数据挖掘去中心化
⑴ 现在数据挖掘的前沿方向是什么呢
依赖大数据的不仅仅是那些特殊的大型用户群体,作为一种1989年出现的商业需求,小型企业未来也一定会应用到大数据。我们看到,有些存储厂商已经在开发一些小型的“大数据”存储系统,主要吸引那些对成本比较敏感的用户。
⑵ 数据分析和数据挖掘的区别是什么如何做好数据挖掘
数据分析和数据挖掘都是从数据库中发现知识、所以我们称数据分析和数据挖掘叫做数据库中的知识发现。但严格意义上来讲,数据挖掘才是真正意义上的数据库中的知识发现(Knowledge Discovery in Database,KDD)。
数据分析是从数据库中通过统计、计算、抽样等相关的方法,获取基于数据库的数据表象的知识,也就是指数据分析是从数据库里面得到一些表象性的信息。数据挖掘是从数据库中,通过机器学习或者是通过数学算法等相关的方法获取深层次的知识(比如属性之间的规律性,或者是预测)的技术。
⑶ 数据挖掘里面最简单的算法是什么
鄙人认为k-means算法不怎么难,不论是一维的还是二维的,用c或c++实现都不十分复杂,这方面的代码也很多。
算法描述:
K均值聚类算法:
给定类的个数K,将N个对象分到K个类中去,
使得类内对象之间的相似性最大,而类之间的相似性最小。
基本算法的步骤:
输入:k, data[n];
(1) 选择k个初始中心点,例如c[0]=data[0],…c[k-1]=data[k-1];
(2) 对于data[0]….data[n], 分别与c[0]…c[n-1]比较,假定与c[i]差值最少,就标记为i;
(3) 对于所有标记为i点,重新计算c[i]={ 所有标记为i的data[j]之和}/标记为i的个数;
(4) 重复(2)(3),直到所有c[i]值的变化小于给定阈值或者前后两次的中心不再发生变化。
由于使用分布式核算和存储,不存在中心化的硬件或管理机构,任意节点的权利和义务都是均等的,系统中的数据块由整个系统中具有维护功能的节点来共同维护。
未来的金窝窝将继续挖掘区块链技术在商业领域运用的价值,发挥大数据服务的优势,让用户行为增值,让中小企业的发展破冰,构建真实、高效、安全、诚信的互联网命运共同体。
⑸ 数据挖掘算法有哪些
统计和可视化要想建立一个好的预言模型,你必须了解自己的数据。最基本的方法是计算各种统计变量(平均值、方差等)和察看数据的分布情况。你也可以用数据透视表察看多维数据。数据的种类可分为连续的,有一个用数字表示的值(比如销售量)或离散的,分成一个个的类别(如红、绿、蓝)。离散数据可以进一步分为可排序的,数据间可以比较大小(如,高、中、低)和标称的,不可排序(如邮政编码)。图形和可视化工具在数据准备阶段尤其重要,它能让你快速直观的分析数据,而不是给你枯燥乏味的文本和数字。它不仅让你看到整个森林,还允许你拉近每一棵树来察看细节。在图形模式下人们很容易找到数据中可能存在的模式、关系、异常等,直接看数字则很难。可视化工具的问题是模型可能有很多维或变量,但是我们只能在2维的屏幕或纸上展示它。比如,我们可能要看的是信用风险与年龄、性别、婚姻状况、参加工作时间的关系。因此,可视化工具必须用比较巧妙的方法在两维空间内展示n维空间的数据。虽然目前有了一些这样的工具,但它们都要用户“训练”过他们的眼睛后才能理解图中画的到底是什么东西。对于眼睛有色盲或空间感不强的人,在使用这些工具时可能会遇到困难。聚集(分群)聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显,而同一个群之间的数据尽量相似。与分类不同(见后面的预测型数据挖掘),在开始聚集之前你不知道要把数据分成几组,也不知道怎么分(依照哪几个变量)。因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好,这时你需要删除或增加变量以影响分群的方式,经过几次反复之后才能最终得到一个理想的结果。神经元网络和K-均值是比较常用的聚集算法。不要把聚集与分类混淆起来。在分类之前,你已经知道要把数据分成哪几类,每个类的性质是什么,聚集则恰恰相反。关联分析关联分析是寻找数据库中值的相关性。两种常用的技术是关联规则和序列模式。关联规则是寻找在同一个事件中出现的不同项的相关性,比如在一次购买活动中所买不同商品的相关性。序列模式与此类似,他寻找的是事件之间时间上的相关性,如对股票涨跌的分析。关联规则可记为A==>B,A称为前提和左部(LHS),B称为后续或右部(RHS)。如关联规则“买锤子的人也会买钉子”,左部是“买锤子”,右部是“买钉子”。要计算包含某个特定项或几个项的事务在数据库中出现的概率只要在数据库中直接统计即可。某一特定关联(“锤子和钉子”)在数据库中出现的频率称为支持度。比如在总共1000个事务中有15个事务同时包含了“锤子和钉子”,则此关联的支持度为1.5%。非常低的支持度(比如1百万个事务中只有一个)可能意味着此关联不是很重要,或出现了错误数据(如,“男性和怀孕”)。要找到有意义的规则,我们还要考察规则中项及其组合出现的相对频率。当已有A时,B发生的概率是多少?也即概率论中的条件概率。回到我们的例子,也就是问“当一个人已经买了锤子,那他有多大的可能也会买钉子?”这个条件概率在数据挖掘中也称为可信度,计算方法是求百分比:(A与B同时出现的频率)/(A出现的频率)。让我们用一个例子更详细的解释这些概念: 总交易笔数(事务数):1,000包含“锤子”:50包含“钉子”:80包含“钳子”:20包含“锤子”和“钉子”:15包含“钳子”和“钉子”:10包含“锤子”和“钳子”:10包含“锤子”、“钳子”和“钉子”:5 则可以计算出: “锤子和钉子”的支持度=1.5%(15/1,000)“锤子、钉子和钳子”的支持度=0.5%(5/1,000)“锤子==>钉子”的可信度=30%(15/50)“钉子==>锤子”的可信度=19%(15/80)“锤子和钉子==>钳子”的可信度=33%(5/15)“钳子==>锤子和钉子”的可信度=25%(5/20)
⑹ 如何有效地进行数据挖掘和分析
经常听人提到数据分析,那么数据怎么去分析?简单来说,可能就是做一些数据做统计、可视化、文字结论等。但是相比来说,数据挖掘就相对来说比较低调一些,这是这种低调,反而意味着数据挖掘对研究人员的要求要更高一些。
数据分析人员需要理解业务的核心指标,通过数据分析工具(比如R/SAS/SQL,或者内部的数据平台)对业务数据进行建模和分析,为相关的业务指标提供基于数据的解决方案。所以,数据分析岗位要求具备扎实的统计学功底和对数据的敏感。数据挖掘人员需要研究数据,试验和选择合适的机器学习相关的算法模型对数据进行建模和分析,最后自己在实际系统中将算法模型进行高性能的工程实现。所以,数据挖掘岗位要求同时具备深厚的机器学习功底和扎实的编程能力。
数据分析与数据挖掘不是相互独立的。数据分析通常是直接从数据库取出已有信息,进行一些统计、可视化、文字结论等,最后可能生成一份研究报告性质的东西,以此来辅助决策。但很多情况下,这种分析往往不解渴。如果要分析这些已有信息背后隐藏的信息呢,而这些信息通过观察往往是看不到的,这时数据挖掘就冲在了数据分析的前面,作为分析之前要走的一个门槛。
除此之外,因为数据挖掘的输出往往含有的信息价值比较高,因此这些输出不仅仅应用在分析上,更多的是用在其他应用上,如网站后台、APP应用上,实实在在提供一些决策来丰富应用的功能。
数据挖掘不是简单的人为推测就可以的,它往往需要针对大量数据,进行大规模运算,才能得到一些统计学规律。但是前提是,必须针对某些具体的业务来。没有落实真正的场景和需求,没有落实需要的输入和输出,空谈数据挖掘,就是纯粹的耍流氓。举个简单的例子,房价预测,这里给出了一系列的点,我们要预测未来的一点。如果不知道业务,也就是相当我们不知道这些点的由来,那么完全可以理解为这些点可能是地球轨迹中的一部分,或者其他,这样的话,会做出不一样的结论。
其实在数据分析上,往往也需要研究人员了解业务。在数据分析与数据挖掘领域,要想做好,那就先去获取数据、学好业务,再说其他吧。
⑺ 数据挖掘如何建立模型
中心的重要参考。
1.与数据挖掘的过程模型CRISP-DM中的要求相比较,目前在数据中心建设过程中还存在一些问题,主要表现在以下几个方面。
以需求分析代替了商业理解
在CRISP-DM过程模型中,“商业理解”的重点是根据商业目标的要求找出存在的商业问题,并把商业问题转化为数据分析问题,这一过程主要回答了“为什么要做?”的问题。而目前所做的“需求分析”往往是从业务问题出发并转化成了数据分析问题,这一过程只回答了“怎么做?”的问题。这就使得一些数据分析往往没有什么实际作用或者是作用不大,这主要就是因为业务问题解决的商业目标并不清晰。
2. 数据理解工作还不成系统
“数据理解”应该是一个独立的过程,其在整个数据分析应用项目实施过程中非常重要。而在做数据中心建设项目的可行性研究时,只是很粗略地对源数据进行了一些了解,比如了解了源数据是来源于业务系统的数据库还是手工编制的Excel文件,数据大致包含了什么信息等,却并没有对源数据进行细致的分析。此外,对数据质量问题的分析在可行性研究阶段根本尚未建立。因此,数据中心建设项目中分析主题的数学模型虽然建立了,但却缺少足够的数据支持,有时甚至是在项目实施后的阶段才去了解源数据的情况,并仓促将源数据导入数据中心,也并未建立源数据准确、及时提供的保障机制,这就造成了数据分析应用中,数据质量较差、可信度很低的情况。
3. 数据准备不充分
在CRISP-DM过程模型中,“数据准备”也是一个独立的过程,且需要与建立模型的过程互动,通过多次的数据准备,使数据能够被所建立的模型使用。而目前,企业在数据中心的建设中,业务人员和数据中心建设人员并不熟悉业务系统数据库中源数据的情况,也就无法对所需要的数据做准确的描述,而熟悉源数据的人员又不熟悉数据中心建设的需求,因此数据准备阶段的工作量很大,协调成本也很高。
4. 模型评估机制未建立 目前,对模型的评估主要体现在检查功能的实现情况,比如检查所需要的报表、图表、数据是否按要求建立。
⑻ 数据挖掘前景怎样,职业迷茫中
数据挖掘就业的途径从我看来有以下几种,(注意:本文所说的数据挖掘不包括数据仓库或数据库管理员的角色)。
A:做科研(在高校、科研单位以及大型企业,主要研究算法、应用等)
B:做程序开发设计(在企业做数据挖掘及其相关程序算法的实现等)
C:数据分析师(在存在海量数据的企事业单位做咨询、分析等)
数据挖掘从业人员需要掌握的技能:
数据分析师:需要有深厚的数理统计基础,需要熟练使用主流的数据挖掘(或统计分析)工具 。从这个方面切入数据挖掘领域的话你需要学习《数理统计》、《概率论》、《统计学习基础:数据挖掘、推理与预测 》、《金融数据挖掘》,《业务建模与数据挖掘》、《数据挖掘实践 》等。
程序设计开发:主要是实现数据挖掘现有的算法和研发新的算法以及根据实际需要结合核心算法做一些程序开发实现工作。要想扮演好这个角色,需要熟悉至少一门编程语言如(C,C++,Java,Delphi等)和数据库原理和操作,对数据挖掘基础课程有所了解。
做科研:这里的科研相对来说比较概括,属于技术型的相对高级级别,也是前面两者的归宿,那么相应的也就需要拥有前两者的必备基础知识。
现在各个公司对于数据挖掘岗位的技能要求偏应用多一些。目前市面上的岗位一般分为算法模型、数据挖掘、数据分析三种。
应用及就业领域
当前数据挖掘应用主要集中在电信(客户分析),零售(销售预测),农业(行业数据预测),网络日志(网页定制),银行(客户欺诈),电力(客户呼叫),生物(基因),天体(星体分类),化工,医药等方面。
当前它能解决的问题典型在于:数据库营销(Database Marketing)、客户群体划分(Customer Segmentation &Classification)、背景分析(Profile Analysis)、交叉销售(Cross-selling)等市场分析行为,以及客户流失性分析(Churn Analysis)、客户信用记分(Credit Scoring)、欺诈发现(Fraud Detection)等等,在许多领域得到了成功的应用。
职业薪酬
就目前来看,和大多IT业的职位一样,数据挖掘方面的人才在国内的需求工作也是低端饱和,高端紧缺。从BAT的招聘情况来看,数据挖掘领域相对来说门槛还是比较高的,但是薪酬福利也相对来说比较好,常见的比如腾讯、阿里都会给到年薪20W+。而厉害的资深算法专家年薪百万也是常有的事情,所以大家在算法方面还是大有可能。另外随着金融越来越互联网化,大量的算法工程师会成为以后互联网金融公司紧缺的人才。
⑼ 请通俗的讲一下什么是数据挖掘
利用数据挖掘,我们还可以做非常多的事情。
1.发现数据项之间的相关性
比如我们拿到各个城市环境、人口、交通等数据,就可以通过相关性分析来看人均汽车保有量,和空气质量各个指标之间的关系,从而定量化地帮助制定产业经济和环保政策。比如要不要进行更严厉的限购,要不要收取为其的排放税等等。
2.把数据对象进行聚类
比如我们知道大量的人在电子商务网络消费数据,我么就可以根据消费的特征把他们聚成很多类,每一类人我们制定不同的营销手段,从而能够取得销售量的提升。比如电信运营商对人群进行聚类,然后针对性地推出电话套餐。
3.把数据对象进行分类
当我们已经有了分类之后,来了一些新的数据之后,我们可以把他分到不同不同的类去。比如医疗影像上查看肺部的病灶,可能是肺结核、可能是早起肺癌,中晚期肺癌,可能是肺上的疖结,可能是愈合的病灶等等,来了一张新的片子,我们可以通过图像处理,就把它分到不同的类别(当然这需要我们提前对很多片子的数据进行学习)。
4.预测缺失数据或者未来的数据
很多数据集中,比如生物数据,我们已知的知识全部数据集中的一小部分,这需要我们做一些事情去预测这些数据。还有一些,想大选、股票价格预测、河流径流量预测、城市用电量预测等,这些就是对未来数据的预测。