算力欠缺制约中国ai发展
『壹』 人工智能未来的发展前景怎么样
人工智能产业链分为基础层、技术层和应用层。基础层是人工智能产业链的基础,为人工智能提供算力支撑和数据输入,中国在此领域发展时间较短,基础层发展较为薄弱。目前,中国的人工智能企业主要集中在北京、广东、上海和浙江,北京的人工智能发展已经步入快车道。
人工智能产业链全景梳理:基础层发展薄弱
基础层主要提供算力和数据支持,主要涉及数据的来源与采集,包括AI芯片、传感器、大数据、云计算、开源框架以及数据处理服务等。技术层处理数据的挖掘、学习与智能处理,是连接基础层与具体应用层的桥梁,主要包括机器学习、深度学习、计算机视觉、自然语言处理、语音识别等。应用层针对不同的场景,将人工智能技术进行应用,进行商业化落地,主要应用领域有驾驶、安防、医疗、金融、教育等。
—— 以上数据及分析均来自于前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。
『贰』 中国AI总投资增速世界第一,AI技术都有哪些含金量
人工智能的三大关键基础要素是数据、算法和算力。随着云计算的广泛应用,特别是深度学习成为当前AI研究和运用的主流方式,AI对于算力的要求快速提升。 AI能让机器从经验中学习,适应新的输入,并执行与人类相似的任务。大多数你现在听到的 AI例子,从下棋的电脑到自动驾驶的汽车,都非常依赖于深度学习和自然语言处理。利用这些技术,可以训练计算机通过处理大量数据和识别数据中的模式来完成特定的任务。
计算机视觉在很多领域,从人脸识别到足球赛现场的处理,都可以与人类视觉相媲美和超越。
『叁』 阻碍实现人工智能的根本问题是什么是计算能力不足还是目前的编程语言无法描述智能如果是计算能力不足,
根本问题是我们不知道人的智能是如何产生的,而我们贫乏的想象力也不足以想象出一种与人类截然不同的思考模式。所以……
麻烦采纳,谢谢!
『肆』 人工智能技术发展有哪些难题
人工智能是对人脑智能的模拟,而人工智能的发展还面临三大挑战:首先,人脑智能的产生原理尚未研究清楚,“脑科学”研究还处于摸索阶段;其次,尽管计算机的发展迅速,但在数学和算法研究上还有待突破;最后,和人类学习知识一样,人工智能也需要通过学习大量数据来提升,这需要人工智能与产品和产业相结合,通过“实践”来提高人工智能水平。中国人工智能研究要想突破,就要从三个方面攻关。第一是开展脑科学、神经科学和人工智能等基础理论研究;第二是加强数学算法和统计识别模块等计算领域研究;第三是人工智能要与产业发展相结合,依托研究院所和企业开发人工智能应用,积累实验数据。此问题由colorreco回到。
『伍』 人工智能大势已来,未来发展会遇到什么难关
先看一组数字:
1. 2020年我国人工智能市场规模将达710亿元
我国人工智能产业虽然起步较晚,但以网络、阿里巴巴、腾讯、科大讯飞等为代表的企业已经开始大规模地投入和布局,产业投资和创业热情高涨,技术研究、行业应用等快速发展。根据中国信息通信研究院的统计数据显示,2017年我国人工智能市场规模达到216.9亿元,同比增长52.8%,预测2020年这一数值将增加到710亿元。
2. 人工智能辅助诊断全程不超过2分钟
在医疗行业,医学影像科是医院诊疗系统中患者流量最大的科室之一,临床诊断的70%依赖于影像。然而,放射科医生4.1%的年增长速度远远赶不上影像数据30%的年增长率,这为影像人工智能医疗产业升级提供了动力——数据显示,智能医学影像市场将以超过40%的增速发展。越来越多的医院对人工智能辅助诊断寄予厚望。在上海市第一人民医院影像科办公室内,放射科医生会使用冠心病人工智能辅助诊断系统,为患者诊断动脉狭窄的程度。与以往需要耗费大量时间处理书写诊断报告不同,人工智能辅助诊断系统可以快速三维建模、判断狭窄程度、输出结构化报告,全程不超过2分钟。这款软件由国内企业数坤科技自主研发,已经服务于全国百余家医院。
上面这组数字,已经明确展示了人工智能未来的大发展,在数字经济下,人工智能作为第四次产业变革的引擎,已逐渐渗透到各行业中,为人类社会和经济发展带来变革。
不过,人工智能与数据息息相关,受到数据约束。人工智能产品的落地和聚焦领域的细分化,都对数据采集和标注提出了更多挑战——这能回答楼主,未来人工智能发展所需要解决的一个难关,就是数据关。
云测数据认为,目前,AI只是处于“弱智能”阶段,且大多只聚焦于某一领域,通用型的AI尚处于研发阶段,而且高度智能的“强智能”阶段是否会到来、需要多久才能到来,一切尚都是未知数。人工智能短期内一定会代替部分重复性劳动。AI本身其实带有一种温情和关怀,因为它代替的是高危和重复性劳动,这会节省很多人类的时间,让人与人之间的交互模式产生很大改观。而当前人工智能亟待突破的一大瓶颈就是数据。数据量尤其是专用领域的数据数量和质量不够,硬件工程化成本相对较高,缺乏应对场景等。
云测数据认为,人工智能的背后有数据、算法和算力来支撑,这三要素之间其实是一种相互促进,并且也相互制约的关系。其中,数据是人工智能发展的基础,没有数据,再强的算法也不可能有好的模型。“人工智能产业化落地的关键就在于数据,算法模型做得再好,数据从源头上就错了,那就得不到正确的训练成果。”
现在很多AI产品都处于落地阶段,对于模型的精确程度要求非常高,对应的要求数据的精度也就非常高了。而且为了提高模型识别精度,AI公司用到的数据也从单一化向多模态转变。以自动驾驶为例,从最早基于摄像头做感知的方案,到引入激光雷达,到之后可能会引入更多其他感知设备来提升感知算法。未来多传感器的解决方案将会普遍应用到我们所使用的AI产品中,它的感知模式将不仅仅是基于单一的图像、声音或文字,将会引入更多模态的数据。
为了算法的提升,AI企业不仅需要定制化的数据采集来获得长尾场景的数据;同时对于标注数据的精度也需要进一步提升。随着应用场景的不断挖掘,整个人工智能行业未来会出现聚焦领域越来越细分化的趋势。
目前AI在领域聚焦、细化、垂直化大趋势下,对数据的要求也更高,云测数据通过打造场景实验室等方式,为AI企业提供定制化、高效、安全的数据采集标注服务。
『陆』 如何加速中国人工智能的发展
据报道,经过几十年的科研探索和前期布局,人工智能现已成为活跃在科技领域的核心力量,也成为国家间科技竞赛的新战场,中国人工智能发展还面临着顶层设计不够、人才储备不足等制约因素。
最后克服“企业数据和院校算法脱节”的产业发展瓶颈,引导科研人员兼顾应用场景和研究成果可行性,并采取措施保证科研成果孵化成产品的通道畅通,开通绿色通道,加快孵化速度,弥补中美之间从科研到产品的发展差距。
希望中国人工智能技术可以取得更大的进步!
『柒』 中国人工智能发展如何华为推出AI训练集群Atlas 900,说是全球最快的人工智能平台,想了解下
随着政策的推动以及资本的关注,人工智能产业仍将保持迅猛发展态势,2020年中国人工智能核心产业规模将超1500亿元。
当前人工智能的商业化主要是基于计算机视觉、智能语音、自然语言处理等技术,技术应用面广泛,涉及智能医疗、智能驾驶、智能家居等多场景。
2018年中国人工智能领域共融资1311亿元,增长率超过100%,投资者看好人工智能行业的发展前景,资本将助力行业更好地发展。
在人工智能与出行结合领域,路径规划、网络约车、交通管理、自动驾驶等技术的研发解决了传统出行不便的痛点,其中深兰科技深耕智能交通、智能环境、智能城市等细分领域,已实现人工智能产品落地。其深兰科技熊猫智能公交车已实现在广州、天津等国内多个城市试运行。而人工智能与安防、医疗、零售等产业的结合,均解决了一定行业痛点,利用机器学习算法、深度学习和NLP促进行业发展。
随着5G商用时代的逐渐来临,人工智能技术连接效率也将进一步提升,深度学习、数据挖掘、自动程序设计等领域也将在更多的应用领域得到实现。
中国人工智能发展迅速
中国人工智能技术起步较晚,但是发展迅速,目前在专利数量以及企业数量等指标上已经处于世界领先地位。2013-2018年,全球人工智能领域的论文文献产出共30.5万篇,其中,中国发表7.4万篇,美国发表5.2万篇。在数量占比方面,2017年中国人工智能论文数量占比全球已经达27.7%。当前中美两国之间人工智能科研论文合作规模最大,是全球人工智能合作网络的中心,中美两国合作深刻影响全球人工智能发展。
中国人工智能未来热度持续
艾媒咨询分析师认为,目前中国整个人工智能产业规模仍在保持增长,同时国家也在不断出台各类人工智能产业扶持政策,资本市场对人工智能行业的投资热情不减,技术方面不断突破是产业增长的核心驱动力。
未来人工智能产业的走向取决于算法的进步,由于算法的技术突破是决定人工智能上限的,所以未来人工智能企业拉开差距就在算法的技术突破上,谁能先在算法上取得成功,谁就能取得资本市场青睐,同时产业落地也会进一步提速。在算法方面,目前已经有深度学习和神经网络这样优秀的模型,但就目前国内人工智能算法的总体发展而言,工程学算法虽已取得阶段性突破,但基于认知层面的算法水平还亟待提高,这也是未来竞争的核心领域。
虽然算法决定人工智能上限,但是目前的算法短时间内可能很难有所突破,所以算力也是目前人工智能企业竞争的一个重点方向,以目前的算力水平,主要实现商业化的人工智能技术为计算机视觉、智能语音等,未来若算力进一步突破包括算力的提升、生产成本的降低都会使人工智能技术的产业化进一步深入。
以上内容摘自艾媒咨询最新发布的《艾媒报告 |2019上半年中国人工智能产业研究报告》
『捌』 人工智能的发展前景怎么样
—— 以下数据及分析均来自于前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。
当前,国内外互联网巨头纷纷将人工智能作为下一次产业革命的突破口,积极加大投资布局,与此同时,随着人工智能技术进步和基础设施建设不断完善的推动下,全球人工智能应用场景将不断丰富,市场规模持续扩大。
“人工智能”一词最初是在1956年美国计算机协会组织的达特矛斯(Dartmouth)学会上提出的,人工智能发展至今经历过经费枯竭的两个寒冬(1974-1980年、1987-1993年),也经历过两个大发展的春天(1956-1974年、1993-2005年)。从2006年开始,人工智能进入了加速发展的新阶段,并行计算能力、大数据和先进算法,使当前人工智能加速发展;同时,近年来人工智能的研究越来越受到产业界的重视,产业界对AI的投资和收购如火如荼。
人工智能技术迈入深度学习阶段
机器学习是实现人工智能的一种重要方法,深度学习(Deep Learning)是机器学习(Machine Learning)的关键技术之一。深度学习自2006年由Jeffery Hinton实证以来,在云计算、大数据和芯片等的支持下,已经成功地从实验室中走出来,开始进入到了商业应用,并在机器视觉、自然语言处理、机器翻译、路径规划等领域取得了令人瞩目的成绩,全球人工智能也正式迈入深度学习阶段。
与此同时,全球人工智能领域对新技术的探索从未停止,新技术层出不穷,例如近年来一些新的类脑智能算法提出来,将脑科学与思维科学的一些新的成果结合到神经网络算法之中,形成不同于深度学习的神经网络技术路线,如胶囊网络等,技术的不断进步是推动全球人工智能的发展的不竭动力,这些新技术的研究和应用将加快全球人工智能的发展进程。
主要经济体加快人工智能战略布局
人工智能作为引领未来的战略性技术,目前全球主要经济体都将人工智能作为提升国家竞争力、维护国家安全的重大战略。自2013年以来,包括美国、中国、欧盟、英国、日本、德国、法国、韩国、印度、丹麦、芬兰、新西兰、俄罗斯、加拿大、新加坡、阿联酋、意大利、瑞典、荷兰、越南、西班牙等20多个国家和地区发布了人工智能相关战略、规划或重大计划,越来越多的国家加入到布局人工智能的队列中,从政策、资本、技术人才培养、应用基础设施建设等方面为本国人工智能的落地保驾护航。
『玖』 人工智能以后的发展前景怎么样
近年来我国人工智能产业呈现出了蓬勃发展的良好态势。一是部分关键应用技术特别是图像识别、语音识别等技术,处于全球相对领先的水平,人工智能论文总量和高倍引用的论文数量,也处在第一梯队,据全球相对前列。二是产业整体实力显著增强。全国人工智能产业超过一千家,覆盖技术平台、产品应用等多环节,已经形成了比较完备的产业链。京津冀、长三角、珠三角等地区的人工智能产业急剧发展的格局已经初步形成。三是与行业融合应用不断深入。人工智能凭借其强大的赋能性,正在成为促进传统行业转型升级的重要驱动力量,各领域智能的新技术、新模式、新业态不断涌现,辐射溢出的效应也在持续增强,人工智能概念的火热促进了不少行业的兴起,比如域名,许多相关的.top域名已经被注册。但也要看到,在快速发展过程当中,我国人工智能的基础技术,还有较大欠缺,能够真正创造商业价值的还比较少。传统行业与人工智能的融合还存在较高门槛,有数据显示,今年人工智能领域投融资比前两年特别是跟去年相比,也有比较大幅度的下调。
中国人工智能应用具有领域广、渗透深的特点,在产业化方面具有独特优势,但也面临巨大挑战,尤其是在基础理论和算法方面,原始创新能力不足,在高端芯片、关键部件等方面基础薄弱,高水平人才也不足。随着全球人工智能加速发展,各国在认知智能、机器学习、智能芯片等方面将不断取得突破。
『拾』 人工智能专业发展前景如何
人工智能产业链分为基础层、技术层和应用层。基础层是人工智能产业链的基础,为人工智能提供算力支撑和数据输入,中国在此领域发展时间较短,基础层发展较为薄弱。目前,中国的人工智能企业主要集中在北京、广东、上海和浙江,北京的人工智能发展已经步入快车道。
人工智能产业链全景梳理:基础层发展薄弱
基础层主要提供算力和数据支持,主要涉及数据的来源与采集,包括AI芯片、传感器、大数据、云计算、开源框架以及数据处理服务等。技术层处理数据的挖掘、学习与智能处理,是连接基础层与具体应用层的桥梁,主要包括机器学习、深度学习、计算机视觉、自然语言处理、语音识别等。应用层针对不同的场景,将人工智能技术进行应用,进行商业化落地,主要应用领域有驾驶、安防、医疗、金融、教育等。
—— 更多数据请参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》