当前位置:首页 » 算力简介 » 算力2pb

算力2pb

发布时间: 2021-04-16 17:19:21

A. 如何在短短48小时内用云计算给地球做b超

今年杭州云栖大会上,中国馆地震局的地球物理科学家王伟涛博士在Tech Insight的数据存储技术实战专场做了一场主题分享:名为《云计算在地震学研究中的应用-利用bcs和海量数据创建虚拟地震》。 他介绍,原本需要一年计算时间的整个中国数千个地震台两两之间的五年数据的计算任务,在云计算中狂飙,48小时之内就计算完成了。
这到底是如何实现的呢?
我们的祖先凝望星河闪耀,却花费万年时间才摸索出天体运行规律。
我们的前辈坐看潮涌潮平,却历经千秋万代才能航行到大洋彼岸。
而我们自己,在这片土地上繁衍至今,却仍旧对脚下的大地懵然无知。
从观察记录到规律预测,几乎是人类科学史的全部逻辑。
但每次我们拼尽全力记下的数据,都只是抬高知识瀚海的涓涓细流。
当我们提笔开始繁复演算的时候,期待的是阿基米德跳出浴缸、牛顿举起苹果的那一刻。
王伟涛博士正是这样计算的执笔人,他来自中国地震局。他想知道的,是我们脚下大地的每个细节。
浩如烟海的计算
我们经历的每一次地震,都在提醒自己预测和预警这种灾害的迫切性。但是,我们距离这个目标还很远。
为更好的认识地震这一物理现象,需要极其的详细的地壳结构影像,而为了绘制这张地下地图,又需要详尽的数据计算。 目前为止人类打到地下最深的井是前苏联钻探的科拉超深井,约12.2公里,但是地震的震源深度往往在地下十几到几十公里,当前的科技根本无法在震源深度开展直接观测。
所以我们需要依靠分布在全国的数千个地震台来对地震波进行探测,震波在地下的传播特性,受到地质结构的影响,这也是地震波可以用来绘制地底图像的原理。这些地震台可以感知地震的“大震波”,也同样可以捕捉日常的“大地噪声”,例如海潮拍击大陆的震动。
根据地震波进行地底成像的原理
王伟涛告诉记者,像他这样的地球物理科学家几乎都是半个程序员。 因为从地震波到地底成像,中间要经过超越一般人想象的大规模程序计算。他的计算模型是这样的: 每一次震动都会由近至远依次传递到各个地震台,所以理论上来说,每个地震台都会对同一次震动做出自己的记录,这些数据既有差异有又联系。
利用这些数据,可以计算出一些“虚拟地震”。 用每两个地震台之间进行数据互相关对比计算,就可以获取研究中国地下的总体结构所需要的宝贵数据。
虚拟地震可以模拟出和真实地震一样的数据,所以可以用于本来没有发生地震的地区的地底成像 每个地震波数据都有 E,N,Z(东西,南北,垂直)三个向度的分量,全国2000多个永久和临时地震台就是 6000 个分量,每年的数据量大概是 30TB,而我们的总数据量已经到了 PB 级别。
由于我们要相互对比每一个地震台每个时间点的每个分量数据,这些计算量是呈指数级增长的。 王伟涛的智慧和经验,恰恰表现在他所设计的程序和算法之上。 但耗费很大心力完成这个算法的王伟涛博士发现,他才踏上了万里长征的第一步,还有一个巨大的困难横亘在面前。
图中每两个地震台之间的连线(灰色)都是需要计算的数据,总计算量极其庞大。如果使用单机对这些数据进行计算,大概需要七年时间。按照一个人的职业生涯二十年计算的话,我在退休前只能完成三次计算。在这种情况下,大规模分布式的云计算似乎成为了唯一的选择。
然而,云计算的机理绝不像听起来这么轻盈。记者也采访到了中国地震局的合作伙伴阿里云的童鞋们,在他们眼里,云计算和科学研究一样,集合了人类最顶尖的智慧。
所需存储空间、计算量和预计单机计算所需的时间
分布式存储:有关农场的游戏
云存储就像一个大的农场,每个服务器就像一个工人,而你的数据就是羊。阿里云存储高级专家承宗说。看来他是个牧场达人。“分布式存储”,可以看作分布式计算的基础条件。也就是说,你的羊要先放进阿里云的“农场”,它的工人才会帮你照料、喂养、剪毛、纺线。
对于王伟涛博士的数据来说,仅仅是存储在云端,就需要无数“黑科技”。
在将要进行的计算中,计算系统会对存储系统进行大规模的访问。而这些访问必须要平均地打到服务器上,绝不能存在热点。而这还不够,由于服务器的硬件故障在大规模集群中会变成一个常态事件,所以必须做好资源的实时调度和提供故障容忍能力。
例如保证在摘掉一块硬盘的时候,其余的硬盘要迅速用备份数据把存储追齐。
承宗举了以上两个例子。这两个例子换成农场的比喻,大概是如下表述: 农场对于工人的工作量要平均分配,绝不能出现“对着一个羊薅羊毛”的情况发生。另外,农场每天都有工人病倒、请假,要在最短的时间把他的工作合理分配给很多人,这样别的工人也不至于负荷过大。
整个阿里云的分布式文件系统,被命名为盘古。在承宗心里,盘古还有很多智能化的“黑科技”。
他举例了一个例子: 我们人类看到的磁盘都一样,但是盘古看到的磁盘各不相同。它会根据历史访问数据的积累,例如写入的速度和效率,对每一块磁盘的健康度进行打分。
对于健康状况不好的磁盘,就相应减轻一些工作分配。这些底层的技术,都可以为王伟涛博士下一步真正的计算做准备。
承宗说,在分布式计算中,数据带宽成为了一个重要的参数。从王伟涛博士的角度来看,如果把数据存储在自己的服务器上,仅仅利用阿里云的计算能力进行结果输出,是不能实现的。原理很简单,分布式计算的所有服务器都向一个存储单位发送数据读取请求,带宽会被瞬间堵死,再强大的算力都无法发挥。
至于具体数据,百兆光纤的带宽一般是 100Mb/s,而硬盘的带宽最高可达几Gb/s,而阿里云存储内网访问带宽(云计算系统内部)可以高达Tb/s级别。
批量计算:建造一座金字塔
接下来,王伟涛博士的数据就会进入最终计算的环节。我熟悉了自己习惯的 Linux 系统,所有的计算代码都是在这个环境中完成的,如何让我的代码在云计算的环境中发挥作用,是一个很重要的问题。
地底成像数据的计算流程
在地震科学研究方面,阿里云显然没办法提出算法建议,所以他们需要做的是,提供一个通用的接口,让王伟涛可以使用自己机房中的电脑、界面和Linux 系统,来对云上的计算进行控制。
阿里云提供的兼容和适配能力,是阿里计算专家林河山颇为骄傲的地方。 王博士在此之前没有使用过分布式集群,也没有使用过“超算”,所以直接跨越到云上,从操作和控制层面来说,对他来说会是个挑战。
我们提供的计算接口可以让单机程序不做修改就高效执行在云环境下。用户通过几句简单的命令就能在云上调动大规模的计算资源进行分析,而不需要学习复杂的分布式计算知识。其实很多从其他地方过渡到云计算的人都会有这样的问题,所以不仅是王博士,很多其他用户也会用到我们的通用计算接口。他说。 这个时候,大规模计算的障碍基本被扫清了。
不过,林河山告诉记者,云计算真正的核心技术,还在于批量计算的算力调度之上。
大规模计算的加速流程和模式 计算规模扩大之后,就会造成对存储资源的访问非常频繁,这时,对于访问的并发量的控制就要非常“小心”了。
王博士的应用有非常多的小I/O请求,如果每一次I/O请求都直接访问云存储,由此带来的延时会对计算效率造成影响。为了进一步优化计算性能,批量计算采取了“分布式缓存”的策略,把有可能会用到的数据,提前缓存到计算节点周围。这样,就可以让计算能力不受集群规模的限制。林河山说。
而即使是这样,还远远不够,对于数据访问究竟采取多大“粒度”,是考验系统智能的重要时刻。如果一次读取过多,可能造成带宽拥堵,如果一次读取过少,又会造成频繁访问。而针对不同类型的数据,都要做出合理的预判,自动地读取,是一项艰巨的任务。
打个比方: 这如同建造一座金字塔,数万名“奴隶”要分工合作。工程师要决定:是牺牲速度一次性运输多个石块到现场,还是牺牲数量,一次快速运输一块石头到现场。
同样,面对浩瀚的金字塔工程,每时每刻要分配多少奴隶来搅拌砂浆,分配多少奴隶来搬运石块,分别分配多少奴隶来负责建造各个区块,这个即使是工程师都需要仔细考量才能完成的任务,都要交给系统自动完成,难度可想而知。
当然,如此繁复的计算过程,出错是经常会发生的。
林河山举了一个例子: 在渲染追光动画的动画片《小门神》时,阿里云的容错机制就发挥了作用。(当时在峰值有 2000台服务器参与了大规模批量计算。)一般情况下, 对于视频的渲染工作是一个连续的长流程。如果某一帧渲染中哪怕只有一个节点出问题,都会造成访问的大规模延时,造成逻辑上的拥堵,产生“热点”。
林河山说:“阿里云的做法是,在计算出错之后,在最短的时间内重跑,如果在跑的过程中确认节点存在问题,还会自动调度到另一个地方,这些对于用户来说都是没有感知的,但是在背后,我们必须做出大量的努力。
绘制地下的世界
原本需要一年计算时间的整个中国数千个地震台两两之间的五年数据的计算任务,在云计算中狂飙,48小时之内就计算完成了。
地球内部成像,恰似人体的B超
这在云计算时代来临以前是无法想象的。 从科学研究的角度来看,这些数据是原始的地震观测数据的数据产品,同时也是后续科学研究所依赖的重要数据,可以很好地支撑王伟涛进行接下来的研究。 从外界看来计算过程非常顺利,而刚才我们所感受的一切艰辛,都只发生在背后的代码世界。
借用阿里云产品总监李津的话: 当计算结果输出的时候,我们所有的技术人员都沉默了。
我们多么渴望这样的数据早几十年被计算出来,这样我们就能为人类认识地震这一自然灾害争取宝贵的时间。
抛开商业的云雾,可以看到云计算真正的的锋利所在。
王伟涛的研究并没有停止,他说: 目前为止,我只做了2011年到2015年的一个向度上的数据分析,未来还会继续把更多向度和频率上的数据进行计算。科学研究的精确度是可以一直提高的。越来越精确的地底数据,会为矿产勘探、防震减灾和地震科学研究提供非常强的支持。
科学的有趣之处,正是在于不断地尝试。有可能一觉醒来想到新的方法,就要重新改写公式和代码,通过计算进行验证。
也许有一天,属于王伟涛的那只苹果会悄然落下。那一刻,是王伟涛的胜利,也同样是人类计算力的胜利。 我们倾尽全力提高算力,把数据的涓涓细流汇聚成洪荒之力,只是因为我们不愿对脚下的大地懵然无知。

B. 比特币云算力有什么坑吗哪个平台靠谱

还是找大的靠谱的平台才能少遇到坑,载能平台就不错,透明度高,没有额外支出。 所有操作都是自己独立管理。包括矿池,钱包和收入。高级安全级别的数据处理, 2FA双重认证,SSL数据加密。 并通过Coinpayments处理帐单。。很高兴能为你提供帮助

C. 讯景rx vega 64 8gb hbm2 air cooling 算力多少

水冷64单精度是13.7T,风冷64是12.6,按照价格来说,实际上风冷比水冷更值,风冷比水冷便宜了差不多以前,但是性能只少了一点。

D. 中链云IPFS云算力平台怎么样好不好

公司实力挺大的,还不错

E. 大数据公司排名是什么样的

阿里云、华为云、网络、腾讯。

3、网络:作为国内综合搜索的巨头、行业老大,它拥有海量的数据,同时在自然语言处理能力和机器深度学习领域拥有丰富经验。

4、腾讯:在大数据领域腾讯也是不可忽略的一支重要力量,尤其是社交领域,只是想想QQ和微信的用户量就觉得可怕。

大数据是宝藏,人工智能是工匠。大数据给了我们前所未有的收集海量信息的可能,因为数据交互广阔,存储空间近乎无限,所以我们再也不用因“没地方放”而不得弃掉那些“看似无用”的数据。

当数据变得多多益善,当移动设备、穿戴设备以及其他一切设备都变成了数据收集的“接口”,我们便可以尽可能的让数据的海洋变得浩瀚无垠,因为那里面“全都是宝”。

F. poct算力桶刚买多少时间进桶

m=pv1t
由v^2=2gh v=8.12m/s
由动量定理得
N-mg=mv/t=pv1*v
N=mg+pv1*v=8.32+17.2=25.4N

G. TokenBetter算力系统有哪几种获取途径啊

主要从四个维度(基础算力、邀请算力、持仓算力、交易算力)核算个人总算力。算力系统将作为首期TB(TokenBetter平台积分)认购基数,参与平台积分认购。算力获取细则如下:

1、基础算力

首推活动期间,所有完成平台高级认证(KYC2)的平台注册用户,均可获得50,000基础算力值;

2、邀请算力

首推活动期间,用户的邀请算力=该用户直接有效邀请人数*100,有效邀请为完成平台高级认证(KYC2)的实名注册用户。

3、持仓算力

首推活动期间,用户的每日持仓算力=该用户当日币币资产中USDT、BTC、ETH总价值的折合USDT数值/7,活动期间总持仓算力为每日持仓算力总和。用户币币资产价值将根据平台每日不定时快照数据为准;

4、交易算力

首推活动期间,用户交易算力=当日0:00-24:00用户币币交易总手续费折合USDT数值*10,当日交易必须大于5次方可结算当日交易算力。

TB持有者享有权益:

1. 持TB者享受手续费折扣/返还,不同数量的持有者将享有不同数量的折扣/返还;

2. 持TB者享将在年终享有不同额度的合伙人奖励金,进一步回馈平台忠实用户;

3. 认证OTC商家权益,可获得专属认证标志,一对一客户服务;

4. 持TB者有机会成为TokenBetter的全球合伙人;

5. 持TB者可直接参与认购Explore X计划内所有有关项目;

6. 持TB者将优先使用TokenBetter的所有新产品;

7. 持TB者将优先享有平台不定期专项活动;

8. 持TB者将获得部分项目上线投票权;

9. TB将作为项目上币唯一指定Token;

10. TokenBetter全球生态唯一指定通证等;

H. 最高280 TOPS算力,黑芝麻科技发布华山二号,PK特斯拉FSD

芯片作为智能汽车的核心「大脑」,成为诸多车企、Tier 1、自动驾驶企业重点布局的领域。
围绕着自动驾驶最为关键的计算单元,国内诞生了诸多自动驾驶芯片创新公司,在该领域的绝大部分市场份额依然被国外厂商控制的当下,他们正在争取成为「国产自动驾驶芯片之光」。
成立于 2016 年的黑芝麻智能科技便是这一名号的有力争夺者。
继 2019 年 8 月底发布旗下首款车规级自动驾驶芯片华山一号(HS-1)A500 后,黑芝麻又在这个 6 月推出了相较于前代在性能上实现跃迁的全新系列产品——华山二号(HS-2),两个系列产品的推出相隔仅 300 余天,整体研发效率可见一斑。
1、国产算力最高自动驾驶芯片的自我修养
华山二号系列自动驾驶芯片目前有两个型号的产品,包括:
应用于?L3/L4?级自动驾驶的华山二号 A1000?;针对?ADAS/L2.5?自动驾驶的华山二号 A1000L。
简单理解就是,A1000 是高性能版本,而 A1000L 则在性能上进行了裁剪。
这样的产品型号设置也让华山二号系列芯片能在不同的自动驾驶应用场景中进行集成。
相较于 A500 芯片,A1000?在算力上提升了近?8 倍,达到了?40 - 70TOPS,相应的功耗为?8W,能效比超过?6TOPS/W,这个数据指标目前在全球处于领先地位。
华山二号 A1000 之所以能有如此出色的能效表现,很大程度是因为这块芯片是基于黑芝麻自研的多层异构性的?TOA 架构打造的。
这个架构将黑芝麻核心的图像传感技术、图像视频压缩编码技术、计算机视觉处理技术以及深度学习技术有机地结合在了一起。
此外,这款芯片中内置的黑芝麻自研的高性能图像处理核心?NeuralIQ ISP?以及神经网络加速引擎?DynamAI DL?也为其能效跃升提供了诸多助力。
需要注意的是,这里的算力数值之所以是浮动的,是因为计算方式的不同。
如果只计算 A1000 的卷积阵列算力,A1000 大致是 40TOPS,如果加上芯片上的 CPU 和 GPU 的算力,其总算力将达到?70TOPS。
在其他参数和特性方面,A1000 内置了 8 颗 CPU 核心,包含 DSP 数字信号处理和硬件加速器,支持市面上主流的自动驾驶传感器接入,包括激光雷达、毫米波雷达、4K 摄像头、GPS 等等。
另外,为了满足车路协同、车云协同的要求,这款芯片不仅集成了 PCIE 高速接口,还有车规级千兆以太网接口。
A1000 从设计开始就朝着车规级的目标迈进,它符合芯片 AEC-Q100 可靠性和耐久性 Grade 2 标准,芯片整体达到了 ISO 26262 功能安全 ASIL-B 级别,芯片内部还有满足 ASIL-D 级别的安全岛,整个芯片系统的功能安全等级为?ASIL-D。
从这些特性来看,A1000 是一款非常标准的车规级芯片,完全可以满足在车载终端各种环境的使用要求。
A1000 芯片已于今年 4 月完成流片,采用的是台积电的 16nm FinFET 制程工艺。
今年 6 月,黑芝麻的研发团队已经对这款芯片的所有模块进行了性能测试,完全调试通过,接下来就是与客户进行联合测试,为最后的大规模量产做准备。
据悉,搭载这款芯片的首款车型将在?2021 年底量产。
随着 A1000 和 A1000L 的推出,黑芝麻的自动驾驶芯片产品路线图也更加清晰。
在华山二号之后,这家公司计划在 2021 年的某个时点推出华山三号,主要面向的是 L4/L5 级自动驾驶平台,芯片算力将超越 200TOPS,同时会采用更先进的 7nm 制程工艺。
华山三号的?200TOPS?算力,将追平英伟达 Orin 芯片的算力。
去年 8 月和华山一号 A500 芯片一同发布的,还有黑芝麻自研的 FAD(Full Autonomous Driving)自动驾驶计算平台。
这个平台演化至今,在 A1000 和 A1000L 芯片的基础上,有了更强的可扩展性,也有了更广泛的应用场景。
针对低级别的 ADAS 场景,客户可以基于 HS-2 A1000L 芯片搭建一个算力为 16TOPS、功耗为 5W 的计算平台。
而针对高级别的 L4 自动驾驶,客户可以将 4 块 HS-2 A1000 芯片并联起来,实现高达 280TOPS 算力的计算平台。
当然,根据不同客户需求,这些芯片的组合方式是可变换的。
与其他大多数自动驾驶芯片厂商一样,黑芝麻也在可扩展、灵活变换的计算平台层面投入了更多研发精力,为的是更大程度上去满足客户对计算平台的需求。
反过来,这样的做法也让黑芝麻这样的芯片厂商有了接触更多潜在客户的机会。
根据黑芝麻智能科技的规划,今年 7 月将向客户提供基于 A1000 的核心开发板。
到今年 9 月,他们还将推出应用于 L3 自动驾驶的域控制器(DCU),其中集成了两颗 A1000 芯片,算力可达 140TOPS。
2、黑芝麻自动驾驶芯片产品「圣经」
借着华山二号系列芯片的发布,黑芝麻智能科技创始人兼 CEO 单记章也阐述了公司 2020 年的「AI 三次方」产品发展战略,具体包括「看得懂、看得清和看得远」。
这一战略是基于目前市面上对自动驾驶域控制器和计算平台的诸多要求提出的,这些要求包括安全性、可靠性、易用性、开放性、可升级以及延续性等。
其中,看得懂直接指向的是?AI 技术能力,要求黑芝麻的芯片产品能够理解外界所有的信息,可以进行判断和决策。
而看得懂的基础是看得清,这指的是黑芝麻芯片产品的图像处理能力,需要具备准确接收外界信息的能力。
这里尤其以摄像头传感器为代表,其信息量最大、数据量也最多,当然传感器融合也不可或缺。
看得远则指的是车辆不仅要感知周边环境,还要了解更大范围的环境信息,这就涉及到了车路协同、车云协同这样的互联技术,所以我们看到黑芝麻的芯片产品非常注重对互联技术的支持。
作为一家自动驾驶芯片研发商,这一战略将成为黑芝麻后续芯片产品研发的「圣经」。
3、定位 Tier 2,绑定 Tier 1,服务 OEM
现阶段,发展智能汽车已经成为了国家意志,在政策如此支持的情况下,智能汽车的市场爆发期指日可待。
根据艾瑞咨询的报告数据显示,到 2025 年全球将会有 6662 万辆智能汽车的存量,中国市场的智能汽车保守预计在 1600 万辆左右。
如此规模庞大的智能汽车增量市场,将为那些打造智能汽车「大脑」的芯片供应商培育出无限的产品落地机会。
作为其中一员,黑芝麻智能科技也将融入到这股潮流之中,很有机会成长为潮流的引领者。
作为一家自动驾驶芯片研发商,黑芝麻智能科技将自己定位为?Tier 2,未来将绑定 Tier 1 合作伙伴,进而为车企提供产品和服务。
当然,黑芝麻不仅能提供车载芯片,未来还将为客户提供自动驾驶传感器和算法的解决方案,还有工具链、操作平台等产品。
凭借着此前发布的华山一号 A500 芯片,黑芝麻智能科技已经与中国一汽和中科创达两家达成了深入的合作伙伴关系,将在自动驾驶芯片、视觉感知算法等领域展开了诸多项目合作。
另外,全球顶级供应商博世也与黑芝麻建立起了战略合作关系。
目前,黑芝麻的华山一号 A500 芯片已经开启了量产,其与国内头部车企关于 L2+ 和 L3 级别自动驾驶的项目也正在展开。
如此快速的落地进程,未来可期。
有意思的是,黑芝麻此番发布华山二号系列芯片,包括中国一汽集团的副总经理王国强、上汽集团总工程师祖似杰、蔚来汽车 CEO 李斌以及博世中国区总裁陈玉东在内的多位行业大佬都为其云站台。
这背后意味着什么?给我们留下了很大的想象空间。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

热点内容
币圈的正常值是多少 发布:2025-07-03 08:09:30 浏览:977
ltc与isc 发布:2025-07-03 08:08:30 浏览:666
区块链在信用卡积分 发布:2025-07-03 08:02:06 浏览:606
区块链沈阳 发布:2025-07-03 07:57:58 浏览:919
gateio怎么换比特币 发布:2025-07-03 07:40:10 浏览:708
币圈十大钱包历史 发布:2025-07-03 07:33:24 浏览:733
eth一定要64位系统吗 发布:2025-07-03 07:24:49 浏览:785
eth最少买几个 发布:2025-07-03 07:17:48 浏览:769
比特币账号已冻结 发布:2025-07-03 07:17:47 浏览:151
eth建筑分析 发布:2025-07-03 06:51:46 浏览:137