当前位置:首页 » 算力简介 » 斐波那契数列的算力

斐波那契数列的算力

发布时间: 2021-05-01 10:13:25

A. 斐波那契数列通项公式的小问题

解:分享一种解法。斐波拉契数列的通式F(n+2)=aF(n+1)+bF(n),F(1)=F(2)=1。题中给出的是a=b=1的特例。得出F(n)=C1(X1)^n+C2(X2)^n,是源于特征方程的产生过程的“逆应用”。其过程是,在F(n+2)=F(n+1)+F(n)两边加上“-xF(n+1)”、并设An=F(n+1)-xF(n),An+1=(1-x)An+[(1-x)x+1]F(n)。【要构建{An}为等比数列,则令F(n)的系数(1-x)x+1=0,即特征方程x^2=x+1】。这样,An为首项为F(2)-xF(1)=1-x、公比为(1-x)的等比数列。∴An=F(n+1)-x1F(n)=(1-x1)^n ①,An=F(n+1)-x2F(n)=(1-x2)^n ②,由①-②得(x2-x1)F(n)=(1-x1)^n-(1-x2)^n。再∵本题中,1-x1=x2,1-x2=x1,x2-x1=-1/√5,经整理有F(n)的表达式。供参考。

B. 斐波那契数列的求和公式

斐波那契数列的通项公式为
an=√5/5[(1+√5)/2]^n-√5/5[(1-√5)/2]^n,设bn=√5/5[(1+√5)/2]^n,cn=√5/5[(1-√5)/2]^n
则an=bn-cn,{bn}是公比为(1+√5)/2的等比数列,{cn}是公比为(1-√5)/2的等比数列,
bn的前n项和Bn=√5/5[(1+√5)/2]*(1-[(1+√5)/2]^n)/(1-[(1+√5)/2])
=(3√5+5)([(1+√5)/2]^n-1)/10
cn的前n项和Cn=√5/5[(1-√5)/2]*(1-[(1-√5)/2]^n)/(1-[(1-√5)/2])
=(3√5-5)([(1-√5)/2]^n-1)/10
所以an的前n项和An=a1+a2+…+an=b1-c1+b2-c2+…+bn-cn=Bn-Cn
=(3√5+5)([(1+√5)/2]^n-1)/10-(3√5-5)([(1-√5)/2]^n-1)/10
={(3√5+5)([(1+√5)/2]^n-1)-(3√5-5)([(1-√5)/2]^n-1)}/10

C. 斐波那契数列的总和

这个就通过那个通项公式求和就可以了。
通项公式为an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
对0-n求和Sn(a0=0,为了计算方便加上,对结果没有影响)
利用等比数列的求和公式。1+a+a^2+...+a^n=(1-a^(n+1))/(1-a)
Sn=(1/√5)*{(((1+√5)/2)^(n+1)-1)/((1+√5)/2-1) - (((1-√5)/2)^(n+1)-1)/((√5-1)/2)}
=1/√5*{(1/(√5-1)/2)*(((1+√5)/2)^(n+1)-1)+1/(√5+1)/2)*(((1-√5)/2)^(n+1)-1)}
=1/√5*{((1+√5)/2)^(n+2)-((1-√5)/2)^(n+2)}-1 这样就求出来了呀。。
而且我们发现由通项公式,
Sn=a(n+2)-1, 我验证了一下发现这个公式是正确的。a(n+2)为斐波那契数列的第n+2项
实际上我们可以很容易由数学归纳法证明这个公式的正确性。不懂再问我。

D. 斐波那契数列的算法

斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……
这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(1/√5)*{[(1+√5)/2]^n
-
[(1-√5)/2]^n}(又叫“比内公式”,是用无理数表示有理数的一个范例。)(√5表示根号5)

E. 斐波那契数列的性质,属性

这个有点难

F. 斐波那契数列通项公式怎么推出来的

由an+2= an+1+an
有an+2- an+1- an=0
构造特征方程 x2-x-1=0,
令它的两个根是p,q 有pq=-1 p+q=1

下面我们来证 {an+1-pan}是以q为公比的等比数列。

为了推导的方便,令a0=1,仍满足an+2= an+1+an

an+1-pan
= an+an-1 -pan
= (1-p) an-pqan-1
=q(an-pan-1)
所以:{an+1-pan}是以q为公比的等比数列。

a1-pa0
=1-p=q

所以 an+1-pan=q*qn=qn+1 ①

同理 an+1-qan=p*pn=pn+1 ②

①-②:(q-p)an= qn+1-pn
因p=(1-√5)/2,q=(1+√5)/2,q-p=√5,所以
an=(1/√5){[(1+√5)/2]n+1-[(1-√5)/2] n+1}
可验证a0,a1也适合以上通项公式。

G. 关于斐波那契数列中的规律.

后一个数是前两个数的和。繁分数分母总是大于1,所以的值总是小于1
而分子总是取先前的分母,除了第一次分子分母均是1时,值等于1/2,后来的值均大于1/2
而每次计算繁分数时,繁分数分母中的分母总是不变,分子总是先前分子与分母之和
这就完全符合斐波那契数列的展开规律

那么这个最简单的无穷连分数的值是多少呢?
也就是斐波那契数列连续两项之比的极限是多少呢?
设:x=1/(1+1/(1+1/(1+...)))
显然有:x=1/(1+x)
即:x^2+x-1=0
x=(√5-1)/2=0.618...(舍去负值)
这就是黄金分割比例,也是斐波那契数列连续两项之比的极限
这就是楼主所说的:“越来越接近黄金比例”的原因。
所谓“随n的增加,两数之间的差距越来越小”,其实就是越来越接近极限嘛。

那为什么“任意两数不断相加”都这样呢?
黄金分割比例其实是个中外比的问题:
所谓中外比,就是分已知线段为两部分,使其中一部分是全线段与另一部分的比例中项。
如果把较长的一段设为x,则较短的一段为1-x
所以,x^2=1*(1-x) 【其中“1”表示全线段】
即:x^2+x-1=0,与上面解最简单的无穷连分数的方程完全一致
注意这里的全线段用1来表示,这就是说求黄金分割比例与线段的实际长度无关
同样道理,对于斐波那契数列的展开,如果考察的是前后两项的比例
那么,从哪两个数开始相加,就是无所谓的了
因为总是两个数中的大数与两数和之比,这与黄金分割的中外比完全是一个意思
况且除了第一个比值还不是与“和”比之外,其他所有比值总是在0.5和1之间
如果开始的两个数不相同,那么:m,n,m+n,m+2n,2m+3n,3m+5n,...
可见还是按斐波那契数列规律在展开,当然这是大致理解,严格的证明要看相关资料
再想想看,如果斐波那契数列最开始两个数是1和2呢?不同了吧。
还不是一样展开,除少了第一项外,其他并没有什么不同。
如果开始的两个数相同,那么:m,m,2m,3m,...其实就是斐波那契数列,
只是每个数差个m倍而已,完全不影响连续两项之比的值。而且从第3项开始,a前的系数恰好构成斐波那契数列;
从第2项开始,b前的系数恰好构成斐波那契数列;
于是,由斐波那契数列通项公式有:
第n个数a前的系数=(1/√5)*{[(1+√5)/2]^(n-2) - [(1-√5)/2]^(n-2)}
第n个数b前的系数=(1/√5)*{[(1+√5)/2]^(n-1) - [(1-√5)/2]^(n-1)}
所以第n个数(n≥3)为:
(1/√5)*{[(1+√5)/2]^(n-2) - [(1-√5)/2]^(n-2)}*a+(1/√5)*{[(1+√5)/2]^(n-1) - [(1-√5)/2]^(n-1)}*b。

H. 斐波那契数列的公式推导

斐波那契数列:1,1,2,3,5,8,13,21……
如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)
显然这是一个线性递推数列。

通项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2, X2=(1-√5)/2.
则F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】
通项公式的推导方法二:普通方法
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1, -rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)
r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

I. 斐波那契数列为:1,1,2,3,5,8,13,…,它的前两项都等于1,之后的每一项都等于前二项之和.请问在

斐波那契数列的个位数为60个一循环,每个循环中有4个个位数是2的:
2013÷60=33…33
余数是33,那么在这区间只有第3位的个位是2,
33×4+1
=132+1
=133;
答:在斐波那契数列的前2013项中,有133项的末位数字是2.

J. 斐波那契数列怎么求它的第几项是多少

答案是肯定有的!!!!

事实上任意的:

a(n+2)=Aa(n+1)+Ban形式的相邻3项的递推式,都可以解出其通项公式

解决这类问题的方法主流的有两种:1.待定系数法2.特征方程法

下图便是待定系数法解此类问题的完备性与特征方程的的证明

我以一个特殊的例子为LZ讲解一下特征方程法的一个应用

{1,1,2,3,5,8,13,21,……}

不难发现这个数列有两个非常显著的特点就是:a1=a2=1且an=a(n-1)+a(n-2)

其实这就是著名的斐波那契数列其从第3项其后项为前两项之和

这就相当于a(n+2)=Aa(n+1)+Ban形式的A,B均为1的特殊情况

通过下图所证明的“特征方程”法可知:

解an=a(n-1)+a(n-2)的特征方程x^2=x+1得

x1,x2分别为(1+跟5)/2和(1-跟5)/2

则有an=α[(1+跟5)/2]^n+β[(1-跟5)/2]^n

其中α与β为待定系数,可代入a1,a2来解得α=1/跟5,β=-1/跟5

即an=(1/跟5){[(1+跟5)/2]^n-[(1-跟5)/2]^n}

这就是斐波那契数列的通项公式!!!

那么对于a(n+2)=Aa(n+1)+Ban形式的相邻3项的递推式

只需要解其特征方程x^2=Ax+B

①仅有1个实根:{an/(x^n)}为等差数列

可待定系数设an=[a1+(n-1)d]x^(n-1)

再由a2确定d的值

②有两个不相等的实根:

可待定系数设an=α(x1)^n+β(x2)^n

再由a1,a2确定α和β的值

若LZ还有什么地方不明白的可追问

希望我的回答对你有帮助

热点内容
收到假eth币 发布:2025-10-20 08:58:16 浏览:973
暗黑破坏神2eth打孔 发布:2025-10-20 08:42:58 浏览:105
BTC和CBT是一样的吗 发布:2025-10-20 08:42:57 浏览:233
华硕trx40Pro供电 发布:2025-10-20 08:33:26 浏览:432
晒人民币编号的朋友圈 发布:2025-10-20 08:25:32 浏览:687
doge格式 发布:2025-10-20 08:02:00 浏览:382
以太坊会爆发吗 发布:2025-10-20 08:01:59 浏览:772
一台比特币矿机的功率 发布:2025-10-20 07:39:24 浏览:925
trx辅助带 发布:2025-10-20 07:35:29 浏览:48
比特币哈希值有多少位 发布:2025-10-20 07:31:20 浏览:633