当前位置:首页 » 算力简介 » 自动驾驶算力

自动驾驶算力

发布时间: 2021-09-10 13:33:20

① 高通发布全新自动驾驶计算平台 最高算力700TOPS,2023年量产

▲高通公司总裁CristianoAmon新闻发布会上向展示了SnapdragonRide(图源CNET/James?Martin)

SnapdragonRide通过独特的SoC、加速器和自动驾驶软件栈的结合,为汽车制造商提供了一种可扩展的解决方案,可在三个细分领域对自动驾驶汽车提供支持,分别是:

1、L1/L2级主动安全ADAS——面向具备自动紧急制动、交通标志识别和车道保持辅助功能的汽车。

2、L2+级ADAS——面向在高速公路上进行自动驾驶、支持自助泊车,以及可在频繁停车的城市交通中进行驾驶的汽车。

3、L4/L5级完全自动驾驶——面向在城市交通环境中的自动驾驶、无人出租车和机器人物流。

SnapdragonRide平台基于一系列不同的骁龙汽车SoC和加速器建立,采用可扩展且模块化的高性能异构多核CPU、高能效的AI及计算机视觉引擎,以及GPU。

其中,ADASSoC系列和加速器系列采用异构计算,与此同时利用高通的新一代人工智能引擎,ADAS和SoC能够高效管理车载系统的大量数据。

得益于这些不同的SoC和加速器的组合,SnapdragonRide平台可以根据自动驾驶的不同细分市场的需求进行配备,同时提供良好的散热效率,包括从面向L1/L2级别应用的30TOPS等级的设备,到面向L4/L5级别驾驶、超过700TOPS的功耗130瓦的设备。

此外,高通全新推出的SnapdragonRide自动驾驶软件栈是集成在SnapdragonRide平台中的模块化可扩展解决方案。

据介绍,SnapdragonRide平台的软件框架可同时托管客户特定的软件栈组件和SnapdragonRide自动驾驶软件栈组件。

SnapdragonRide平台也支持被动或风冷的散热设计,因而能够在成本降低的同时进一步优化汽车设计,提升可靠性。

现在,Arm、黑莓QNX、英飞凌、新思科技、Elektrobit、安森美半导体均已加入高通的自动驾驶朋友圈,成为SnapdragonRide自动驾驶平台的软/硬件供应商。

Arm的功能安全解决方案,新思科技的汽车级DesignWare接口IP、ARC处理器IP和STARMemorySystemTM,黑莓QNX的汽车基础软件OS安全版及Hypervisor安全版,英飞凌的AURIXTM微控制器,以及安森美半导体的ADAS系列传感器都会集成到高通的自动驾驶平台上。

Elektrobit还计划与高通合作,共同开发可规模化生产的新一代AUTOSAR架构,EBcorbos软件和SnapdragonRide自动驾驶平台都将集成在这个架构上面。

据了解SnapdragonRide将在2020年上半年交付汽车制造商和一级供应商进行前期开发,而根据QualcommTechnologies估计,搭载SnapdragonRide的汽车将于2023年投入生产。

二、深耕汽车业务多年高通赋能超百万台汽车

在发布SnapdragonRide自动驾驶平台之前,高通已在智能汽车领域深耕多年。

十多年来,高通子公司QualcommTechnologies一直在为通用汽车的网联汽车应用提供先进的无线通信解决方案,包括通用汽车上安吉星设备所支持的安全应用。

在车载信息处理、信息影音和车内互联等领域,QualcommTechnologies的订单总价值目前已超过70亿美元(约合人民币487亿元)。

而根据高通在CES2020发布会现场公布的信息,迄今为止已经有超百万辆汽车使用了高通提供的汽车解决方案。

很显然,如今高通在汽车领域的布局又向前迈进了一步。

CES2020期间,除发布SnapdragonRide自动驾驶平台外,高通还推出了全新的车对云服务(Car-to-CloudService),该服务预计在2020年下半年开始提供。

据介绍,由QualcommTechnologies打造的车对云服务支持SoftSKU芯片规格软升级能力,不仅可以帮助汽车客户满足消费者不断变化的需求,还可根据新增性能需求或新特性,让芯片组在外场实现升级、以支持全新功能。

与此同时SoftSKU也支持客户开发通用硬件,从而节省他们面向不同开发项目的专项投入。利用高通车对云SoftSKU,汽车制造商不仅能够为消费者提供各种定制化服务,还可以通过个性化特性打造丰富且具沉浸感的车内体验。

另外高通的车对云服务也支持实现全球蜂窝连接功能,既可用于引导初始化服务,也可以在整个汽车生命周期中提供无线通信连接。

QualcommTechnologies产品管理高级副总裁NakulDuggal表示,结合骁龙汽车4G和5G平台、骁龙数字座舱平台,高通的车对云服务能够帮助汽车制造商和一级供应商满足当代车主的新期待,包括灵活、持续地进行技术升级,以及在整个汽车生命周期中不断探索新功能。

此外,QualcommTechnologies也在CES2020上宣布,表示将继续深化和通用汽车的合作。作为长期合作伙伴,通用汽车将通过与QualcommTechnologies的持续合作来支持数字座舱、车载信息处理和ADAS(先进驾驶辅助系统)。

结语:巨头纷纷入局自动驾驶领域风起云涌

前有华为表示要造激光雷达、毫米波雷达等智能汽车核心传感器,后有Arm牵头成立自动驾驶汽车计算联盟,如今移动芯片巨头高通也发布了全新的自动驾驶平台,在汽车和自动驾驶领域上又迈进一步。

巨头入局有利于自动驾驶汽车更快更好地落地,然而另一方面随着更多硬核玩家拓展业务边界,此次市场上的竞争也必然会变得更加激烈。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

② 开辟自动驾驶第二战场,别克展示V2X技术

别克把自动驾驶这事想通了。

如果在一周内你不聊些自动驾驶,感觉就会落伍,但除了激光雷达,摄像头和雷达这些硬件,神经网络和算法是个有待开创的学科,甚至没有现成的公式可循,所以真正要找能让你安心的自动驾驶路径,真正有点靠谱的还是风传了些时日的V2X,尽管有些拿来主义。

但可预见的是井井有条,秩序感是强烈的未来暗示。别克也发布了一些车内智能技术,比如更丰富的APP,在细节上升级,语音识别和反馈速度,这些从前并非合资车的强项,以及APP随场景和时间变化而随动,也许在你犯困的时候给你放一首摇滚乐。

而此次他构建的未来自动驾驶的V2X蓝本才是关键,他引出了一些未知数,也许也是一道选择题,在可控的变量但有着秩序感,和不可控但日益各自为战的交通状况,你怎么选呢?

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

③ 英伟达发布史上最强计算平台,黄教主:自动驾驶不再担心算力问题

原本应该在今年 3 月份于加州圣何塞举办的英伟达 GTC 2020 大会,因为全球性新冠病毒肺炎的爆发而不得不推迟举行。
比原计划晚了将近 2 个月,英伟达 GTC 2020 终于在 5 月 14 日回归。
不过这一次开发者们没办法在线下集会,只能通过线上直播观看「皮衣教主」黄仁勋的主题演讲。老黄此次是在他硅谷的家中完成了这场别开生面的「Kitchen Keynote」。
虽然是厨房举行,英伟达依然爆出「核弹」,发布了全新一代的 GPU 架构 Ampere(安培)。
在自动驾驶方向上,英伟达通过两块 Orin SoC 和两块基于安培架构的 GPU 组合,实现了前所未有的?2000 TOPS?算力的 Robotaxi 计算平台,整体功耗为?800W。
有业界观点认为,实现 L2 自动驾驶需要的计算力小于 10 TOPS,L3 需要的计算力为 30 - 60 TOPS,L4 需要的计算力大于 100 TOPS,L5 需要的计算力至少为 1000 TOPS。
现在的英伟达自动驾驶计算平台已经建立起了从?10TOPS/5W,200TOPS/45W?到?2000 TOPS/800W?的完整产品线,分别对应前视模块、L2+ADAS?以及?Robotaxi?的各级应用。
从产品线看,英伟达?Drive AGX?将全面对标 Mobileye?EyeQ?系列,希望成为量产供应链中的关键厂商。
1、全新 GPU 架构:Ampere(安培)
2 个月的等待是值得的,本次 GTC 上,黄仁勋重磅发布了英伟达全新一代 GPU 架构 Ampere(安培)以及基于这一架构的首款 GPU NVIDIA A100。
A100 在整体性能上相比于前代基于 Volta 架构的产品有 20 倍的提升,这颗 GPU 将主要用于数据分析、专业计算以及图形处理。
在安培架构之前,英伟达已经研发了多代 GPU 架构,它们都是以科学发展史上的伟人来命名的。
比如 Tesla(特斯拉)、Fermi(费米)、Kepler(开普勒)、Maxwell(麦克斯维尔)、Pascal(帕斯卡)、Volta(伏特)以及 Turing(图灵)。
这些核心架构的升级正是推动英伟达各类 GPU 产品整体性能提升的关键。
针对基于安培架构的首款 GPU A100,黄仁勋细数了它的五大核心特点:
集成了超过 540 亿个晶体管,是全球规模最大的 7nm 处理器;引入第三代张量运算指令 Tensor Core 核心,这一代 Tensor Core 更加灵活、速度更快,同时更易于使用;采用了结构化稀疏加速技术,性能得以大幅提升;支持单一 A100 GPU 被分割为多达 7 块独立的 GPU,而且每一块 GPU 都有自己的资源,为不同规模的工作提供不同的计算力;集成了第三代 NVLink 技术,使 GPU 之间高速连接速度翻倍,多颗 A100 可组成一个巨型 GPU,性能可扩展。
这些优势累加起来,最终让 A100 相较于前代基于 Volta 架构的 GPU 在训练性能上提升了?6 倍,在推理性能上提升了?7 倍。
最重要的是,A100 现在就可以向用户供货,采用的是台积电的 7nm 工艺制程生产。
阿里云、网络云、腾讯云这些国内企业正在计划提供基于 A100 GPU 的服务。
2、Orin+安培架构 GPU:实现 2000TOPS 算力
随着英伟达全新 GPU 架构安培的推出,英伟达的自动驾驶平台(NVIDIA Drive)也迎来了一次性能的飞跃。
大家知道,英伟达此前已经推出了多代 Drive AGX 自动驾驶平台以及 SoC,包括?Drive AGX Xavier、Drive AGX Pegasus?以及?Drive AGX Orin。
其中,Drive AGX Xavier 平台包含了两颗 Xavier SoC,算力可以达到 30TOPS,功耗为 30W。
最近上市的小鹏 P7 上就量产搭载了这一计算平台,用于实现一系列 L2 级自动辅助驾驶功能。
Drive AGX Pegasus 平台则包括了两颗 Xavier SoC 和两颗基于图灵架构的 GPU,算力能做到 320TOPS,功耗为 500W。
目前有文远知行这样的自动驾驶公司在使用这一计算平台。
在 2019 年 12 月的 GTC 中国大会上,英伟达又发布了最新一代的自动驾驶计算 SoC Orin。
这颗芯片由 170 亿个晶体管组成,集成了英伟达新一代 GPU 架构和 Arm Hercules CPU 内核以及全新深度学习和计算机视觉加速器,最高每秒可运行 200 万亿次计算。
相较于上一代 Xavier 的性能,提升了 7 倍。
如今,英伟达进一步将自动驾驶计算平台的算力往前推进,通过将两颗 Orin SoC 和两块基于安培架构的 GPU 集成起来,达到惊人的 2000TOPS 算力。
相较于 Drive AGX Pegasus 的性能又提升了 6 倍多,相应地,其功耗为 800W。
按一颗 Orin SoC 200TOPS 算力来计算,一块基于安培架构的 GPU 的算力达到了 800TOPS。
正因为高算力,这个平台能够处理全自动驾驶出租车运行所需的更高分辨率传感器输入和更先进的自动驾驶深度神经网络。
对于高阶自动驾驶技术的发展而言,英伟达正在依靠 Orin SoC 和安培 GPU 架构在计算平台方面引领整个行业。
当然,作为一个软件定义的平台,英伟达 Drive AGX 具备很好的可扩展性。
特别是随着安培 GPU 架构的推出,该平台已经可以实现从入门级 ADAS 解决方案到 L5 级自动驾驶出租车系统的全方位覆盖。
比如英伟达的 Orin 处理器系列中,有一款低成本的产品可以提供 10TOPS 的算力,功耗仅为 5W,可用作车辆前视 ADAS 的计算平台。
换句话说,采用英伟达 Drive AGX 平台的开发者在单一平台上仅基于一种架构便能开发出适应不同细分市场的自动驾驶系统,省去了单独开发多个子系统(ADAS、L2+ 等系统)的高昂成本。
不过,想采用 Orin 处理器的厂商还得等一段时间,因为这款芯片会从 2021 年开始提供样品,到?2022 年下半年才会投入生产并开始供货。
3、英伟达自动驾驶「朋友圈」再扩大
本届 GTC 上,英伟达的自动驾驶「朋友圈」继续扩大。
中国自动驾驶公司小马智行(Pony.ai)、美国电动车创业公司?Canoo?和法拉第未来(Faraday Future)加入到英伟达的自动驾驶生态圈,将采用英伟达的 Drive AGX 计算平台以及相应的配套软件。
小马智行将会基于 Drive AGX Pegasus 计算平台打造全新一代 Robotaxi 车型。
此前,小马智行已经拿到了丰田的 4 亿美金投资,不知道其全新一代 Robotaxi 会不会基于丰田旗下车型打造。
美国的电动汽车初创公司 Canoo 推出了一款专门用于共享出行服务的电动迷你巴士,计划在 2021 年下半年投入生产。
为了实现辅助驾驶的系列功能,这款车型会搭载英伟达 Drive AGX Xavier 计算平台。前不久,Canoo 还和现代汽车达成合作,要携手开发电动汽车平台。
作为全球新造车圈内比较特殊存在的法拉第未来,这一次也加入到了英伟达的自动驾驶生态圈。
FF 首款量产车 FF91 上的自动驾驶系统将基于 Drive AGX Xavier 计算平台打造,全车搭载了多达 36 颗各类传感器。
法拉第未来官方称 FF91 有望在今年年底开始交付,不知道届时会不会再一次跳票。
作为 GPU 领域绝对霸主的英伟达,在高算力的数据中心 GPU 以及高性能、可扩展的自动驾驶计算平台的加持下,已经建起了一个完整的集数据收集、模型训练、仿真测试、远程控制和实车应用的软件定义的自动驾驶平台,实现了端到端的完整闭环。
同时,其自动驾驶生态圈也在不断扩大,包括汽车制造商、一级供应商、传感器供应商、Robotaxi 研发公司和软件初创公司在内的数百家自动驾驶产业链上的企业已经在基于英伟达的计算硬件和配套软件开发、测试和应用自动驾驶车辆。
未来,在整个自动驾驶产业里,以计算芯片为核心优势,英伟达的触角将更加深入,有机会成为产业链条上不可或缺的供应商。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

④ 零跑汽车发布自动驾驶芯片:算力4.2TOPS 支持L3级自动驾驶

国家发改委产业发展司机械装备处处长吴卫

未来,中国制造的汽车将是全球新技术融合最多、创新融合最多的,也必将领跑全球汽车工业。

同时,汽车芯片领域的竞争也异常激烈。相比于消费电子产品的芯片,汽车芯片对安全性、稳定性的要求更高,是芯片行业共同面对的难题,这也是中国芯片公司的机会。

结语:自研技术让零跑更具竞争力

零跑汽车是中国造车新势力企业中第一个自主研发汽车自动驾驶芯片的,搭载这款芯片的量产车零跑C11下月就将发布。零跑汽车在自动驾驶领域的飞速进步,也得到了用户的认可。

统计数据显示,零跑汽车两款量产车型从今年7月以来销量逐步攀升,9月销量破千,10月销量有望突破1600辆,大量的自研技术让零跑这一造车新势力具备了更强的竞争力。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

⑤ 比特斯拉FSD强7倍算力的蔚来自动驾驶NAD是什么

焦点无疑是蔚来的ET7:蔚来首款具备自动驾驶能力的智能电动旗舰轿车。蔚来官方将之定义为
“为自动驾驶而生”的汽车。那么ET7的自动驾驶能力会有多强呢?首先我们还是了解下ET7的基础性能:新车最大功率 480kW,最大扭矩 850N·m,风阻系数
0.23Cd,百公里加速 3.9 秒。全系标配空悬挂和 4D 智能车身控制。



有了这么强的算力,ET7 全系标配 NAD 19 项安全与驾驶辅助功能,NAD 的完整功能将采用月租的服务订阅模式, ADaaS(AD as a
Service),服务费为每月 680 元。虽然看得很激动,但ET7 的交付要到明年第一季度,至于 150kWh 的电池包,要到 2022
年第四季度才能开始交付。所以,在这么长的时间里,如今激烈竞争的新造车品牌中,ET7能否一直保持领先,还要看其他同学的成绩了。

⑥ P7鹏翼版上市,售价36.69万起/小鹏下一代自动驾驶硬件曝光

在这次的广州车展上,小鹏汽车是带来了旗下P7车型的特别版,它针对的是极致玩家,新车最大的亮点就是在普通版P7的基础上采用剪刀门设计。新车在这次的车展上是正式上市,一共推出两款配置车型,分别是后驱长续航和四驱高性能车型,售价分别为36.69万和40.99万。

⑦ 280TOPS算力爆表!北京车展最强国产自动驾驶平台是它

▲左右分别为黑芝麻CEO单记章、COO刘卫红

黑芝麻CEO单记章此前是全球视觉芯片领军企业OmniVision创始团队成员,在硅谷芯片行业打拼了20多年,在图像处理芯片和软件算法上具有丰富的经验和技术积累。

CTO齐峥是英特尔奔腾二代芯片主要设计成员、CSO曾代兵是中兴微电子总工程师,COO刘卫红则曾是博世中国ADAS主力部门——底盘与控制系统事业部的中国区总裁。

正因为有超强的研发团队,让黑芝麻这家初创公司可以在3年时间内做出ADAS芯片华山一号A500并量产上市,在今年推出华山二号A1000芯片,发布FAD自动驾驶平台。

今年以来,新车如果没有配备L1/L2级自动驾驶,都“不好意思卖”,自动驾驶的普及程度正在快速提高,而更高等级的L3级甚至L4级自动驾驶也已经到了量产前夜,行业内对自动驾驶芯片和计算平台解决方案需求呈爆发性增长态势。仅自动驾驶芯片的市场规模,都有望达到万亿美元级别,成为半导体行业最大单一市场。

因此,FAD此时进入自动驾驶市场可谓正当其时。

今年8月,一汽智能网联开发院与黑芝麻达成技术合作协议。一汽智能网联开发院将启动基于华山二号A1000的智能驾驶平台的开发,以满足后续量产车型需求。双方将共同推动人工智能技术在汽车工业领域的应用,加速国产智能驾驶芯片的产业化落地。

另外,黑芝麻也已经签约多个FAD定点车型,预计明年就将有搭载FAD自动驾驶平台的车型上市。此外,国内外也已经有多家企业开始测试FAD自动驾驶平台,测试车辆已经上路。

黑芝麻在自动驾驶芯片和域控制器中取得的巨大成功,让行业研究机构开始重视这家刚成立4年有余创业公司。今年4月,硅谷最强智库之一的CBInsights发布中国芯片设计企业榜单,黑芝麻在车载芯片领域上榜,成为中国芯片设计企业65强之一。

今年7月,黑芝麻华山二号A1000芯片也亮相世界人工智能大会,与平头哥、依图、寒武纪等高端人工智能芯片同台亮相。

可以说,黑芝麻经过四年多的发展,已经成为全球领先的自动驾驶芯片设计公司,甚至已经有能力和芯片行业的老大哥们一较高下。同时,黑芝麻的快速进步,也推动着国内自动驾驶芯片设计再上新台阶。

在与两位创始人的交谈中,他们还透露了一个彩蛋,明年黑芝麻将发布性能更强的芯片,届时搭载这一芯片的FAD自动驾驶平台最高算力有望突破1000TOPS,其算力已经可以进行完全自动驾驶。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

⑧ 机器人算法和自动驾驶算法有哪些区别

机器人算法和自动驾驶算法有以下区别。
自动驾驶对算法安全性的要求高。是首要因素。比什么都重要
自动驾驶车辆的可移动自由度比机器人要低
自动驾驶车辆的速度相对于机器人要高很多
自动驾驶车辆对算法的鲁棒性要求高
自动驾驶车辆的实时定位更为重要。
或许可以通过V2X的手段,检测回环,提高自身定位精度。
(研发车辆,不是量产)自动驾驶车辆对算力没什么上限。
(量产)就需要权衡硬件性能,计算量,算法的效率等等。
自动驾驶车辆的路况相当复杂,没有统一性。所以算法要有普适性。
自动驾驶车厂有自己的平台,不可能随便换平台。跟机器人有较大的区别。

⑨ 自动驾驶会用到GPU高性能计算吗

答案是需要使用到GPU高性能计算,自动驾驶的实现,需要依赖感知传感器对道路环境的信息进行采集,包括超声波、摄像头、毫米波雷达、激光雷达等,采集的好的数据需要传送到汽车中央处理器进行处理,用来识别障碍物、可行道路等,最后依据识别的结果,规划路径、制定速度,自动驱使汽车行驶。
整个过程需要在瞬时完成,延时必须要控制在毫秒甚至微秒级别,才能保证自动驾驶的行驶安全。
要完成瞬时处理、反馈、决策规划、执行的效果,对中央处理器的算力要求非常高。
为了准确识别图像、视频中的有效信息,业内多采用深度学习神经网络。
深度学习神经网络尤其是几百上千层的神经网络对高性能计算要求非常高,GPU对处理复杂运算拥有天然的优势:它有出色的并行矩阵计算能力,对于神经网络的训练和分类都可以提供显著的加速效果。选择桌面云同样可以享受GPU高性能计算
因此所有的人工智能,无论是做语言还是语音、图象、搜索,都和 GPU 相关。所有传统行业都会利用深度学习去推动新的改革,让新的研究方向达到一个新高度和新的飞跃。

⑩ 自动驾驶目前存在哪些缺陷

传感器无法确保100%的准确率,需与高精度地图融合

对于这次优步自动驾驶车辆致路人死亡事件,高德集团自动驾驶车辆高精度地图产品专家姚灿认为,发展自动驾驶技术尚需在研发、测试环节投入大量的时间、精力,汽车行业也应始终保有一颗对生命的敬畏之心。

姚灿介绍,从安全角度而言,通过一张辅助的高精度地图提前对道路场景进行预设,有助于避免交通事故。普通导航地图主要供人进行参考,而高精度地图是给机器看的,更像是一个传感器,它收集了大量道路信息,准确的道路形状,车道之间的车道线,道路隔离带和材质,甚至道路上的箭头、文字内容等都有相应描述。

“例如,在距离一个路口300米时,车辆就可以通过高精度地图提前知晓前方路口的性质、形状、有几条车道,是否经常有行人通过,在知道上述信息后,自动驾驶车辆的决策系统就在靠近路口的时候要求车辆提前减速。”

热点内容
环保币能买共享矿机 发布:2025-07-12 11:11:04 浏览:657
un币是比特币吗 发布:2025-07-12 11:10:06 浏览:46
陌陌认识的朋友让我玩比特币 发布:2025-07-12 11:06:31 浏览:23
以太坊访问控制 发布:2025-07-12 10:56:35 浏览:338
北京荟聚中心外地车可以去吗 发布:2025-07-12 10:51:23 浏览:941
国家区块链服务网上网时间 发布:2025-07-12 10:50:39 浏览:811
xmr收益和矿池有关吗 发布:2025-07-12 10:49:09 浏览:995
阿里云区块链比赛 发布:2025-07-12 10:48:23 浏览:831
矿机挖是什么 发布:2025-07-12 10:48:20 浏览:554
eth提到哪个钱包 发布:2025-07-12 10:43:06 浏览:163