比特币公钥为何不可逆
在 了解区块链的基础名词概念 提到地址由字符和数字组成,但没有说明怎样产生的。银行卡号由银行核心系统生成,那比特币地址是通过什么生成的呢?看下图:
对于刚接触比特币的小白来说,看到这张图就蒙圈了,究竟什么是私钥、公钥,为什么生成个地址要这么麻烦吗?
现在请大家记住这句话: 私钥通过椭圆曲线相乘生成公钥,使用公钥不能导推出私钥;公钥通过哈希函数生成比特币地址,地址也无法导推出公钥 。
通过这么复杂算法才算出地址,那私钥和公钥只是为了生成地址吗?不是的,他们还有其他用途,我们先了解下私钥和公钥。
现在已经讲解地址、挖矿、工作量证明、算力、区块、区块链等等的概念,不知大家还有印象吗?如果忘记请温习这些概念,因为后续很多地方都会用到这些概念。明天讲解下区块链有哪些特点。
参考书籍:《精通比特币》
区块链知识专题:
比特币记账方式(区块链知识2)
了解块链的基础名词概念(区块链知识1)
② 入门科普:比特币的私钥、公钥和地址是什么
上一篇,我们讲到了币圈要注意防范传销、洗钱等一类的骗局,保护好自己的资产。这一篇,我要告诉大家,进行比特币交易时,都会用到的私钥、公钥与地址,如果你还不了解它们的重要性,随便交易,很容易弄丢自己的资产。那什么是私钥、公钥与地址?三者之间有着什么样的关系呢?
01
私钥
1.导出:
创建钱包后,输入密码可以导出私钥,私钥由很长的字符串组成,且是随机生成的, 一个地址只有一个私钥。
2.用途:
用于控制交易时的签名,拥有私钥才能控制账户的资金,相当于银行账户的交易密码,用来解密公钥加密的信息。
3.注意事项:
私钥是用来证明这笔交易的发起人确实是比特币的所有者。所以 私钥一定不能曝光,私钥一旦泄露,你的比特币将会有被盗的风险。 用户必须保管好私钥,防止泄露或丢失。
02
公钥
1.导出:
公钥是由私钥通过算法生成的,使用了椭圆曲线加密, 通过私钥可以计算出唯一的公钥。
2.用途:
公钥是用来验证交易的签名,一个私钥签名的数据,只有对应的公钥才能对其进行验证,公钥相当于银行账户,公开后无风险。
03
地址
1.导出:
地址由公钥生成的,使用了哈希运算。创建钱包后会生成一个以“0x” 开头的 42 位字符串,这个字符串就是钱包地址,一个钱包对应一个钱包地址, 地址唯一且不能修改,也就是说一个钱包中所有代币的转账收款地址都是一样的。
2.用途:
由于公钥太长,在交易中不方便使用,所以就有了地址,地址是由公钥生成的,地址相当于银行卡号,用来发送和接收比特币。
3.注意事项:
平台上不同代币的转账收款地址一般都不同,因此,转币到交易平台前一定要确认好地址。
总结
私钥 → 公钥 → 钱包地址 (不可逆)
私钥用来签名交易,公钥用来验证私钥签名的交易,地址用来收款。
公钥、私钥以及地址都在比特币交易中起到了不同的作用,所以才能顺利的完成一笔数字货币的交易。 所以用户必须好好保存,防止泄露重要信息。
③ 比特币的地址、公钥、私钥,你都了解了吗
了解比特币,就不可避免地要掌握什么是比特币的地址、公钥、私钥,下面我们一个一个来解释。
地址,就好比是银行账(卡)号,在创建数字钱包后就会自动生成,简单来说,就是创建钱包的时候,先产生一对私钥和公钥,然后公钥通过一套算法生成地址,这个地址实质上是一串字符,比如。
像银行账(卡)号可以用来收款一样,比特币地址也可以用来接收比特币。
这个比特币地址不单单给你转币的人知道,连整个比特币网络的人都能查看,可以说,全球所有用户的地址都可以被任何人知道。为什么这样说呢?因为比特币本质就是一个大型的公开账本,所有交易对所有人都是可见的。而交易记录中包括了交易流水单号、发币人的发币地址、收币人地址、发币人的找零地址。
私钥,可以看作是银行密码,是一串很长的由钱包生成的随机数,比如, LBB9ZXMCJ。私钥是唯一能够证明你拥有的比特币是属于你的,也只有用私钥才能转账、交易和使用数字钱包里的比特币。
我们都知道了,银行密码绝对不能泄露给别人,私钥也一样,打死也不要告诉他人,否则你的比特币很容易就被转走。银行的钱被盗了,因为有国家监管和第三方信用,还有可能被追回,但比特币是去中心化的,没有第三方,自己的币只能自己负责看管,丢了,或被他人转走了,就永远拿不回来了。所以千万千万不要把私钥告诉他人,不要把私钥保存在手机或者电脑上,不要通过网络传输你的私钥,那怎么办?记住了,要用笔写在纸上,写两到三份分别放在不同的地方,保管好。
公钥,顾名思义,是可以公开的,也是像地址和私钥一样,是一串长长的字符。公钥由私钥通过椭圆曲线加密算法生成,通过私钥可以算出唯一一个公钥,但公钥不能逆向推导出私钥。
那到底比特币地址、公钥、私钥在交易中起什么作用的呢?
首先,钱包通过加密算法把私钥加密成字符串(也叫作签名),然后把这个字符串,和公钥一起写到交易信息里,再发给矿工。矿工收到信息后,就会将签名、公钥写入一个验证函数,如果得出的结果为“true”,那么这个交易会被确认为真实有效,就能被验证通过。而结果为“false”,则说明这笔交易存在问题,不能被验证通过。
通过以上浅显的文字,希望能帮到你对比特币的地址、公钥和私钥有一个初步的了解吧!感谢你的阅读!
④ 比特币有没有可能被破解
比特币的破解是有可能但几乎不可能的,仅仅存在理论可能。
从背景和基本原理上来讲,比特币账户购物城是通过秘钥-公钥-地址的结构形式来构成的,可以大致理解成钥匙-箱子-箱子编号的基本模式,比特币的破解实际上就是从箱子编号或者从箱子入手破解到钥匙。
破解比特币的攻击手段一般意义上只有两种,一种是通过字典的方式进行攻击,也就是通过脑钱包直接破解。这种破解方式并非直接破解比特币持有者的比特币秘钥,而是去破解比特币持有者为记忆比特币秘钥而新设置的便捷密码,也就是脑钱包。如果是这种方式的话,首先需要比特币持有者通过脑账户设置一个新密码,同时需要对包含别的比特币持有者的个人生活信息十分了解才能破解。如果比特币持有者不设置脑账户的话,那么就无法通过这个方式进行破解。
其次是通过暴力破解的手段进行破解,也就是通过枚举法列举出所有可能的数字字母与符号的排列组合。以这些全部的组合一一进行尝试破解。但通过这种方式破解出比特币秘钥的可能性就更低了,因为比特币的秘钥是由256位二进制数字组成的。这是一个非常大的数字,使用十进制进行表示大约是十的77次方。目前市面上绝大多数的电脑算力是无法完成这个计算过程的,即便完成也需要花费几千年甚至上万年的时间。只有科研机构与高校内的部分量子计算机才可能实现这一目标。
⑤ 第4课 区块链中的密码学 学习总结
这是加入公Ulord深度学习第四课,杨博士给大家主讲区块链中的密码学问题,本期课程令让我弄懂了一个一直困扰着我的关于公钥和私钥的问题,他们之间到底是什么关系?再这次学习中我得到了答案,现在我把我学习到的内容跟大家分享一下。
区块链里的公钥和私钥,是非对称加密里的两个基本概念。
公钥与私钥,是通过一种算法得到的一个密钥对,公钥是密钥对中公开的部分,私钥是非公开的部分。公钥通常用于加密会话,就是消息或者说信息,同时,也可以来用于验证用私钥签名的数字签名。
私钥可以用来进行签名,用对应的公钥来进行验证。通过这种公开密钥体制得到的密钥对能够保证在全世界范围内是唯一的。使用这个密钥对的时候,如果用其中一个密钥加密数据,则必须用它对应的另一个密钥来进行解密。
比如说用公钥加密的数据就必须用私钥才能解密,如果用私钥进行加密,就必须要对应的公钥才能解密,否则无法成功解密。另外,在比特币的区块链中,则是通过私钥来计算出公钥,通过公钥来计算出地址,而这个过程是不可逆的。
⑥ bitcoin私钥是如何产生的
比特币地址和私钥是怎样生成的?比特币使用椭圆曲线算法生成公钥和私钥,选择的是secp256k1曲线。生成的公钥是33字节的大数,私钥是32字节的大数,钱包文件wallet.dat中直接保存了公钥和私钥。我们在接收和发送比特币时用到的比特币地址是公钥经过算法处理后得到的,具体过程是公钥先经过SHA-256算法处理得到32字节的哈希结果,再经过RIPEMED算法处理后得到20字节的摘要结果,再经过字符转换过程得到我们看到的地址。这个字符转换过程与私钥的字符转换过程完成相同,步骤是先把输入的内容(对于公钥就是20字节的摘要结果,对于私钥就是32字节的大数)增加版本号,经过连续两次SHA-256算法,取后一次哈希结果的前4字节作为校验码附在输入内容的后面,然后再经过Base58编码,得到字符串。
⑦ 比特币一个UTXO交易为什么要经过6个区块确认才被认为更改不可逆(或者说几乎不可逆)
你说的是对的,的确会回滚, 如果的交易不幸被打包到分叉上面了,这个交易很有可能会在主链被同步后被取消掉。
至于为什么要6个确认是因为加大蒙出最优解难度(防止单节点造假)。 一个块可能还能蒙出一个最优解,6个块一起蒙出基本上不可能。 跟分叉关系不大
⑧ 比特币基础知识 你绝对想不到
椭圆曲线数字签名算法
椭圆曲线数字签名算法(ECDSA)是使用椭圆曲线对数字签名算法(DSA)的模拟,该算法是构成比特币系统的基石。
私钥
非公开,拥有者需安全保管。通常是由随机算法生成的,说白了,就是一个巨大的随机整数,32字节,256位。
大小介于1 ~ 0xFFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFE BAAE DCE6 AF48 A03B BFD2 5E8C D036 4141之间的数,都可以认为是一个合法的私钥。
于是,除了随机方法外,采用特定算法由固定的输入,得到32字节输出的算法就可以成为得到私钥的方法。于是,便有了迷你私钥(Mini Privkey),原理很简单,例如,采用SHA256的一种实现:
private key = SHA256()1
迷你私钥存在安全问题,因为输入集合太小,易被构造常见组合的彩虹表暴力破解,所以通常仿轮纳还是使用系统随机生成的比较好,无安全隐患。
公钥
公钥与私钥是相对应的,一把私钥可以推出唯一的公钥,但公钥却无法推导出私钥。公钥有两种形式:压缩与非压缩。
早期比特币均使用非压缩公钥,现大部分客户端已默认使用压缩公钥。
这个貌似是比特币系统一个长得像feature的bug,早期人少活多代码写得不够精细,openssl库的文档又不足够好,导致Satoshi以为必须使用非压缩的完整公钥,后来大家发现其实公钥的左右两个32字节是有关联的,左侧(X)可以推出右侧(Y)的平方值,有左侧(X)就可以了。
现在系统里两种方式共存,应该会一直共存下去。两种公钥的首个字节为标识位,压缩为33字节,非压缩为65字节。以0x04开头为非压缩,0x02/0x03开头为压缩公钥,0x02/0x03的选取由右侧Y开方后的奇偶决定。
压缩形式可以减小Tx/Block的体积,每个Tx Input减少32字节。
签名
使用私钥对数据进行签署(Sign)会得到签名(Signature)。通常会将数据先生成Hash值,然后对此Hash值进行签名。签名(signature)有两部分组成: R + S。由签名(signature)与Hash值,便可以推出一个公钥,验证此公钥,便可知道此签名是否由公钥对应的私钥签名。
通常,每个签名会有三个长度:73、72、71,符合校验的概率为25%、50%、25%。所以每次签署后,需要找出符合校验的签名长度,再提供给验证方。
地址
地址是为了人们交换方便而弄出来的一个方案,因为公钥太长了(130字符串或66字符串)。地址长度为25字节,转为base58编码后,为34或35个字符。base58是类似base64的编码,但去掉了易引起视觉混淆的字符,又在地址末尾添加了4个字节校验位,保障在人们交换个别字符错误时,也能够因地址校验失败而制止了误操作。
由于存在公钥有两种形式,那么一个公钥便对应两个地址。这两个地址都可由同一私钥签署交易。
公钥生成地址的算法:
Version = 1 byte of 0 (zero); on the test network, this is 1 byte of 111
Key hash = Version concatenated with RIPEMD-160(SHA-256(public key))
Checksum = 1st 4 bytes of SHA-256(SHA-256(Key hash))
Bitcoin Address = Base58Encode(Key hash concatenated with Checksum)1234
下图是非压缩公钥生成地址的过程:
对于压缩公钥生成地址时,则只取公钥的X部分即可。
推导关系
三者推导关系:私钥
公钥
两个地址。过程均不可逆。拥有私钥便拥有一切,但通常为了方便,会把对应的公钥、地址也存储起来。
交易
比特币的交易(Transation,缩写Tx),并不是通常意义的桐散交易,例如一手交钱一手交货,而是转账。交易由N个输入和M个输出两部分组成。交易的每个输入便是前向交易的某个输出,那么追踪到源头,必然出现一个没有输入的交易,此类交易称为CoinBase Tx。CoinBase类备没交易是奖励挖矿者而产生的交易,该交易总是位于Block块的第一笔。
拥有一个输入与输出的Tx数据:
Input:
Previous tx:
Index: 0
scriptSig:
241501
Output:
Value: 5000000000
scriptPubKey: OP_DUP OP_HASH160
OP_EQUALVERIFY OP_CHECKSIG12345678910
一旦某个Tx的第N个输出成为另一个Tx的输入,那么该笔比特币即为已花费。每个交易有唯一Hash字符串来标识,通过对交易数据做两次SHA256哈希运算而来:
Tx Hash ID = SHA256(SHA256(Tx Data))1
矿工费
矿工费(Transaction Fee)是鼓励矿工将Tx打包进Block的激励报酬。计算一笔交易的矿工费:
Transaction Fee = SUM(Inputs amount) - SUM(Outputs amount)1
每笔Tx的矿工费必然大于等于零,否则该笔Tx即为非法,不会被网络接收。
数据块
数据块(Block)是存储Block Meta与Tx的地方。Block的第一笔Tx总是CoinBase Tx,因此Block中的交易数量总是大于等于1,随后是这段时间内网络广播出来的Tx。
找到合适的Block是一件非常困难的事情,需要通过大量的数学计算才能发现,该计算过程称为“挖矿”。首个发现者,会得到一些比特币作为奖励。
数据链
多个Block连接起来成为数据链(Block Chain)。
为了引入容错与竞争机制,比特币系统允许Block Chain出现分叉,但每个节点总是倾向于选择最高的、难度最大的链,并称之为Best Chain,节点只认可Best Chain上的数据。
首个Block称为Genesis Block,并设定高度为零,后续每新增一个Block,高度则递增一。目前是不允许花费Genesis Block中的比特币的。
每个Block中的Tx在此Block中均唯一
一个Tx通常只会在一个Block里,也可能会出现在多个Block中,但只会在Best Chain中的某一个Block出现一次
货币存储
比特币是密码货币、纯数字化货币,没有看得见摸得着的硬币或纸币。一个人持有比特币意味着:
其拥有一些地址的私钥
这些地址是数笔交易的输出,且未花费
所有货币记录均以交易形式存储在整个blockchain数据块中,无交易无货币。货币不会凭空产生,也不会凭空消失。遗失了某个地址的私钥,意味着该地址上的Tx无法签署,无法成为下一个Tx的输入,便认为该笔比特币永久消失了。
货币发行
既然所有交易的输入源头都是来自CoinBase,产生CoinBase时即意味着货币发行。比特币采用衰减发行,每四年产量减半,第一个四年每个block的coinbase奖励50BTC,随后是25btc, 12.5btc, 并最终于2140年为零,此时总量达到极限为2100万个btc。
减半周期,严格来说,并不是准确的四年,而是每生成210000个block。之所以俗称四年减半,是因为比特币系统会根据全网算力的大小自动调整难度系统,使得大约每两周产生2016个block,那么四年约21万块block。
该函数GetBlockValue()用于计算挖得Block的奖励值:
int64 static GetBlockValue(int nHeight, int64 nFees)
{
int64 nSubsidy = 50 * COIN;
// Subsidy is cut in half every 210000 blocks, which will occur approximately every 4 years
nSubsidy = (nHeight / 210000);
return nSubsidy + nFees;
}123456789
当达到2100万btc以后,不再有来自CoinBase的奖励了,矿工的收入来源仅剩下交易的矿工费。此时,每个block的收入绝对值btc很低,但此时比特币应当会非常繁荣,币值也会相当的高,使得矿工们依然有利可图。
杜绝多重支付
传统货币存在多重支付(Double Spending)问题,典型的比如非数字时代的支票诈骗、数字时代的信用卡诈骗等。在比特币系统里,每笔交易的确认均需要得到全网广播,并收录进Block后才能得到真正确认。每笔钱的花销,均需要检测上次输入交易的状态。数据是带时间戳的、公开的,BlockChain由巨大的算力保障其安全性。所以比特币系统将货币的多重支付的风险极大降低,几近于零。通过等待多个Block确认,更是从概率上降低至零。一般得到6个确认后,可认为非常安全。但对于能影响你人生的重大支付,建议等待20~30个确认。
匿名性
任何人均可以轻易生成大量的私钥、公钥、地址。地址本身是匿名的,通过多个地址交易可进一步提高匿名性。但该匿名性并不像媒体宣传的那样,是某种程度上的匿名。因为比特币的交易数据是公开的,所以任何一笔资金的流向均是可以追踪的。
不了解比特币的人为它的匿名性产生一些担忧,比如担心更利于从事非法业务;了解比特币的人却因为它的伪匿名性而苦恼。传统货币在消费中也是匿名的,且是法律保障的,大部分国家都不允许个人涂画纸币。
地址本身是匿名的,但你可以通过地址对应的私钥签名消息来向公众证明你拥有某个比特币地址。
其他名词
哈希
哈希(Hash)是一种函数,将一个数映射到另一个集合当中。不同的哈希函数映射的空间不同,反映到计算机上就是生成的值长度不一样。同一个哈希函数,相同的输入必然是相同的输出,但同一个输出却可能有不同的输入,这种情况称为哈希碰撞。
常见的哈希函数有CRC32, MD5, SHA1, SHA-256, SHA-512, RIPEMD-160等,哈希函数在计算中有着非常广泛的用途。比特币里主要采用的是SHA-256和RIPEMD-160。
脑钱包纸钱包
前面提到过的脑钱包与纸钱包,这其实不算是钱包的分类,只是生成、存储密钥的方式而已。脑钱包属于迷你私钥的产物。脑钱包就是记在脑袋里的密钥,纸钱包就是打印到纸上的密钥,仅此而已。
有同学提到过,以一个计算机文件作为输入,例如一个数MB大小的照片,通过某种Hash运算后得到私钥的方法。这个方案的安全性还是不错的,同时可以防止盗私钥木马根据特征扫描私钥。文本形式存储私钥是有特征的,而一个照片文件却难以察觉,即使放在云盘等第三方存储空间中都是安全的。
⑨ 区块链的加密技术
数字加密技能是区块链技能使用和开展的关键。一旦加密办法被破解,区块链的数据安全性将受到挑战,区块链的可篡改性将不复存在。加密算法分为对称加密算法和非对称加密算法。区块链首要使用非对称加密算法。非对称加密算法中的公钥暗码体制依据其所依据的问题一般分为三类:大整数分化问题、离散对数问题和椭圆曲线问题。第一,引进区块链加密技能加密算法一般分为对称加密和非对称加密。非对称加密是指集成到区块链中以满意安全要求和所有权验证要求的加密技能。非对称加密通常在加密和解密进程中使用两个非对称暗码,称为公钥和私钥。非对称密钥对有两个特点:一是其间一个密钥(公钥或私钥)加密信息后,只能解密另一个对应的密钥。第二,公钥可以向别人揭露,而私钥是保密的,别人无法通过公钥计算出相应的私钥。非对称加密一般分为三种首要类型:大整数分化问题、离散对数问题和椭圆曲线问题。大整数分化的问题类是指用两个大素数的乘积作为加密数。由于素数的出现是没有规律的,所以只能通过不断的试算来寻找解决办法。离散对数问题类是指基于离散对数的困难性和强单向哈希函数的一种非对称分布式加密算法。椭圆曲线是指使用平面椭圆曲线来计算一组非对称的特殊值,比特币就采用了这种加密算法。非对称加密技能在区块链的使用场景首要包含信息加密、数字签名和登录认证。(1)在信息加密场景中,发送方(记为A)用接收方(记为B)的公钥对信息进行加密后发送给
B,B用自己的私钥对信息进行解密。比特币交易的加密就属于这种场景。(2)在数字签名场景中,发送方A用自己的私钥对信息进行加密并发送给B,B用A的公钥对信息进行解密,然后确保信息是由A发送的。(3)登录认证场景下,客户端用私钥加密登录信息并发送给服务器,服务器再用客户端的公钥解密认证登录信息。请注意上述三种加密计划之间的差异:信息加密是公钥加密和私钥解密,确保信息的安全性;数字签名是私钥加密,公钥解密,确保了数字签名的归属。认证私钥加密,公钥解密。以比特币体系为例,其非对称加密机制如图1所示:比特币体系一般通过调用操作体系底层的随机数生成器生成一个256位的随机数作为私钥。比特币的私钥总量大,遍历所有私钥空间获取比特币的私钥极其困难,所以暗码学是安全的。为便于辨认,256位二进制比特币私钥将通过SHA256哈希算法和Base58进行转化,构成50个字符长的私钥,便于用户辨认和书写。比特币的公钥是私钥通过Secp256k1椭圆曲线算法生成的65字节随机数。公钥可用于生成比特币交易中使用的地址。生成进程是公钥先通过SHA256和RIPEMD160哈希处理,生成20字节的摘要成果(即Hash160的成果),再通过SHA256哈希算法和Base58转化,构成33个字符的比特币地址。公钥生成进程是不可逆的,即私钥不能从公钥推导出来。比特币的公钥和私钥通常存储在比特币钱包文件中,其间私钥最为重要。丢掉私钥意味着丢掉相应地址的所有比特币财物。在现有的比特币和区块链体系中,现已依据实践使用需求衍生出多私钥加密技能,以满意多重签名等愈加灵敏杂乱的场景。
⑩ 比特币的安全性到底有多高,你有怀疑比特币的安全性吗
近期,比特币突破新高,一枚比特币价值近26万人民币,一枚比特币换一辆特斯拉。对于刚入圈的新人来说,你肯定很关心比特币的安全问题。
那么,比特币安全吗?换句话说, 钱包里的比特币,容易被黑客盗走吗?
01
私钥、公钥、地址
就像银行取款、网银转账需要输入密码一样, 动用钱包里的比特币也需要密码,这个密码被称之为“私钥”。
与“私钥”对应的是“公钥”,“公钥”就像你的银行账户。 每个银行账户都有唯一的账户编号,也就是银行卡号。 在比特币网络中,这个银行卡号就是“地址”。 别人只要知道你的“银行卡号”(即地址),就可以给你转比特币了。
在银行,开户流程基本是“开设银行账户——给银行卡号——设置银行卡密码——开户成功”。但在区块链世界里,是先设置“密码”(私钥),再开设“银行账户”(公钥),最后给“银行卡号”(地址)。
如果你路上捡到了一张纸条,上面只写着银行卡密码,但没写银行卡号,即便这个银行卡密码是真的,你也无法取走相关账户里的钱。
但在区块链世界,你只要知道了别人的“银行卡密码”(私钥),就可以知道别人的“银行账户”(公钥)和“银行卡号”(地址),可以取走里面的币。
为什么会这样呢?
这是因为在区块链中,私钥通过加密生成公钥,公钥转换一下格式生成地址。也就是说, 私钥可以推导出公钥,公钥可以推导出地址。
02
反向推导?没门!
既然“私钥可以推导出公钥,公钥可以推导出地址”,动用账户里的比特币又必须输入“密码(私钥)”, 那黑客要窃取你钱包里的比特币,必须、也只需拿到“私钥”即可。
理论上,黑客有2种方法窃取你的私钥:
第一种方法并不可行,因为比特币采用的加密算法,“失之毫厘,差之千里!”。 输入的内容,稍稍变动哪怕一丁点的东西,加密后输出的结果和之前输出的结果也有 天壤之别 ,而且这些结果没有规律可循。
所以,这种加密算法是“单向的”、“不可逆的”,黑客无法通过输出(地址/公钥)推导出输入(私钥)。
03
暴力破解比特币私钥有多难?
既然第一种方法不可行,那第二种方法如何?在回答这个问题之前,我们先看下私钥是怎么产生的。
假设你抛硬币,正面朝上为1,反面朝上为0,连续抛256次,把每次抛的结果记录下来,再转换成十六进制数,就是一个比特币私钥。
What? 这么简单?这么任性?
没错,比特币的私钥就是通过程序“抛256次硬币”,随机生成的。所以, 比特币私钥的本质是256位二进制数 。
每次抛硬币,都有正反2面,所以抛256次,一共可以出现「2 x 2 x2 x 2……2 x 2x2」,即256个2相乘,也就是「2的256次方」种结果。 所以,比特币的私钥总数,理论上有「2的256次方」个。
注: 私钥总数的实际值比上面的理论值略低,因为有一小部分私钥不可用,但对总数影响微乎其微。
「2的256次方」是多大呢?它约等于「10的77次方」。那「10的77次方」又是多大呢?
如果我们居住的这个地球,海洋、岩石、地底下的岩浆全部用沙子来填充的话,整个地球的沙子数量大概是「10的30次方」。也就是说, 一个和地球一样大,全部由沙子组成的星球,需要用到「10的30次方」粒沙子。
「10的77次方」比「10的30次方」大「10的47次方」倍,整整47个0。在比一个地球的沙子数量还要多「10的47次方」倍的比特币私钥集里,一个一个地试,破解出某个地址对应的私钥,简直比大海捞针还难。
所以,即便黑客有超级计算机,都无法暴力破解比特币私钥。
这就是为什么很多人说 , “比特币第一次通过技术手段,保证了个人的私有财产神圣不可侵犯”。
04
如果比超级计算机还要厉害?
虽然未来的 科技 如何发展谁都无法准确预测,但如果有一天,人类发明了比超级计算机、量子计算机还要厉害的计算机,比特币私钥不就不安全了吗?
确实,很多人想知道量子计算机到底对比特币的安全性有没有威胁,如果有威胁,比特币有哪些措施可以应对。
鉴于这个问题不是三言两语能解释清楚,后面我们会单独开一篇文章,探讨这个问题,敬请期待。
05
结语
当然,安全问题不仅仅牵涉到技术问题,也牵涉到私钥的保存问题。 如果是因为自己私钥保存不当,或是电脑中了病毒,或是使用的钱包软件有漏洞或是有后门,导致私钥被黑客窃走,那钱包里的比特币安全性就无从谈起了。
但是,因为自己的失误导致私钥被盗,这锅不能让比特币背,不是吗?
所以,如果有人拿比特币被盗事件来质疑比特币的安全性,你会怎么回答他呢?