当前位置:首页 » 算力简介 » 去中心化量化投资

去中心化量化投资

发布时间: 2021-04-20 02:17:12

『壹』 量化投资的主要方法和前沿进展

量化投资是通过计算机对金融大数据进行量化分析的基础上产生交易决策机制。设计金融数学和计算机的知识和技术,主要有人工智能、数据挖掘、小波分析、支持向量机、分形理论和随机过程这几种。
1.人工智能
人工智能(Artificial Intelligence,AI)是研究使用计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及计算机科学、心理学、哲学和语言学等学科,可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。
从思维观点看,人工智能不仅限于逻辑思维,还要考虑形象思维、灵感思维才能促进人工智能的突破性发展,数学常被认为是多种学科的基础科学,因此人工智能学科也必须借用数学工具。数学不仅在标准逻辑、模糊数学等范围发挥作用,进入人工智能学科后也能促进其得到更快的发展。
金融投资是一项复杂的、综合了各种知识与技术的学科,对智能的要求非常高。所以人工智能的很多技术可以用于量化投资分析中,包括专家系统、机器学习、神经网络、遗传算法等。
2.数据挖掘
数据挖掘(Data Mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的,但又是潜在有用的信息和知识的过程。
与数据挖掘相近的同义词有数据融合、数据分析和决策支持等。在量化投资中,数据挖掘的主要技术包括关联分析、分类/预测、聚类分析等。
关联分析是研究两个或两个以上变量的取值之间存在某种规律性。例如,研究股票的某些因子发生变化后,对未来一段时间股价之间的关联关系。关联分为简单关联、时序关联和因果关联。关联分析的目的是找出数据库中隐藏的关联网。一般用支持度和可信度两个阈值来度量关联规则的相关性,还不断引入兴趣度、相关性等参数,使得所挖掘的规则更符合需求。
分类就是找出一个类别的概念描述,它代表了这类数据的整体信息,即该类的内涵描述,并用这种描述来构造模型,一般用规则或决策树模式表示。分类是利用训练数据集通过一定的算法而求得分类规则。分类可被用于规则描述和预测。
预测是利用历史数据找出变化规律,建立模型,并由此模型对未来数据的种类及特征进行预测。预测关心的是精度和不确定性,通常用预测方差来度量。
聚类就是利用数据的相似性判断出数据的聚合程度,使得同一个类别中的数据尽可能相似,不同类别的数据尽可能相异。
3.小波分析
小波(Wavelet)这一术语,顾名思义,小波就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与傅里叶变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了傅里叶变换的困难问题,成为继傅里叶变换以来在科学方法上的重大突破,因此也有人把小波变换称为数学显微镜。
小波分析在量化投资中的主要作用是进行波形处理。任何投资品种的走势都可以看做是一种波形,其中包含了很多噪音信号。利用小波分析,可以进行波形的去噪、重构、诊断、识别等,从而实现对未来走势的判断。
4.支持向量机
支持向量机(Support Vector Machine,SVM)方法是通过一个非线性映射,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性可分的问题,简单地说,就是升维和线性化。升维就是把样本向高维空间做映射,一般情况下这会增加计算的复杂性,甚至会引起维数灾难,因而人们很少问津。但是作为分类、回归等问题来说,很可能在低维样本空间无法线性处理的样本集,在高维特征空间中却可以通过一个线性超平面实现线性划分(或回归)。
一般的升维都会带来计算的复杂化,SVM方法巧妙地解决了这个难题:应用核函数的展开定理,就不需要知道非线性映射的显式表达式;由于是在高维特征空间中建立线性学习机,所以与线性模型相比,不但几乎不增加计算的复杂性,而且在某种程度上避免了维数灾难。这一切要归功于核函数的展开和计算理论。
正因为有这个优势,使得SVM特别适合于进行有关分类和预测问题的处理,这就使得它在量化投资中有了很大的用武之地。
5.分形理论
被誉为大自然的几何学的分形理论(Fractal),是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下,在某一方面(形态、结构、信息、功能、时间、能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而极大地拓展了研究视野。
自相似原则和迭代生成原则是分形理论的重要原则。它表示分形在通常的几何变换下具有不变性,即标度无关性。分形形体中的自相似性可以是完全相同的,也可以是统计意义上的相似。迭代生成原则是指可以从局部的分形通过某种递归方法生成更大的整体图形。
分形理论既是非线性科学的前沿和重要分支,又是一门新兴的横断学科。作为一种方法论和认识论,其启示是多方面的:一是分形整体与局部形态的相似,启发人们通过认识部分来认识整体,从有限中认识无限;二是分形揭示了介于整体与部分、有序与无序、复杂与简单之间的新形态、新秩序;三是分形从一特定层面揭示了世界普遍联系和统一的图景。
由于这种特征,使得分形理论在量化投资中得到了广泛的应用,主要可以用于金融时序数列的分解与重构,并在此基础上进行数列的预测。
6.随机过程
随机过程(Stochastic Process)是一连串随机事件动态关系的定量描述。随机过程论与其他数学分支如位势论、微分方程、力学及复变函数论等有密切的联系,是在自然科学、工程科学及社会科学各领域中研究随机现象的重要工具。随机过程论目前已得到广泛的应用,在诸如天气预报、统计物理、天体物理、运筹决策、经济数学、安全科学、人口理论、可靠性及计算机科学等很多领域都要经常用到随机过程的理论来建立数学模型。
研究随机过程的方法多种多样,主要可以分为两大类:一类是概率方法,其中用到轨道性质、随机微分方程等;另一类是分析的方法,其中用到测度论、微分方程、半群理论、函数堆和希尔伯特空间等,实际研究中常常两种方法并用。另外组合方法和代数方法在某些特殊随机过程的研究中也有一定作用。研究的主要内容有:多指标随机过程、无穷质点与马尔科夫过程、概率与位势及各种特殊过程的专题讨论等。
其中,马尔科夫过程很适于金融时序数列的预测,是在量化投资中的典型应用。
现阶段量化投资在基金投资方面使用的比较多,也有部分投资机构合券商的交易系统应用了智能选股的技术。

『贰』 什么是量化投资

量化投资指的是一种投资方法,它是指通过数量化方式或计算机程序化发出买卖指令,以得到稳定收益为目标的交易方式。量化投资是一种定性思想的量化应用,它对大量的指标数据进行分析,得出一些有说服力的数据结论,然后通过计算机技术进行数学建模,并进行量化分析,从而得出一个比较契合实际的投资策略。
量化投资是指通过数量化方式及计算机程序化发出买卖指令,以获取稳定收益为目的的交易方式。在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。从全球市场的参与主体来看,按照管理资产的规模,全球排名前四以及前六位中的五家资管机构,都是依靠计算机技术来开展投资决策,由量化及程序化交易所管理的资金规模在不断扩大。

『叁』 想走量化投资方向,大概需要什么学历

硕士学历足够,需要具备金融学、心理学、经济学、统计学、会计学等,总结数据统计能力、计算机技能以及心理素质。
量化投资可以肯定说目前还是一年蓝海,稀缺人才很少,如果有志往这方面发展是不错的选择。

『肆』 目前对量化投资非常感兴趣 所以想请教下各位大神

模型仅仅是方法论,不是说模型本身能解决投资问题.
模型能否有效,主要还是看你的模型背后的逻辑思路是否有效.
你去看看:经济学(曼昆)金融学(博迪);金融工程(约翰希尔);在学学量子力学、计算机编程+你的本行(实变函数、复变函数、测度论、鞅、随机过程等等)。
你的数学基础会派上用途的,前途路漫漫,加油吧!

『伍』 量化投资是什么意思

量化投资是指通过数量化方式及计算机程序化发出买卖指令,以获取稳定收益为目的的交易方式。在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。
量化投资区别于定性投资的鲜明特征就是模型,对于量化投资中模型与人的关系,大家也比较关心。量邦科技冯永昌打个比方来说明这种关系,我们先看一看医生治病,中医与西医的诊疗方法不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,定性程度上大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。

『陆』 什么是量化投资怎么理解量化

私募排排网为您解答:
量化投资,简单说就是利用计算机技术和数学模型去实现投资策略的过程。根据上面的定义,理解它的话,咱们只要记住3个关键词:
数学模型:需要数学公式或模型进行计算;
计算机技术:用计算机来进行自动化交易;
投资策略:将这种方法形成一种惯用投资策略。

『柒』 如何简单理解量化投资

1、定义:
量化投资是将投资理念及策略通过具体指标、参数的设计,体现到具体的模型中,让模型对市场进行不带任何情绪的跟踪
2、特点:
具有快速高效、客观理性、收益与风险平衡和个股与组合平衡等四大特点
3、具体运行
一、估值与选股

估值:对上市公司进行估值是公司基本面分析的重要方法,在“价值投资”的基本逻辑下,可以通过对公司的估值判断二级市场股票价格的扭曲程度,继而找出价值被低估或高估的股票,作为投资决策的参考。
二、资产配置

资产配置指资产类别选择、投资组合中各类资产的配置比例以及对这些混合资产进行实时管理。
三、基于行为金融学的投资策略

金业中的应用将主要集中在量化选股、资产配置、绩效评估与风险管理、行为金融等方面,而随着包括基金在内的机构投资者占比的不断提高、衍生品工具的日渐丰富(股指期货、融资融券等)以及量化投资技术的进步,基金管理人的投资策略将会越来越复杂,程序化交易(系统)也将有快速的发展。

『捌』 量化投资模型如何开发的

量化的模型开发大致分为以下几个环节:
①数据处理,看你用什么工具,R还是Matlab还是python,或者是c++,最好是工具本身的格式,这样速度会快的多,比如Rdata,或matlab的mat格式,或者python的npy格式,或者c++的二进制格式,还有就是你要用什么数据,分钟数据,切片数据,还是tick数据,根据你的需求不同进行处理。

②指标建立,这个工作可以看成问题的关键,如何建立指标,你的思想是什么,都来源于此,举个简单的均线指标,matlab,就是ma=movavg(data,length)
③模型回测,据我理解就是一个大循环:
if time>9. && time<15 && close(i)>ma(i) && p!=1
buy
else
sell
if p==1 && 止损条件
平仓
等等
④计算收益
然后根据收益,夏普比率等,改条件,重复上面的工作。

总结:
开发模型的步骤一般是:数据处理、寻找因子、回测验证、实盘模拟、风险归因。

备注:
数据处理:去极值、标准化、中性化;数据预处理。
寻找因子:寻找Alpha、寻找收益波动比因子、另外优矿上提供了近400个因子因子可以自己验证。

『玖』 量化投资怎么入门

量化投资如果要入门的话,你可以根据它的量能变化去入门学习一下。

热点内容
中融兴合区块链 发布:2025-07-22 04:01:38 浏览:670
2030年比特币价格多少钱 发布:2025-07-22 03:57:09 浏览:994
移动卡有合约套餐怎么换 发布:2025-07-22 03:56:16 浏览:167
zec合约地址怎么找 发布:2025-07-22 03:55:39 浏览:17
去外滩金融中心中山东二路地铁站 发布:2025-07-22 03:50:17 浏览:17
比特币病毒样本百度云 发布:2025-07-22 03:40:44 浏览:344
元宇宙化 发布:2025-07-22 03:40:04 浏览:341
移动青春卡合约没到期怎么退 发布:2025-07-22 03:38:05 浏览:26
培训区块链客户 发布:2025-07-22 03:32:27 浏览:724
比特币多空杠杆率 发布:2025-07-22 03:09:35 浏览:418