比特币sha256算法输入
1. 区块链密码算法是怎样的
区块链作为新兴技术受到越来越广泛的关注,是一种传统技术在互联网时代下的新的应用,这其中包括分布式数据存储技术、共识机制和密码学等。随着各种区块链研究联盟的创建,相关研究得到了越来越多的资金和人员支持。区块链使用的Hash算法、零知识证明、环签名等密码算法:
Hash算法
哈希算法作为区块链基础技术,Hash函数的本质是将任意长度(有限)的一组数据映射到一组已定义长度的数据流中。若此函数同时满足:
(1)对任意输入的一组数据Hash值的计算都特别简单;
(2)想要找到2个不同的拥有相同Hash值的数据是计算困难的。
满足上述两条性质的Hash函数也被称为加密Hash函数,不引起矛盾的情况下,Hash函数通常指的是加密Hash函数。对于Hash函数,找到使得被称为一次碰撞。当前流行的Hash函数有MD5,SHA1,SHA2,SHA3。
比特币使用的是SHA256,大多区块链系统使用的都是SHA256算法。所以这里先介绍一下SHA256。
1、 SHA256算法步骤
STEP1:附加填充比特。对报文进行填充使报文长度与448模512同余(长度=448mod512),填充的比特数范围是1到512,填充比特串的最高位为1,其余位为0。
STEP2:附加长度值。将用64-bit表示的初始报文(填充前)的位长度附加在步骤1的结果后(低位字节优先)。
STEP3:初始化缓存。使用一个256-bit的缓存来存放该散列函数的中间及最终结果。
STEP4:处理512-bit(16个字)报文分组序列。该算法使用了六种基本逻辑函数,由64 步迭代运算组成。每步都以256-bit缓存值为输入,然后更新缓存内容。每步使用一个32-bit 常数值Kt和一个32-bit Wt。其中Wt是分组之后的报文,t=1,2,...,16 。
STEP5:所有的512-bit分组处理完毕后,对于SHA256算法最后一个分组产生的输出便是256-bit的报文。

2、环签名
2001年,Rivest, shamir和Tauman三位密码学家首次提出了环签名。是一种简化的群签名,只有环成员没有管理者,不需要环成员间的合作。环签名方案中签名者首先选定一个临时的签名者集合,集合中包括签名者。然后签名者利用自己的私钥和签名集合中其他人的公钥就可以独立的产生签名,而无需他人的帮助。签名者集合中的成员可能并不知道自己被包含在其中。
环签名方案由以下几部分构成:
(1)密钥生成。为环中每个成员产生一个密钥对(公钥PKi,私钥SKi)。
(2)签名。签名者用自己的私钥和任意n个环成员(包括自己)的公钥为消息m生成签名a。
(3)签名验证。验证者根据环签名和消息m,验证签名是否为环中成员所签,如果有效就接收,否则丢弃。
环签名满足的性质:
(1)无条件匿名性:攻击者无法确定签名是由环中哪个成员生成,即使在获得环成员私钥的情况下,概率也不超过1/n。
(2)正确性:签名必需能被所有其他人验证。
(3)不可伪造性:环中其他成员不能伪造真实签名者签名,外部攻击者即使在获得某个有效环签名的基础上,也不能为消息m伪造一个签名。
3、环签名和群签名的比较
(1)匿名性。都是一种个体代表群体签名的体制,验证者能验证签名为群体中某个成员所签,但并不能知道为哪个成员,以达到签名者匿名的作用。
(2)可追踪性。群签名中,群管理员的存在保证了签名的可追踪性。群管理员可以撤销签名,揭露真正的签名者。环签名本身无法揭示签名者,除非签名者本身想暴露或者在签名中添加额外的信息。提出了一个可验证的环签名方案,方案中真实签名者希望验证者知道自己的身份,此时真实签名者可以通过透露自己掌握的秘密信息来证实自己的身份。
(3)管理系统。群签名由群管理员管理,环签名不需要管理,签名者只有选择一个可能的签名者集合,获得其公钥,然后公布这个集合即可,所有成员平等。
链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。
2. 哈希函数的本质及生成方式
哈希表与哈希函数
说到哈希表,其实本质上是一个数组。通过前面的学习我们知道了,如果要访问一个数组中某个特定的元素,那么需要知道这个元素的索引。例如,我们可以用数组来记录自己好友的电话号码,索引 0 指向的元素记录着 A 的电话号码,索引 1 指向的元素记录着 B 的电话号码,以此类推。
而当这个数组非常大的时候,全凭记忆去记住哪个索引记录着哪个好友的号码是非常困难的。这时候如果有一个函数,可以将我们好友的姓名作为一个输入,然后输出这个好友的号码在数组中对应的索引,是不是就方便了很多呢?这样的一种函数,其实就是哈希函数。哈希函数的定义是将任意长度的一个对象映射到一个固定长度的值上,而这个值我们可以称作是哈希值(Hash Value)。
哈希函数一般会有以下三个特性:
任何对象作为哈希函数的输入都可以得到一个相应的哈希值;
两个相同的对象作为哈希函数的输入,它们总会得到一样的哈希值;
两个不同的对象作为哈希函数的输入,它们不一定会得到不同的哈希值。
对于哈希函数的前两个特性,比较好理解,但是对于第三种特性,我们应该如何解读呢?那下面就通过一个例子来说明。
我们按照 Java String 类里的哈希函数公式(即下面的公式)来计算出不同字符串的哈希值。String 类里的哈希函数是通过 hashCode 函数来实现的,这里假设哈希函数的字符串输入为 s,所有的字符串都会通过以下公式来生成一个哈希值:
这里为什么是“31”?下面会讲到哦~
注意:下面所有字符的数值都是按照 ASCII 表获得的,具体的数值可以在这里查阅。
如果我们输入“ABC”这个字符串,那根据上面的哈希函数公式,它的哈希值则为:
在什么样的情况下会体现出哈希函数的第三种特性呢?我们再来看看下面这个例子。现在我们想要计算字符串 "Aa" 和 "BB" 的哈希值,还是继续套用上面的的公式。
"Aa" 的哈希值为:
"Aa" = 'A' * 31 + 'a' = 65 * 31 + 97 = 2112
"BB" 的哈希值为:
"BB" = 'B' * 31 + 'B' = 66 * 31 + 66 = 2112
可以看到,不同的两个字符串其实是会输出相同的哈希值出来的,这时候就会造成哈希碰撞,具体的解决方法将会在第 07 讲中详细讨论。
需要注意的是,虽然 hashCode 的算法里都是加法,但是算出来的哈希值有可能会是一个负数。
我们都知道,在计算机里,一个 32 位 int 类型的整数里最高位如果是 0 则表示这个数是非负数,如果是 1 则表示是负数。
如果当字符串通过计算算出的哈希值大于 232-1 时,也就是大于 32 位整数所能表达的最大正整数了,则会造成溢出,此时哈希值就变为负数了。感兴趣的小伙伴可以按照上面的公式,自行计算一下“19999999999999999”这个字符串的哈希值会是多少。
hashCode 函数中的“魔数”(Magic Number)
细心的你一定发现了,上面所讲到的 Java String 类里的 hashCode 函数,一直在使用一个 31 这样的正整数来进行计算,这是为什么呢?下面一起来研究一下 Java Openjdk-jdk11 中 String.java 的源码(源码链接),看看这么做有什么好处。
public int hashCode() {
int h = hash;
if (h == 0 && value.length > 0) {
hash = h = isLatin1() ? StringLatin1.hashCode(value)
: StringUTF16.hashCode(value);
}
return
可以看到,String 类的 hashCode 函数依赖于 StringLatin1 和 StringUTF16 类的具体实现。而 StringLatin1 类中的 hashCode 函数(源码链接)和 StringUTF16 类中的 hashCode 函数(源码链接)所表达的算法其实是一致的。
StringLatin1 类中的 hashCode 函数如下面所示:
public static int hashCode(byte[] value) {
int h = 0;
for (byte v : value) {
h = 31 * h + (v & 0xff);
}
return h
StringUTF16 类中的 hashCode 函数如下面所示:
public static int hashCode(byte[] value) {
int h = 0;
int length = value.length >> 1;
for (int i = 0; i < length; i++) {
h = 31 * h + getChar(value, i);
}
return h
一个好的哈希函数算法都希望尽可能地减少生成出来的哈希值会造成哈希碰撞的情况。
Goodrich 和 Tamassia 这两位计算机科学家曾经做过一个实验,他们对超过 50000 个英文单词进行了哈希值运算,并使用常数 31、33、37、39 和 41 作为乘数因子,每个常数所算出的哈希值碰撞的次数都小于 7 个。但是最终选择 31 还是有着另外几个原因。
从数学的角度来说,选择一个质数(Prime Number)作为乘数因子可以让哈希碰撞减少。其次,我们可以看到在上面的两个 hashCode 源码中,都有着一条 31 * h 的语句,这条语句在 JVM 中其实都可以被自动优化成“(h << 5) - h”这样一条位运算加上一个减法指令,而不必执行乘法指令了,这样可以大大提高运算哈希函数的效率。
所以最终 31 这个乘数因子就被一直保留下来了。
区块链挖矿的本质
通过上面的学习,相信你已经对哈希函数有了一个比较好的了解了。可能也发现了,哈希函数从输入到输出,我们可以按照函数的公式算法,很快地计算出哈希值。但是如果告诉你一个哈希值,即便给出了哈希函数的公式也很难算得出原来的输入到底是什么。例如,还是按照上面 String 类的 hashCode 函数的计算公式:
如果告诉了你哈希值是 123456789 这个值,那输入的字符串是什么呢?我们想要知道答案的话,只能采用暴力破解法,也就是一个一个的字符串去尝试,直到尝试出这个哈希值为止。
对于区块链挖矿来说,这个“矿”其实就是一个字符串。“矿工”,也就是进行运算的计算机,必须在规定的时间内找到一个字符串,使得在进行了哈希函数运算之后得到一个满足要求的值。
我们以比特币为例,它采用了 SHA256 的哈希函数来进行运算,无论输入的是什么,SHA256 哈希函数的哈希值永远都会是一个 256 位的值。而比特币的奖励机制简单来说是通过每 10 分钟放出一个哈希值,让“矿工们”利用 SHA256(SHA256(x)) 这样两次的哈希运算,来找出满足一定规则的字符串出来。
比方说,比特币会要求找出通过上面 SHA256(SHA256(x)) 计算之后的哈希值,这个 256 位的哈希值中的前 50 位都必须为 0 ,谁先找到满足这个要求的输入值 x,就等于“挖矿”成功,给予奖励一个比特币。我们知道,即便知道了哈希值,也很难算出这个 x 是什么,所以只能一个一个地去尝试。而市面上所说的挖矿机,其原理是希望能提高运算的速度,让“矿工”尽快地找到这个 x 出来。
3. 比特币算法原理
比特币算法主要有两种,分别是椭圆曲线数字签名算法和SHA256哈希算法。
椭圆曲线数字签名算法主要运用在比特币公钥和私钥的生成过程中,该算法是构成比特币系统的基石。SHA-256哈希算法主要是运用在比特币的工作量证明机制中。
比特币产生的原理是经过复杂的运算法产生的特解,挖矿就是寻找特解的过程。不过比特币的总数量只有2100万个,而且随着比特币不断被挖掘,越往后产生比特币的难度会增加,可能获得比特币的成本要比比特币本身的价格高。
比特币的区块由区块头及该区块所包含的交易列表组成,区块头的大小为80字节,由4字节的版本号、32字节的上一个区块的散列值、32字节的 Merkle Root Hash、4字节的时间戳(当前时间)、4字节的当前难度值、4字节的随机数组成。拥有80字节固定长度的区块头,就是用于比特币工作量证明的输入字符串。不停的变更区块头中的随机数即 nonce 的数值,并对每次变更后的的区块头做双重 SHA256运算,将结果值与当前网络的目标值做对比,如果小于目标值,则解题成功,工作量证明完成。
比特币的本质其实是一堆复杂算法所生成的一组方程组的特解(该解具有唯一性)。比特币是世界上第一种分布式的虚拟货币,其没有特定的发行中心,比特币的网络由所有用户构成,因为没有中心的存在能够保证了数据的安全性。
4. 小白如何秒懂区块链中的哈希计算
小白如何秒懂区块链中的哈希计算
当我在区块链的学习过程中,发现有一个词像幽灵一样反复出现,“哈希”,英文写作“HASH”。
那位说“拉稀”同学你给我出去!!
这个“哈希”据说是来源于密码学的一个函数,尝试搜一搜,论文出来一堆一堆的,不是横式就是竖式,不是表格就是图片,还有一堆看不懂得xyzabc。大哥,我就是想了解一下区块链的基础知识,给我弄那么难干啥呀?!我最长的密码就是123456,复杂一点的就是654321,最复杂的时候在最后加个a,你给我写的那么复杂明显感觉脑力被榨干,仅有的脑细胞成批成批的死亡!为了让和我一样的小白同学了解这点,我就勉为其难,努力用傻瓜式的语言讲解一下哈希计算,不求最准确但求最简单最易懂。下面我们开始:
# 一、什么是哈希算法
## 1、定义:哈希算法是将任意长度的字符串变换为固定长度的字符串。
从这里可以看出,可以理解为给**“哈希运算”输入一串数字,它会输出一串数字**。
如果我们自己定义 “增一算法”,那么输入1,就输出2;输入100就输出101。
如果我我们自己定义“变大写算法”,那么输入“abc”输出“ABC”。
呵呵,先别打我啊!这确实就只是一个函数的概念。
## 2、特点:
这个哈希算法和我的“增一算法”和“变大写算法”相比有什么特点呢?
1)**确定性,算得快**:咋算结果都一样,算起来效率高。
2)**不可逆**:就是知道输出推不出输入的值。
3)**结果不可测**:就是输入变一点,结果天翻地覆毫无规律。
总之,这个哈希运算就是个黑箱,是加密的好帮手!你说“11111”,它给你加密成“”,你说“11112”它给你弄成“”。反正输入和输出一个天上一个地下,即使输入相关但两个输出毫不相关。
# 二、哈希运算在区块链中的使用
## 1、数据加密
**交易数据是通过哈希运算进行加密,并把相应的哈希值写入区块头**。如下图所示,一个区块头包含了上一个区块的hash值,还包含下一个区块的hash值。
1)、**识别区块数据是否被篡改**:区块链的哈希值能够唯一而精准地标识一个区块,区块链中任意节点通过简单的哈希计算都可以获得这个区块的哈希值,计算出的哈希值没有变化也就意味着区块链中的信息没有被篡改。
2)、**把各个区块串联成区块链**:每个区块都包含上一个区块的哈希值和下一个区块的值,就相当于通过上一个区块的哈希值挂钩到上一个区块尾,通过下一个区块的哈希值挂钩到下一个区块链的头,就自然而然形成一个链式结构的区块链。
## 2、加密交易地址及哈希
在上图的区块头中,有一个Merkle root(默克尔根)的哈希值,它是用来做什么的呢?
首先了解啥叫Merkle root? 它就是个二叉树结构的根。啥叫二叉树?啥叫根?看看下面的图就知道了。一分二,二分四,四分八可以一直分下去就叫二叉树。根就是最上面的节点就叫 根。
这个根的数据是怎么来的呢?是把一个区块中的每笔交易的哈希值得出后,再两两哈希值再哈希,再哈希,再哈希,直到最顶层的数值。
这么哈希了半天,搞什么事情?有啥作用呢?
1)、**快速定位每笔交易**:由于交易在存储上是线性存储,定位到某笔交易会需要遍历,效率低时间慢,通过这样的二叉树可以快速定位到想要找的交易。
举个不恰当的例子:怎么找到0-100之间的一个任意整数?(假设答案是88)那比较好的一个方法就是问:1、比50大还是小?2、比75大还是小?3、比88大还是小? 仅仅通过几个问题就可以快速定位到答案。
2)、**核实交易数据是否被篡改**:从交易到每个二叉树的哈希值,有任何一个数字有变化都会导致Merkle root值的变化。同时,如果有错误发生的情况,也可以快速定位错误的地方。
## 3、挖矿
在我们的区块头中有个参数叫**随机数Nonce,寻找这个随机数的过程就叫做“挖矿”**!网络上任何一台机器只要找到一个合适的数字填到自己的这个区块的Nonce位置,使得区块头这6个字段(80个字节)的数据的哈希值的哈希值以18个以上的0开头,谁就找到了“挖到了那个金子”!既然我们没有办法事先写好一个满足18个0的数字然后反推Nounce,唯一的做法就是从0开始一个一个的尝试,看结果是不是满足要求,不满足就再试下一个,直到找到。
找这个数字是弄啥呢?做这个有什么作用呢?
1)、**公平的找到计算能力最强的计算机**:这个有点像我这里有个沙子,再告诉你它也那一个沙滩的中的一粒相同,你把相同的那粒找出来一样。那可行的办法就是把每一粒都拿起来都比较一下!那么比较速度最快的那个人是最有可能先早到那个沙子。这就是所谓的“工作量证明pow”,你先找到这个沙子,我就认为你比较的次数最多,干的工作最多。
2)、**动态调整难度**:比特币为了保证10分钟出一个区块,就会每2016个块(2周)的时间计算一下找到这个nonce数字的难度,如果这2016个块平均时间低于10分钟则调高难度,如高于十分钟则调低难度。这样,不管全网的挖矿算力是怎么变化,都可以保证10分钟的算出这个随机数nonce。
# 三、哈希运算有哪些?
说了这么多哈希运算,好像哈希运算就是一种似的,其实不是!作为密码学中的哈希运算在不断的发展中衍生出很多流派。我看了”满头包”还是觉得内在机理也太复杂了,暂时罗列如下,小白们有印象知道是怎么回事就好。
从下表中也可以看得出,哈希运算也在不断的发展中,有着各种各样的算法,各种不同的应用也在灵活应用着单个或者多个算法。比特币系统中,哈希运算基本都是使用的SHA256算法,而莱特币是使用SCRYPT算法,夸克币(Quark)达世币(DASH)是把很多算法一层层串联上使用,Heavycoin(HAV)却又是把一下算法并联起来,各取部分混起来使用。以太坊的POW阶段使用ETHASH算法,ZCASH使用EQUIHASH。
需要说明的是,哈希运算的各种算法都是在不断升级完善中,而各种币种使用的算法也并非一成不变,也在不断地优化中。
**总结**:哈希运算在区块链的各个项目中都有着广泛的应用,我们以比特币为例就能看到在**数据加密、交易数据定位、挖矿等等各个方面都有着极其重要的作用**。而哈希运算作为加密学的一门方向不断的发展和延伸,身为普通小白的我们,想理解区块链的一些基础概念,了解到这个层面也已经足够。
5. 比特币计算
比特币计算需要以下参数:
1、block的版本 version
2、上一个block的hash值: prev_hash
3、需要写入的交易记录的hash树的值: merkle_root
4、更新时间: ntime
5、当前难度: nbits
挖矿的过程就是找到x使得
SHA256(SHA256(version + prev_hash + merkle_root + ntime + nbits + x )) < TARGET
上式的x的范围是0~2^32, TARGET可以根据当前难度求出的。除了x之外,还可以尝试改动merkle_root和ntime。由于hash的特性,找这样一个x只能暴力搜索。
一旦计算者A找到了x,就可以广播一个新的block,其他客户端会验证计算者A发布的block是否合法。
如果发布的block被接受,由于每个block中的第一笔交易必须是将新产生25个比特币发送到某个地址,当然计算者A会把这个地址设为计算者A所拥有的地址来得到这25个比特币。
6. 比特币挖矿到底是在计算什么
专业的说,是在算哈希值SHA-256。如果不懂计算机的话,简单地说,就是算一些没有意义的随机数,谁的随机数被比特币区块链接受了,谁就有钱拿。所以比特币计算除了赚钱之外,其实并没有任何实际作用。如果这些算力用来做科学计算,真的可以做很多事情,但是没办法,谁让比特币赚钱啊
7. 数字货币挖矿,什么是算力挖矿算力单位怎么换算
数字货币挖矿 我们经常提到的一个词就是 矿机的算力,
比如:挖BTC比特币的蚂蚁矿机T9+ 算力10.5TH/S,
挖LTC莱特币的蚂蚁矿机L3+ 算力504MH/S,
挖LCC数字链的好矿机Ubuntu×64 算力180KH/S.
那究竟算力是什么意思呢? 算力代表了什么 算力单位是怎么定义的呢?
其实算力的意思很简单,他就是代表矿机的计算能力、计算性能的衡量 他具体代表的是每秒矿机的整体hash算法运算次数。
我们先要知道挖矿的本质就是解决一个数学计算,谁先算出来谁就获得奖励(币),这个数学计算方式也很简单,就是一直不断的尝试碰撞结果