c) or ((not b) and d), k = 0x5A827999
(20 <= i <= 39): f(b,c,d) = (b xor c xor d), k = 0x6ED9EBA1
(40 <= i <= 59): f(b,c,d) = (b and c) or (b and d) or (c and d), k = 0x8F1BBCDC
(60 <= i <= 79): f(b,c,d) = (b xor c xor d), k = 0xCA62C1D6
e = d
d = c
c = b leftrotate 30
b = a
a = temp
h0 = h0 + a
h1 = h1 + b
h2 = h2 + c
h3 = h3 + d
h4 = h4 + e
digest = hash = h0 append h1 append h2 append h3 append h4
注意:FIPS PUB 180-1 展示的構想,用以下的公式替代可以增進效能:
(0 <= i <= 19): f(b,c,d) = (d xor (b and (c xor d)))
(40 <= i <= 59): f(b,c,d) = (b and c) or (d and (b or c)))

熱點內容
過程流體機礦大期末試卷 發布:2025-05-25 15:58:19 瀏覽:322
etc以太坊經典最新消息跑路嗎 發布:2025-05-25 15:56:43 瀏覽:466
數字貨幣均線設置多少天為最佳 發布:2025-05-25 15:43:52 瀏覽:136
以太坊培訓班 發布:2025-05-25 15:24:58 瀏覽:744
btt冷錢包 發布:2025-05-25 15:13:09 瀏覽:154
完全禁止數字貨幣比較難 發布:2025-05-25 14:53:12 瀏覽:65
影響數字貨幣的漲跌 發布:2025-05-25 14:42:14 瀏覽:188
湖南省區塊鏈公司 發布:2025-05-25 14:42:08 瀏覽:382
數字貨幣詐騙雲付通 發布:2025-05-25 14:40:32 瀏覽:840
會展監理區塊鏈 發布:2025-05-25 14:18:31 瀏覽:312