15分钟算力比本地高
⑴ 280TOPS算力爆表!北京车展最强国产自动驾驶平台是它
▲左右分别为黑芝麻CEO单记章、COO刘卫红
黑芝麻CEO单记章此前是全球视觉芯片领军企业OmniVision创始团队成员,在硅谷芯片行业打拼了20多年,在图像处理芯片和软件算法上具有丰富的经验和技术积累。
CTO齐峥是英特尔奔腾二代芯片主要设计成员、CSO曾代兵是中兴微电子总工程师,COO刘卫红则曾是博世中国ADAS主力部门——底盘与控制系统事业部的中国区总裁。
正因为有超强的研发团队,让黑芝麻这家初创公司可以在3年时间内做出ADAS芯片华山一号A500并量产上市,在今年推出华山二号A1000芯片,发布FAD自动驾驶平台。
今年以来,新车如果没有配备L1/L2级自动驾驶,都“不好意思卖”,自动驾驶的普及程度正在快速提高,而更高等级的L3级甚至L4级自动驾驶也已经到了量产前夜,行业内对自动驾驶芯片和计算平台解决方案需求呈爆发性增长态势。仅自动驾驶芯片的市场规模,都有望达到万亿美元级别,成为半导体行业最大单一市场。
因此,FAD此时进入自动驾驶市场可谓正当其时。
今年8月,一汽智能网联开发院与黑芝麻达成技术合作协议。一汽智能网联开发院将启动基于华山二号A1000的智能驾驶平台的开发,以满足后续量产车型需求。双方将共同推动人工智能技术在汽车工业领域的应用,加速国产智能驾驶芯片的产业化落地。
另外,黑芝麻也已经签约多个FAD定点车型,预计明年就将有搭载FAD自动驾驶平台的车型上市。此外,国内外也已经有多家企业开始测试FAD自动驾驶平台,测试车辆已经上路。
黑芝麻在自动驾驶芯片和域控制器中取得的巨大成功,让行业研究机构开始重视这家刚成立4年有余创业公司。今年4月,硅谷最强智库之一的CBInsights发布中国芯片设计企业榜单,黑芝麻在车载芯片领域上榜,成为中国芯片设计企业65强之一。
今年7月,黑芝麻华山二号A1000芯片也亮相世界人工智能大会,与平头哥、依图、寒武纪等高端人工智能芯片同台亮相。
可以说,黑芝麻经过四年多的发展,已经成为全球领先的自动驾驶芯片设计公司,甚至已经有能力和芯片行业的老大哥们一较高下。同时,黑芝麻的快速进步,也推动着国内自动驾驶芯片设计再上新台阶。
在与两位创始人的交谈中,他们还透露了一个彩蛋,明年黑芝麻将发布性能更强的芯片,届时搭载这一芯片的FAD自动驾驶平台最高算力有望突破1000TOPS,其算力已经可以进行完全自动驾驶。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
⑵ 本地算力483时时算力50什么原因
⑶ FIL里面的算力增量是什么意思
算力增量,就是计算机运算速度的增加量。
算力:简单说就是你的矿机运算速度的一个量化指标,比如1T算力,就是1s能算10的12次方次运算。如果这10的12次方次能算出符合条件的结果那就挖到了,如果没有,可以说是白算了。
面对指数级攀升的数据增量,算力是时刻摆在企业和机构面前最大的诉求,而提升算力就需要性能更高的CPU与GPU。
上一次AMD处理器将HPC的计算力推至亿亿次,而现在AMD携EPYC处理器再次将超算的计算力推进到百亿亿次的级别。AMD打造的两大E级超算系统Frontier和El Capitan分别计划于2021和2023年交付,将分别实现超过 1.5 exaflops(百亿亿次)和2 exaflops的预期处理性能,预计交付后将成为世界上最快的超级计算机。。
短时间内在计算力方面有如此大的提升,对于任何一家厂商来说都是不小的挑战。AMD是如何取得如此大的进步?我们要从2017年说起。
2017年,AMD采用了全新的Zen架构,推出了第一代EPYC处理器,并惊人地把单个处理器核心数提升到了32核。而在两年之后,第二代EPYC处理器的推出,不仅把架构升级至Zen2,同时,制程工艺从14nm降至7nm,从而使其IPC性能提升15%。
相比与Zen架构,新推出Zen2架构优化了L1指令缓存,并使操作缓存容量和浮点单元数据位宽翻倍,同时L3缓存翻倍到16MB,64核EPYC处理器轻松拥有128MB L3缓存。而且很重要的一点是,第二代EPYC采用了7nm工艺,有效减低了功耗,使得在225W TDP下可以将核心数提升到64核,让其性能提升明显。
在过去的一年时间里,第二代AMD EPYC处理器取得了超过140项世界纪录,其中涵盖云计算、虚拟化、高性能计算、大数据分析等多个领域,并且还以强大的性能来满足企业或机构对计算力日渐增强的需求。
所以,AMD依靠着EPYC处理器的领先性能以及超高的功耗比,不仅赢得了更多市场份额、打破众多世界纪录,同时,也让AMD的生态圈日渐扩大。
⑷ 挖矿所消耗的算力最终用到了哪里
从廉价电力到集中采矿作业,我国的资源环境为比特币矿商提供了多项优势。近年来,比特币矿商们在新疆和内蒙古等煤炭丰富的地区利用廉价电力来扩大业务,这些地区可以说是一些世界领先的采矿公司的创始人的家园。
随着比特币价格的攀升,加入比特币挖矿业务的人群越来越多,相应的,挖矿消耗的能源也越来越多。很显然,我国政府也意识到了这一点。
根据文件要求,监管者要求地方政府采取与电价、土地使用、税收和环境保护相关的措施来指导比特币矿工退出该业务。根据外媒报道,监管监管部门出台关停政策主要是担心其中所涉及的洗钱和金融风险,但过高的电力消耗也是不可忽视的因素。从原理上来说,比特币采矿消耗大量电力的原因在于,每生产一个新比特币都需要通过高性能计算机执行的加密过程来解决复杂的数学难题。挖掘计算过程用于在区块链中验证比特币交易来确保安全,而缺点就是要消耗大量的能源。
⑸ 最高280 TOPS算力,黑芝麻科技发布华山二号,PK特斯拉FSD
芯片作为智能汽车的核心「大脑」,成为诸多车企、Tier 1、自动驾驶企业重点布局的领域。
围绕着自动驾驶最为关键的计算单元,国内诞生了诸多自动驾驶芯片创新公司,在该领域的绝大部分市场份额依然被国外厂商控制的当下,他们正在争取成为「国产自动驾驶芯片之光」。
成立于 2016 年的黑芝麻智能科技便是这一名号的有力争夺者。
继 2019 年 8 月底发布旗下首款车规级自动驾驶芯片华山一号(HS-1)A500 后,黑芝麻又在这个 6 月推出了相较于前代在性能上实现跃迁的全新系列产品——华山二号(HS-2),两个系列产品的推出相隔仅 300 余天,整体研发效率可见一斑。
1、国产算力最高自动驾驶芯片的自我修养
华山二号系列自动驾驶芯片目前有两个型号的产品,包括:
应用于?L3/L4?级自动驾驶的华山二号 A1000?;针对?ADAS/L2.5?自动驾驶的华山二号 A1000L。
简单理解就是,A1000 是高性能版本,而 A1000L 则在性能上进行了裁剪。
这样的产品型号设置也让华山二号系列芯片能在不同的自动驾驶应用场景中进行集成。
相较于 A500 芯片,A1000?在算力上提升了近?8 倍,达到了?40 - 70TOPS,相应的功耗为?8W,能效比超过?6TOPS/W,这个数据指标目前在全球处于领先地位。
华山二号 A1000 之所以能有如此出色的能效表现,很大程度是因为这块芯片是基于黑芝麻自研的多层异构性的?TOA 架构打造的。
这个架构将黑芝麻核心的图像传感技术、图像视频压缩编码技术、计算机视觉处理技术以及深度学习技术有机地结合在了一起。
此外,这款芯片中内置的黑芝麻自研的高性能图像处理核心?NeuralIQ ISP?以及神经网络加速引擎?DynamAI DL?也为其能效跃升提供了诸多助力。
需要注意的是,这里的算力数值之所以是浮动的,是因为计算方式的不同。
如果只计算 A1000 的卷积阵列算力,A1000 大致是 40TOPS,如果加上芯片上的 CPU 和 GPU 的算力,其总算力将达到?70TOPS。
在其他参数和特性方面,A1000 内置了 8 颗 CPU 核心,包含 DSP 数字信号处理和硬件加速器,支持市面上主流的自动驾驶传感器接入,包括激光雷达、毫米波雷达、4K 摄像头、GPS 等等。
另外,为了满足车路协同、车云协同的要求,这款芯片不仅集成了 PCIE 高速接口,还有车规级千兆以太网接口。
A1000 从设计开始就朝着车规级的目标迈进,它符合芯片 AEC-Q100 可靠性和耐久性 Grade 2 标准,芯片整体达到了 ISO 26262 功能安全 ASIL-B 级别,芯片内部还有满足 ASIL-D 级别的安全岛,整个芯片系统的功能安全等级为?ASIL-D。
从这些特性来看,A1000 是一款非常标准的车规级芯片,完全可以满足在车载终端各种环境的使用要求。
A1000 芯片已于今年 4 月完成流片,采用的是台积电的 16nm FinFET 制程工艺。
今年 6 月,黑芝麻的研发团队已经对这款芯片的所有模块进行了性能测试,完全调试通过,接下来就是与客户进行联合测试,为最后的大规模量产做准备。
据悉,搭载这款芯片的首款车型将在?2021 年底量产。
随着 A1000 和 A1000L 的推出,黑芝麻的自动驾驶芯片产品路线图也更加清晰。
在华山二号之后,这家公司计划在 2021 年的某个时点推出华山三号,主要面向的是 L4/L5 级自动驾驶平台,芯片算力将超越 200TOPS,同时会采用更先进的 7nm 制程工艺。
华山三号的?200TOPS?算力,将追平英伟达 Orin 芯片的算力。
去年 8 月和华山一号 A500 芯片一同发布的,还有黑芝麻自研的 FAD(Full Autonomous Driving)自动驾驶计算平台。
这个平台演化至今,在 A1000 和 A1000L 芯片的基础上,有了更强的可扩展性,也有了更广泛的应用场景。
针对低级别的 ADAS 场景,客户可以基于 HS-2 A1000L 芯片搭建一个算力为 16TOPS、功耗为 5W 的计算平台。
而针对高级别的 L4 自动驾驶,客户可以将 4 块 HS-2 A1000 芯片并联起来,实现高达 280TOPS 算力的计算平台。
当然,根据不同客户需求,这些芯片的组合方式是可变换的。
与其他大多数自动驾驶芯片厂商一样,黑芝麻也在可扩展、灵活变换的计算平台层面投入了更多研发精力,为的是更大程度上去满足客户对计算平台的需求。
反过来,这样的做法也让黑芝麻这样的芯片厂商有了接触更多潜在客户的机会。
根据黑芝麻智能科技的规划,今年 7 月将向客户提供基于 A1000 的核心开发板。
到今年 9 月,他们还将推出应用于 L3 自动驾驶的域控制器(DCU),其中集成了两颗 A1000 芯片,算力可达 140TOPS。
2、黑芝麻自动驾驶芯片产品「圣经」
借着华山二号系列芯片的发布,黑芝麻智能科技创始人兼 CEO 单记章也阐述了公司 2020 年的「AI 三次方」产品发展战略,具体包括「看得懂、看得清和看得远」。
这一战略是基于目前市面上对自动驾驶域控制器和计算平台的诸多要求提出的,这些要求包括安全性、可靠性、易用性、开放性、可升级以及延续性等。
其中,看得懂直接指向的是?AI 技术能力,要求黑芝麻的芯片产品能够理解外界所有的信息,可以进行判断和决策。
而看得懂的基础是看得清,这指的是黑芝麻芯片产品的图像处理能力,需要具备准确接收外界信息的能力。
这里尤其以摄像头传感器为代表,其信息量最大、数据量也最多,当然传感器融合也不可或缺。
看得远则指的是车辆不仅要感知周边环境,还要了解更大范围的环境信息,这就涉及到了车路协同、车云协同这样的互联技术,所以我们看到黑芝麻的芯片产品非常注重对互联技术的支持。
作为一家自动驾驶芯片研发商,这一战略将成为黑芝麻后续芯片产品研发的「圣经」。
3、定位 Tier 2,绑定 Tier 1,服务 OEM
现阶段,发展智能汽车已经成为了国家意志,在政策如此支持的情况下,智能汽车的市场爆发期指日可待。
根据艾瑞咨询的报告数据显示,到 2025 年全球将会有 6662 万辆智能汽车的存量,中国市场的智能汽车保守预计在 1600 万辆左右。
如此规模庞大的智能汽车增量市场,将为那些打造智能汽车「大脑」的芯片供应商培育出无限的产品落地机会。
作为其中一员,黑芝麻智能科技也将融入到这股潮流之中,很有机会成长为潮流的引领者。
作为一家自动驾驶芯片研发商,黑芝麻智能科技将自己定位为?Tier 2,未来将绑定 Tier 1 合作伙伴,进而为车企提供产品和服务。
当然,黑芝麻不仅能提供车载芯片,未来还将为客户提供自动驾驶传感器和算法的解决方案,还有工具链、操作平台等产品。
凭借着此前发布的华山一号 A500 芯片,黑芝麻智能科技已经与中国一汽和中科创达两家达成了深入的合作伙伴关系,将在自动驾驶芯片、视觉感知算法等领域展开了诸多项目合作。
另外,全球顶级供应商博世也与黑芝麻建立起了战略合作关系。
目前,黑芝麻的华山一号 A500 芯片已经开启了量产,其与国内头部车企关于 L2+ 和 L3 级别自动驾驶的项目也正在展开。
如此快速的落地进程,未来可期。
有意思的是,黑芝麻此番发布华山二号系列芯片,包括中国一汽集团的副总经理王国强、上汽集团总工程师祖似杰、蔚来汽车 CEO 李斌以及博世中国区总裁陈玉东在内的多位行业大佬都为其云站台。
这背后意味着什么?给我们留下了很大的想象空间。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
⑹ 高通发布全新自动驾驶计算平台 最高算力700TOPS,2023年量产
▲高通公司总裁CristianoAmon新闻发布会上向展示了SnapdragonRide(图源CNET/James?Martin)
SnapdragonRide通过独特的SoC、加速器和自动驾驶软件栈的结合,为汽车制造商提供了一种可扩展的解决方案,可在三个细分领域对自动驾驶汽车提供支持,分别是:
1、L1/L2级主动安全ADAS——面向具备自动紧急制动、交通标志识别和车道保持辅助功能的汽车。
2、L2+级ADAS——面向在高速公路上进行自动驾驶、支持自助泊车,以及可在频繁停车的城市交通中进行驾驶的汽车。
3、L4/L5级完全自动驾驶——面向在城市交通环境中的自动驾驶、无人出租车和机器人物流。
SnapdragonRide平台基于一系列不同的骁龙汽车SoC和加速器建立,采用可扩展且模块化的高性能异构多核CPU、高能效的AI及计算机视觉引擎,以及GPU。
其中,ADASSoC系列和加速器系列采用异构计算,与此同时利用高通的新一代人工智能引擎,ADAS和SoC能够高效管理车载系统的大量数据。
得益于这些不同的SoC和加速器的组合,SnapdragonRide平台可以根据自动驾驶的不同细分市场的需求进行配备,同时提供良好的散热效率,包括从面向L1/L2级别应用的30TOPS等级的设备,到面向L4/L5级别驾驶、超过700TOPS的功耗130瓦的设备。
此外,高通全新推出的SnapdragonRide自动驾驶软件栈是集成在SnapdragonRide平台中的模块化可扩展解决方案。
据介绍,SnapdragonRide平台的软件框架可同时托管客户特定的软件栈组件和SnapdragonRide自动驾驶软件栈组件。
SnapdragonRide平台也支持被动或风冷的散热设计,因而能够在成本降低的同时进一步优化汽车设计,提升可靠性。
现在,Arm、黑莓QNX、英飞凌、新思科技、Elektrobit、安森美半导体均已加入高通的自动驾驶朋友圈,成为SnapdragonRide自动驾驶平台的软/硬件供应商。
Arm的功能安全解决方案,新思科技的汽车级DesignWare接口IP、ARC处理器IP和STARMemorySystemTM,黑莓QNX的汽车基础软件OS安全版及Hypervisor安全版,英飞凌的AURIXTM微控制器,以及安森美半导体的ADAS系列传感器都会集成到高通的自动驾驶平台上。
Elektrobit还计划与高通合作,共同开发可规模化生产的新一代AUTOSAR架构,EBcorbos软件和SnapdragonRide自动驾驶平台都将集成在这个架构上面。
据了解SnapdragonRide将在2020年上半年交付汽车制造商和一级供应商进行前期开发,而根据QualcommTechnologies估计,搭载SnapdragonRide的汽车将于2023年投入生产。
二、深耕汽车业务多年高通赋能超百万台汽车
在发布SnapdragonRide自动驾驶平台之前,高通已在智能汽车领域深耕多年。
十多年来,高通子公司QualcommTechnologies一直在为通用汽车的网联汽车应用提供先进的无线通信解决方案,包括通用汽车上安吉星设备所支持的安全应用。
在车载信息处理、信息影音和车内互联等领域,QualcommTechnologies的订单总价值目前已超过70亿美元(约合人民币487亿元)。
而根据高通在CES2020发布会现场公布的信息,迄今为止已经有超百万辆汽车使用了高通提供的汽车解决方案。
很显然,如今高通在汽车领域的布局又向前迈进了一步。
CES2020期间,除发布SnapdragonRide自动驾驶平台外,高通还推出了全新的车对云服务(Car-to-CloudService),该服务预计在2020年下半年开始提供。
据介绍,由QualcommTechnologies打造的车对云服务支持SoftSKU芯片规格软升级能力,不仅可以帮助汽车客户满足消费者不断变化的需求,还可根据新增性能需求或新特性,让芯片组在外场实现升级、以支持全新功能。
与此同时SoftSKU也支持客户开发通用硬件,从而节省他们面向不同开发项目的专项投入。利用高通车对云SoftSKU,汽车制造商不仅能够为消费者提供各种定制化服务,还可以通过个性化特性打造丰富且具沉浸感的车内体验。
另外高通的车对云服务也支持实现全球蜂窝连接功能,既可用于引导初始化服务,也可以在整个汽车生命周期中提供无线通信连接。
QualcommTechnologies产品管理高级副总裁NakulDuggal表示,结合骁龙汽车4G和5G平台、骁龙数字座舱平台,高通的车对云服务能够帮助汽车制造商和一级供应商满足当代车主的新期待,包括灵活、持续地进行技术升级,以及在整个汽车生命周期中不断探索新功能。
此外,QualcommTechnologies也在CES2020上宣布,表示将继续深化和通用汽车的合作。作为长期合作伙伴,通用汽车将通过与QualcommTechnologies的持续合作来支持数字座舱、车载信息处理和ADAS(先进驾驶辅助系统)。
结语:巨头纷纷入局自动驾驶领域风起云涌
前有华为表示要造激光雷达、毫米波雷达等智能汽车核心传感器,后有Arm牵头成立自动驾驶汽车计算联盟,如今移动芯片巨头高通也发布了全新的自动驾驶平台,在汽车和自动驾驶领域上又迈进一步。
巨头入局有利于自动驾驶汽车更快更好地落地,然而另一方面随着更多硬核玩家拓展业务边界,此次市场上的竞争也必然会变得更加激烈。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
⑺ 实时算力和本地算力差距大吗
实时算力和本地算力一般差距较大。一般来说,显卡矿机的本地算力一直都很稳定,而矿池上显示的实时算力却经常波动。有的时候,这台矿机在矿池的实际算力会高于本地算力,有的时候,这台矿机在矿池的实际算力会低于本地算力。
理论上,矿池其实只需要按照有效share的数量,向每一个矿机(绑定的地址)发放奖励就可以了。不过,实际过程中,矿池是需要给矿机主提供一个数据,来帮助矿工判断矿机是否在正常工作。
因此,矿池需要把有效share的数量按照每一个任务的权重,反推计算出来一个算力值,来供矿机主参考,辨别矿机是否在正常工作。矿池算力其实并不是你本地的算力数据,而是通过你提交的有效share反推出来的一个帮助判断机器是否正常运行的数据指标。
本地算力与实时算力的关系
一般矿池算力会显示成两个数据:
一个是短时间的算力,或者叫瞬时算力(不同矿池会显示5分钟、10分钟、15分钟算力);另一个则是长时间的算力,一般会选择24小时算力。
短时间算力,比如15分钟算力,就是统计15分钟提交的有效share然后按照权重反推出来的平均算力值。而长期算力,则是24小时内提交的有效share然后按照权重反推出来的平均算力值。那么两个数据的关系,则取决于统计时间内有效share提交的数量。
如果矿机的运算效率高,在此统计周期内(比如15分钟内),提交的有效share特别多,则这时候的15分钟算力数据会特别高,甚至比本地算力还要高很多。
(这种情况,可以理解为机器在超负荷运算。例如,机器的能力只有310M水平,却在这15分钟完成了400M水平的运算工作。)正常来说,一个机器当然不可能持续的超负荷工作。
所以我们会看到矿池反应的算力曲线是实时波动的,并且同一地址下的矿机数量越少,算力波动会越明显,若多台矿机一起显示的总算力会平稳些。而矿池显示的24小时平均算力,由于统计周期比较长,所以是一个比较稳定的数据。一般会比本地算力略低一些。
因此,也会出现很多时候,在此统计周期内(比如15分钟内),提交的有效share比较少。那么这个时候的15分钟算力数据就会比较低,低于本地算力。
⑻ 什么是挖矿
挖矿就是利用比特币挖矿机,就是用于赚取比特币。
用户用个人计算机下载软件然后运行特定算法,与远方服务器通讯后可得到相应比特币,是获取比特币的方式之一。
比特币为一种虚拟的货币,比特币挖矿制度为通过计算机硬件为比特币网络开展数学运算的过程,提供服务的矿工可以得到一笔报酬,因为网络报酬依据矿工完成的任务来计算,为此挖矿的竞争十分激烈。
挖矿实际是性能的竞争、装备的竞争,由非常多张显卡组成的挖矿机,哪怕只是HD6770这种中低端显卡,“组团”之后的运算能力还是能够超越大部分用户的单张显卡的。
而且这还不是最可怕的,有些挖矿机是更多这样的显卡阵列组成的,数十乃至过百的显卡一起来,显卡本身也是要钱的,算上硬件价格等各种成本,挖矿存在相当大的支出。
(8)15分钟算力比本地高扩展阅读:
比特币挖矿流程:
1、找到矿池
开始挖矿必须要有一个操作方便、产出稳定的矿池,它的作用就是为各个终端细分数据包,可以通过精密的算法将终端计算好的数据包按照比例,支付相应数量的比特币。
2、下载比特币挖矿器(软件)
其实这种挖矿器也有很多种,大家可以去官方网站下载。
3、设置挖矿软件
GUIMiner是个绿色软件,安装完成后我们可以先设置下语言,以便更方便进一步设置。接下来需要对采矿器设置服务器、用户名、密码、设备等。一般服务器从BTC guild系列里面选一个网络较好的就行,用户名和密码就是我们之前自己设置的。
4、比特币挖矿开始
当我们确认都设定无误后,点“开始挖矿”按钮之后就开始挖比特币了,随之显卡很快就会进入全速运行状态,温度升高、风扇转速提高,你可以通过GPU-Z或显卡驱动来监控状态。
⑼ 技嘉6600xt魔鹰,挖矿超频设置如何才能做到,不那么烧显卡的情况下,达到高算力
技嘉六六六技嘉66666差距模型玩不玩超频设置,如何才能做到不那么烧显卡的情况下达到了高三的,这是因为他数据得到了很好的印证以后,通过它来进行计算的就是一般性的
⑽ zec r9 280x 和 390 哪个算力高
390是290的马甲,比280X多了几百个流处理器和几个光栅,位宽也大得多
280X各个方面都不如390