matalb样本数据去中心化
㈠ 给出一组数据,如何用MATLAB去预测将来的数据。
这样:
x=[1 3 5 6 8 9 10 11 12 14 15 17 19 21 23 25];
y=[10 20 42 60 73 79 80 78 73 64 56 71 51 42 41 40];
plot(x,y,'ro');
p=polyfit(x,y,4);%于是拟合出的曲线就是p(1)x^4+p(2)x^3+p(3)x^2+p(4)x+p(5),想拟合成其它次数的多项式只需将4改为相应的次数即可
f=poly2sym(p);
xinterp=[2 4 7 13 16 18 20 22 24];
yinterp=subs(f,xinterp);
hold on;
plot(xinterp,yinterp,'o');
ezplot(f,[0,30])
(1)matalb样本数据去中心化扩展阅读:
注意事项
函数命令为:
a=polyfit(x,y,m) % x,y为对应的自变量,m为需要拟合的最高次幂
y=polyval(a,x); %根据拟合的函数得出x对应的因变量的值
函数表达形式为:f(x)=a1*x^m+...+am*x+a_m+1
polyfit(x,y,n)其中:x, y为已知数据点向量, 分别表示横、纵坐标,n为拟合多项式的次数, 结果返回m次拟合多项式系数, 从高次到低次存放在向量p中.参数p为拟合多项式 y=a1x^n+...+anx+a,共n+1个系数。
示例:
%多项式拟合
x = (0: 0.1: 7)';
y = sin(x);
p = polyfit(x,y,3) %p为拟合后的多项式系数
z=polyval(p,x);
plot(x,y,'r',x,z,'b')
其中p为拟合后的多项式系数,运行结果为:
p =0.0736 -0.7095 1.5250 -0.0296
㈡ 如何用matlab实现 在样本中剔除一个点
你想怎么抽取?随机抽取的话产生5个随机整数,控制在你要的数据范围内。比如从100个样本中抽取5个,产生其序号为a=round(100*rand(1,5))。
㈢ 想知道怎么用matlab做数据的无量纲化
1. min-max归一化
该方法是对原始数据进行线性变换,将其映射到[0,1]之间,该方法也被称为离差标准化(但是请注意,网上更多人喜欢把z-score称为标准化方法,把min-max称为归一化方法,然后在此基础上,强行给标准化(z-score)与归一化(min-max)划条界线,以显示二者之间的相异性。对!二者之间确实有很大的不同,这个我们后面会有介绍,但是这两个方法说到底还都是用来去除量纲的,都是无量纲化技术中的一员而已,所以,请不要纠结标准化与归一化这两个概念了)。
上式中,min是样本的最小值,max是样本的最大值。由于最大值与最小值可能是动态变化的,同时也非常容易受噪声(异常点、离群点)影响,因此一般适合小数据的场景。此外,该方法还有两点好处:
1) 如果某属性/特征的方差很小,如身高:np.array([[1.70],[1.71],[1.72],[1.70],[1.73]]),实际5条数据在身高这个特征上是有差异的,但是却很微弱,这样不利于模型的学习,进行min-max归一化后为:array([[ 0. ], [ 0.33333333], [ 0.66666667], [ 0. ], [ 1. ]]),相当于放大了差异;
2) 维持稀疏矩阵中为0的条目。
使用方法如下:
from sklearn.preprocessing import MinMaxScaler
x = np.array([[1,-1,2],[2,0,0],[0,1,-1]])
x1 = MinMaxScaler().fit_transform(x)
㈣ 如何在matlab中求非中心卡方分布的非中心化参数
如何在matlab中求非中心卡方分布的非中心化参数
中心卡方分布是标准正态分布的平方和,非中心卡方分布是均值为a,方差为b2的正态分布随机变量的平方和;求的话看这两个连接好了
㈤ matlab 中输入一组数据,8000样本点,20个点一取样,变成400*18的怎么编写
用randperm 我给你举个例子吧:>> b=1:10b = 1 2 3 4 5 6 7 8 9 10>> a=randperm(10)a = 1 9 10 8 3 7 5 2 6 4>> b(a(1:5))ans = 1 9 10 8 3
㈥ MATLAB 数据归一化(除去里边的空值-9999)
假设你的数据存在矩阵a当中,下面的程序应该能符合你的要求
a(find(a==-9999))=[];
a=mapminmax(a,0,1)
㈦ 如何使用MATLAB编程实现实验数据的处理
数据处理也就包括标准化,归一化处理,很简单,我给你个例子,你可以仿照学习下:
%% 该代码为基于带动量项的BP神经网络语音识别
%% 清空环境变量
clc
clear
%% 训练数据预测数据提取及归一化
%下载四类语音信号
load data1 c1
load data2 c2
load data3 c3
load data4 c4
%四个特征信号矩阵合成一个矩阵
data(1:500,:)=c1(1:500,:);
data(501:1000,:)=c2(1:500,:);
data(1001:1500,:)=c3(1:500,:);
data(1501:2000,:)=c4(1:500,:);
%从1到2000间随机排序
k=rand(1,2000);
[m,n]=sort(k);
%输入输出数据
input=data(:,2:25);
output1 =data(:,1);
%把输出从1维变成4维
for i=1:2000
switch output1(i)
case 1
output(i,:)=[1 0 0 0];
case 2
output(i,:)=[0 1 0 0];
case 3
output(i,:)=[0 0 1 0];
case 4
output(i,:)=[0 0 0 1];
end
end
%随机提取1500个样本为训练样本,500个样本为预测样本
input_train=input(n(1:1500),:)';
output_train=output(n(1:1500),:)';
input_test=input(n(1501:2000),:)';
output_test=output(n(1501:2000),:)';
%输入数据归一化
[inputn,inputps]=mapminmax(input_train);
%% 网络结构初始化
innum=24;
midnum=25;
outnum=4;
%权值初始化
w1=rands(midnum,innum);
b1=rands(midnum,1);
w2=rands(midnum,outnum);
b2=rands(outnum,1);
w2_1=w2;w2_2=w2_1;
w1_1=w1;w1_2=w1_1;
b1_1=b1;b1_2=b1_1;
b2_1=b2;b2_2=b2_1;
%学习率
xite=0.1
alfa=0.01;
%% 网络训练
for ii=1:10
E(ii)=0;
for i=1:1:1500
%% 网络预测输出
x=inputn(:,i);
% 隐含层输出
for j=1:1:midnum
I(j)=inputn(:,i)'*w1(j,:)'+b1(j);
Iout(j)=1/(1+exp(-I(j)));
end
% 输出层输出
yn=w2'*Iout'+b2;
%% 权值阀值修正
%计算误差
e=output_train(:,i)-yn;
E(ii)=E(ii)+sum(abs(e));
%计算权值变化率
dw2=e*Iout;
db2=e';
for j=1:1:midnum
S=1/(1+exp(-I(j)));
FI(j)=S*(1-S);
end
for k=1:1:innum
for j=1:1:midnum
dw1(k,j)=FI(j)*x(k)*(e(1)*w2(j,1)+e(2)*w2(j,2)+e(3)*w2(j,3)+e(4)*w2(j,4));
db1(j)=FI(j)*(e(1)*w2(j,1)+e(2)*w2(j,2)+e(3)*w2(j,3)+e(4)*w2(j,4));
end
end
w1=w1_1+xite*dw1'+alfa*(w1_1-w1_2);
b1=b1_1+xite*db1'+alfa*(b1_1-b1_2);
w2=w2_1+xite*dw2'+alfa*(w2_1-w2_2);
b2=b2_1+xite*db2'+alfa*(b2_1-b2_2);
w1_2=w1_1;w1_1=w1;
w2_2=w2_1;w2_1=w2;
b1_2=b1_1;b1_1=b1;
b2_2=b2_1;b2_1=b2;
end
end
%% 语音特征信号分类
inputn_test=mapminmax('apply',input_test,inputps);
for ii=1:1
for i=1:500%1500
%隐含层输出
for j=1:1:midnum
I(j)=inputn_test(:,i)'*w1(j,:)'+b1(j);
Iout(j)=1/(1+exp(-I(j)));
end
fore(:,i)=w2'*Iout'+b2;
end
end
%% 结果分析
%根据网络输出找出数据属于哪类
for i=1:500
output_fore(i)=find(fore(:,i)==max(fore(:,i)));
end
%BP网络预测误差
error=output_fore-output1(n(1501:2000))';
%画出预测语音种类和实际语音种类的分类图
figure(1)
plot(output_fore,'r')
hold on
plot(output1(n(1501:2000))','b')
legend('预测语音类别','实际语音类别')
%画出误差图
figure(2)
plot(error)
title('BP网络分类误差','fontsize',12)
xlabel('语音信号','fontsize',12)
ylabel('分类误差','fontsize',12)
%print -dtiff -r600 1-4
k=zeros(1,4);
%找出判断错误的分类属于哪一类
for i=1:500
if error(i)~=0
[b,c]=max(output_test(:,i));
switch c
case 1
k(1)=k(1)+1;
case 2
k(2)=k(2)+1;
case 3
k(3)=k(3)+1;
case 4
k(4)=k(4)+1;
end
end
end
%找出每类的个体和
kk=zeros(1,4);
for i=1:500
[b,c]=max(output_test(:,i));
switch c
case 1
kk(1)=kk(1)+1;
case 2
kk(2)=kk(2)+1;
case 3
kk(3)=kk(3)+1;
case 4
kk(4)=kk(4)+1;
end
end
%正确率
rightridio=(kk-k)./kk
㈧ Fastica 的源程序啊,matlab,包括数据的预处理(中心化和白化),能不能发给我一份非常感谢!
#include<stdio.h>
#include<string.h>
void reversestring(char s[],int n);
void main(){
int i,n;
char p[]="hansunguniversity";
n = strlen(p);
reversestring(p,n);
for(i=0;i<n;i++)
printf("%c",p[i]);
printf("\n");
}
void reversestring(char s[],int n)
{
int length=n;
char temp;
for(int i=0;i<length/2;i++)
{
temp=s[i];
s[i]=s[length-i-1];
s[length-i-1]=temp;
}
㈨ 用matlab对数据进行去噪,具体步骤是什么请帮帮忙,急!!
中值去噪还是均值去噪?
首先选取一个N*N的窗口,比如
3*3,对这个窗口内的灰度值进行排序,取中间的那个值,然后在该窗口内所有灰度值统一用这个中值
均值就是将窗口内灰度值相加求平均值,窗口内所有的灰度值统一用这个均值
要比较结果的话,求峰值信噪比
一般来讲,5*5的窗口要比3*3的好。我去年的毕业论文就是写这个。
另外你去噪的图像必须是标准的,最好是512*512