算力板控制芯片
❶ 能否用14纳米制程做出5纳米制程的相同算力的芯片
这个问题比较专业啊,但是据我所了解的知识来看,是有机会完成这件事情的。下面先来介绍一些关于芯片制造领域的基本知识吧。
这样的问题我想最多还是出自于对我国半导体工业制造的关心和考虑。因为我国的14纳米制程已经在国内进行了生产和运营,但相较于台积电这样的半导体产业巨头,在五纳米和七纳米方面,我们还有较大的差距。因此可能就会出现这样的问题:想用14纳米代替5纳米,出发点是非常好,但科学的魅力就在于不断探索极限和未知,只有不断地攀登才会更加深刻地认识这个世界,提升我们的生产力!
❷ 解释矿机芯片的主要工作原理
解读矿机硬件元器件及主流矿机电路及BOM表
矿机结构
看完了机器的外观,我们一起看看机器的原理结构。目前市场上的比特币挖矿机基本是这种原理框图,有三部分构成:电源板,控制板,算力板。大家可以看看这个框图:
再看主控搭载的几颗外围芯片,DDR和NAND FLASH。这几颗芯片是存储芯片,功能就好比我们人类的大脑,现在市场价格比较高。其它网卡芯片就好比我们刚才提到得人的耳朵和嘴巴,用来和外部通信,网络收发芯片,目前市场常用的是RETELK和博通,代表型号有8021和8211。这两颗芯片在路由器和机顶盒里面也用的比较多。
❸ 最高280 TOPS算力,黑芝麻科技发布华山二号,PK特斯拉FSD
芯片作为智能汽车的核心「大脑」,成为诸多车企、Tier 1、自动驾驶企业重点布局的领域。
围绕着自动驾驶最为关键的计算单元,国内诞生了诸多自动驾驶芯片创新公司,在该领域的绝大部分市场份额依然被国外厂商控制的当下,他们正在争取成为「国产自动驾驶芯片之光」。
成立于 2016 年的黑芝麻智能科技便是这一名号的有力争夺者。
继 2019 年 8 月底发布旗下首款车规级自动驾驶芯片华山一号(HS-1)A500 后,黑芝麻又在这个 6 月推出了相较于前代在性能上实现跃迁的全新系列产品——华山二号(HS-2),两个系列产品的推出相隔仅 300 余天,整体研发效率可见一斑。
1、国产算力最高自动驾驶芯片的自我修养
华山二号系列自动驾驶芯片目前有两个型号的产品,包括:
应用于?L3/L4?级自动驾驶的华山二号 A1000?;针对?ADAS/L2.5?自动驾驶的华山二号 A1000L。
简单理解就是,A1000 是高性能版本,而 A1000L 则在性能上进行了裁剪。
这样的产品型号设置也让华山二号系列芯片能在不同的自动驾驶应用场景中进行集成。
相较于 A500 芯片,A1000?在算力上提升了近?8 倍,达到了?40 - 70TOPS,相应的功耗为?8W,能效比超过?6TOPS/W,这个数据指标目前在全球处于领先地位。
华山二号 A1000 之所以能有如此出色的能效表现,很大程度是因为这块芯片是基于黑芝麻自研的多层异构性的?TOA 架构打造的。
这个架构将黑芝麻核心的图像传感技术、图像视频压缩编码技术、计算机视觉处理技术以及深度学习技术有机地结合在了一起。
此外,这款芯片中内置的黑芝麻自研的高性能图像处理核心?NeuralIQ ISP?以及神经网络加速引擎?DynamAI DL?也为其能效跃升提供了诸多助力。
需要注意的是,这里的算力数值之所以是浮动的,是因为计算方式的不同。
如果只计算 A1000 的卷积阵列算力,A1000 大致是 40TOPS,如果加上芯片上的 CPU 和 GPU 的算力,其总算力将达到?70TOPS。
在其他参数和特性方面,A1000 内置了 8 颗 CPU 核心,包含 DSP 数字信号处理和硬件加速器,支持市面上主流的自动驾驶传感器接入,包括激光雷达、毫米波雷达、4K 摄像头、GPS 等等。
另外,为了满足车路协同、车云协同的要求,这款芯片不仅集成了 PCIE 高速接口,还有车规级千兆以太网接口。
A1000 从设计开始就朝着车规级的目标迈进,它符合芯片 AEC-Q100 可靠性和耐久性 Grade 2 标准,芯片整体达到了 ISO 26262 功能安全 ASIL-B 级别,芯片内部还有满足 ASIL-D 级别的安全岛,整个芯片系统的功能安全等级为?ASIL-D。
从这些特性来看,A1000 是一款非常标准的车规级芯片,完全可以满足在车载终端各种环境的使用要求。
A1000 芯片已于今年 4 月完成流片,采用的是台积电的 16nm FinFET 制程工艺。
今年 6 月,黑芝麻的研发团队已经对这款芯片的所有模块进行了性能测试,完全调试通过,接下来就是与客户进行联合测试,为最后的大规模量产做准备。
据悉,搭载这款芯片的首款车型将在?2021 年底量产。
随着 A1000 和 A1000L 的推出,黑芝麻的自动驾驶芯片产品路线图也更加清晰。
在华山二号之后,这家公司计划在 2021 年的某个时点推出华山三号,主要面向的是 L4/L5 级自动驾驶平台,芯片算力将超越 200TOPS,同时会采用更先进的 7nm 制程工艺。
华山三号的?200TOPS?算力,将追平英伟达 Orin 芯片的算力。
去年 8 月和华山一号 A500 芯片一同发布的,还有黑芝麻自研的 FAD(Full Autonomous Driving)自动驾驶计算平台。
这个平台演化至今,在 A1000 和 A1000L 芯片的基础上,有了更强的可扩展性,也有了更广泛的应用场景。
针对低级别的 ADAS 场景,客户可以基于 HS-2 A1000L 芯片搭建一个算力为 16TOPS、功耗为 5W 的计算平台。
而针对高级别的 L4 自动驾驶,客户可以将 4 块 HS-2 A1000 芯片并联起来,实现高达 280TOPS 算力的计算平台。
当然,根据不同客户需求,这些芯片的组合方式是可变换的。
与其他大多数自动驾驶芯片厂商一样,黑芝麻也在可扩展、灵活变换的计算平台层面投入了更多研发精力,为的是更大程度上去满足客户对计算平台的需求。
反过来,这样的做法也让黑芝麻这样的芯片厂商有了接触更多潜在客户的机会。
根据黑芝麻智能科技的规划,今年 7 月将向客户提供基于 A1000 的核心开发板。
到今年 9 月,他们还将推出应用于 L3 自动驾驶的域控制器(DCU),其中集成了两颗 A1000 芯片,算力可达 140TOPS。
2、黑芝麻自动驾驶芯片产品「圣经」
借着华山二号系列芯片的发布,黑芝麻智能科技创始人兼 CEO 单记章也阐述了公司 2020 年的「AI 三次方」产品发展战略,具体包括「看得懂、看得清和看得远」。
这一战略是基于目前市面上对自动驾驶域控制器和计算平台的诸多要求提出的,这些要求包括安全性、可靠性、易用性、开放性、可升级以及延续性等。
其中,看得懂直接指向的是?AI 技术能力,要求黑芝麻的芯片产品能够理解外界所有的信息,可以进行判断和决策。
而看得懂的基础是看得清,这指的是黑芝麻芯片产品的图像处理能力,需要具备准确接收外界信息的能力。
这里尤其以摄像头传感器为代表,其信息量最大、数据量也最多,当然传感器融合也不可或缺。
看得远则指的是车辆不仅要感知周边环境,还要了解更大范围的环境信息,这就涉及到了车路协同、车云协同这样的互联技术,所以我们看到黑芝麻的芯片产品非常注重对互联技术的支持。
作为一家自动驾驶芯片研发商,这一战略将成为黑芝麻后续芯片产品研发的「圣经」。
3、定位 Tier 2,绑定 Tier 1,服务 OEM
现阶段,发展智能汽车已经成为了国家意志,在政策如此支持的情况下,智能汽车的市场爆发期指日可待。
根据艾瑞咨询的报告数据显示,到 2025 年全球将会有 6662 万辆智能汽车的存量,中国市场的智能汽车保守预计在 1600 万辆左右。
如此规模庞大的智能汽车增量市场,将为那些打造智能汽车「大脑」的芯片供应商培育出无限的产品落地机会。
作为其中一员,黑芝麻智能科技也将融入到这股潮流之中,很有机会成长为潮流的引领者。
作为一家自动驾驶芯片研发商,黑芝麻智能科技将自己定位为?Tier 2,未来将绑定 Tier 1 合作伙伴,进而为车企提供产品和服务。
当然,黑芝麻不仅能提供车载芯片,未来还将为客户提供自动驾驶传感器和算法的解决方案,还有工具链、操作平台等产品。
凭借着此前发布的华山一号 A500 芯片,黑芝麻智能科技已经与中国一汽和中科创达两家达成了深入的合作伙伴关系,将在自动驾驶芯片、视觉感知算法等领域展开了诸多项目合作。
另外,全球顶级供应商博世也与黑芝麻建立起了战略合作关系。
目前,黑芝麻的华山一号 A500 芯片已经开启了量产,其与国内头部车企关于 L2+ 和 L3 级别自动驾驶的项目也正在展开。
如此快速的落地进程,未来可期。
有意思的是,黑芝麻此番发布华山二号系列芯片,包括中国一汽集团的副总经理王国强、上汽集团总工程师祖似杰、蔚来汽车 CEO 李斌以及博世中国区总裁陈玉东在内的多位行业大佬都为其云站台。
这背后意味着什么?给我们留下了很大的想象空间。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
❹ 自研芯片,算力远超英伟达谷歌的芯片巨头是哪一个
必须是华为,华为现在正在自研芯片,采取的是最新的技术,目前的成功品在运算速度上已经超过同期其他芯片产品了。
❺ 智能语音产品的本地唤醒对主控芯片的算力要求大概是咋样的
1)目前的智能音箱,放在云端做NLP是因为问答系统需要的知识图谱、算力在本地无法实现 2)目前音箱用的A7和A53的芯片居多 3)根据google发布的local home kit、小米发布的小爱老师来看,A53实现本地ASR是完全没有问题的,基于ASR进行一些简单、有限领域的NLP并执行相应回答/命令,是可以预期的 4)如果是扫地机器人,只需要简单的命令词的话,A7、A53可以胜任 5)对于主控芯片的要求,其实最大取决于应用场景的需求,准确度、抗干扰能力决定了对芯片的要求;如果是低功耗场景,如TWS耳机也的唤醒和命令词功能,可以用Ambiqmicro的Apollo 2/3这种就能实现,如果扫地机器人对成本不敏感,对性能要求高(有极大的噪声),这时候一般的MCU就不一定适合了,可以考虑A7、A53
❻ 给人工智能提供算力的芯片有哪些类型
给人工智能提供算力的芯片类型有gpu、fpga和ASIC等。
GPU,是一种专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上图像运算工作的微处理器,与CU类似,只不过GPU是专为执行复杂的数学和几何计算而设计的,这些计算是图形渲染所必需的。
FPGA能完成任何数字器件的功能的芯片,甚至是高性能CPU都可以用FPGA来实现。 Intel在2015年以161亿美元收购了FPGA龙 Alter头,其目的之一也是看中FPGA的专用计算能力在未来人工智能领域的发展。
ASIC是指应特定用户要求或特定电子系统的需要而设计、制造的集成电路。严格意义上来讲,ASIC是一种专用芯片,与传统的通用芯片有一定的差异。是为了某种特定的需求而专门定制的芯片。谷歌最近曝光的专用于人工智能深度学习计算的TPU其实也是一款ASIC。
(6)算力板控制芯片扩展阅读:
芯片又叫集成电路,按照功能不同可分为很多种,有负责电源电压输出控制的,有负责音频视频处理的,还有负责复杂运算处理的。算法必须借助芯片才能够运行,而由于各个芯片在不同场景的计算能力不同,算法的处理速度、能耗也就不同在人工智能市场高速发展的今天,人们都在寻找更能让深度学习算法更快速、更低能耗执行的芯片。
❼ GYM钛晶芯片的算力如何
我最近一直在和朋友挖矿,陆陆续续换了几个品牌的矿机,要说好用,还是GYM矿机,最新技术集成的存储矿机,芯片好,算力才会强。
❽ 寒武纪首颗7nm AI训练芯片量产,这芯片有何特别之处
寒武纪思元290智能芯片及加速卡、玄思1000智能加速器量产落地后首次正式亮相。思元290智能芯片是寒武纪的首颗训练芯片,采用台积电7nm先进制程工艺,集成460亿个晶体管,全面支持AI训练、推理或混合型人工智能计算加速任务。
寒武纪介绍称,此次推出的训练产品线将面向互联网、金融、交通、能源、电力和制造等领域的复杂AI应用场景提供充裕算力,推动人工智能赋能产业升级,思元290芯片及加速卡已与部分硬件合作伙伴完成适配,并实现规模化出货。
值得注意的是,华为和英伟达早已推出7nm工艺的同类型芯片,而在此前失去华为这个大客户后,寒武纪在商业化方面也面临不少压力,也不得不开拓新的客户。去年前三季度,寒武纪实现营收1.58亿元,仅有2019年的35%,亏损也超过3亿元。
不过,先进工艺芯片的推出也刺激了资本市场。今日,寒武纪大幅高开,盘中涨幅一度超过18%,随后略有回落,截止发稿市值超过670亿元,距公司此前上市后达到的千亿元市值仍有差距。
❾ 零跑汽车发布自动驾驶芯片:算力4.2TOPS 支持L3级自动驾驶
国家发改委产业发展司机械装备处处长吴卫
未来,中国制造的汽车将是全球新技术融合最多、创新融合最多的,也必将领跑全球汽车工业。
同时,汽车芯片领域的竞争也异常激烈。相比于消费电子产品的芯片,汽车芯片对安全性、稳定性的要求更高,是芯片行业共同面对的难题,这也是中国芯片公司的机会。
结语:自研技术让零跑更具竞争力
零跑汽车是中国造车新势力企业中第一个自主研发汽车自动驾驶芯片的,搭载这款芯片的量产车零跑C11下月就将发布。零跑汽车在自动驾驶领域的飞速进步,也得到了用户的认可。
统计数据显示,零跑汽车两款量产车型从今年7月以来销量逐步攀升,9月销量破千,10月销量有望突破1600辆,大量的自研技术让零跑这一造车新势力具备了更强的竞争力。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
❿ 挖矿机的算力芯片算是一种加强型的GPU吗
算 矿卡,顾名思义就是用于挖矿的显卡,更严谨来说就是长期高负载运行挖矿的显卡。用于挖矿的显卡,一般会连续几个月24小时不间断地满负载工作。这样一来PCB与电子元件都会加速老化,影响元器件的寿命。且不计算显卡的休息时间,即使以我们每日玩游戏8个小时作标准,矿卡的寿命也只有正常显卡的三分之一。可以说,矿卡一般寿命也只有几个月。