cuda算力取决于什么
❶ 算力的大小是怎么评估的
您好,您说的应该是某些区块链平台所谓的算力吧,现在这种平台其实他们的算法参差不齐,国内真正的区块链平台实际上是零,这种算力是根据用户的活跃度,以及其他的一些统计率值计算的。
❷ 显卡的算力和张数有关吗
1、SP总数=TPC&GPC数量*每个TPC中SM数量*每个SM中的SP数量;
TPC和GPC是介于整个GPU和流处理器簇之间的硬件单元,用于执行CUDA计算。特斯拉架构硬件将SM组合成TPC(纹理处理集群),其中,TPC包含有纹理硬件支持(特别包含一个纹理缓存)和2个或3个SM,后面会有详细描述。费米架构硬件组则将SM组合为GPC(图形处理器集群),其中,每个GPU包含有一个光栅单元和4个SM。
2、单精度浮点处理能力=SP总数*SP运行频率*每条执行流水线每周期能执行的单精度浮点操作数;
该公式实质上是3部分相乘得到的,分别为计算单元数量、计算单元频率和指令吞吐量。
前两者很好理解,指令吞吐量这里是按照FMA(融合乘法和增加)算的,也就是每个SP,每周期可以有一条FMA指令的吞吐量,并且同时FMA因为同时计算了乘加,所以是两条浮点计算指令。
以及需要说明的是,并不是所有的单精度浮点计算都有这个峰值吞吐量,只有全部为FMA的情况,并且没有其他访存等方面的限制的情况下,并且在不考虑调度效率的情况下,才是这个峰值吞吐量。如果是其他吞吐量低的计算指令,自然达不到这个理论峰值。
3、双精度浮点处理能力=双精度计算单元总数*SP运行频率*每个双精度计算单元每周期能进行的双精度浮点操作数。
目前对于N卡来说,双精度浮点计算的单元是独立于单精度单元之外的,每个SP都有单精度的浮点计算单元,但并不是每个SP都有双精度的浮点单元。对于有双精度单元的SP而言,最大双精度指令吞吐量一样是在实现FMA的时候的每周期2条(指每周期一条双精度的FMA指令的吞吐量,FMA算作两条浮点操作)。
而具备双精度单元的SP数量(或者可用数量)与GPU架构以及产品线定位有关,具体为:
计算能力为1.3的GT200核心,第一次硬件支持双精度浮点计算,双精度峰值为单精度峰值的1/8,该核心目前已经基本退出使用。
GF100/GF110核心,有一半的SP具备双精度浮点单元,但是在geforce产品线中屏蔽了大部分的双精度单元而仅在tesla产品线中全部打开。代表产品有:tesla C2050,2075等,其双精度浮点峰值为单精度浮点峰值的一半;
geforce GTX 480,580,其双精度浮点峰值为单精度浮点峰值的大约1/8左右。
其他计算能力为2.1的Fermi核心,原生设计中双精度单元数量较少,双精度计算峰值为单精度的1/12。
kepler GK110核心,原生的双精度浮点峰值为单精度的1/3。而tesla系列的K20,K20X,K40他们都具备完整的双精度浮点峰值;geforce系列的geforce TITAN,此卡较为特殊,和tesla系列一样具备完整的双精度浮点峰值,geforce GTX780/780Ti,双精度浮点峰值受到屏蔽,具体情况不详,估计为单精度峰值的1/10左右。
其他计算能力为3.0的kepler核心,原生具备较少的双精度计算单元,双精度峰值为单精度峰值的1/24。
计算能力3.5的GK208核心,该卡的双精度效能不明,但是考虑到该核心定位于入门级别,大规模双精度计算无需考虑使用。
所以不同核心的N卡的双精度计算能力有显著区别,不过目前基本上除了geforce TITAN以外,其他所有geforce卡都不具备良好的双精度浮点的吞吐量,而本代的tesla K20/K20X/K40以及上一代的fermi核心的tesla卡是较好的选择。
❸ 显卡的cuda数量与核心频率哪个更重要
摘要 因为速度取决于cuda数量和频率,显存带宽。
❹ 3090和女朋友是什么梗
这个梗是指3090ti显卡,因为这个显卡的性能较强,爱玩游戏的男生基本上都无法拒绝这种显卡,于是女生为了邀请男生来自己家来玩,又担心男生不答应,便用“我家有会发光的3090”来诱惑男生,以此达到目的。
其实这个梗是用一种比较委婉和搞笑的方式邀请朋友或者是喜欢的人到家里来做客,比如,跟男生约会,约完想把男生带回家。

RTX 3090参数
RTX 3090最大带宽为936GB/s,核心频率为1.7GHz, 拥有35.7TFLOPs的。TFLOP指浮点算力,用于衡量芯片的计算能力。与此同时拥有10496个CUDA核心和高达24G显存,显存相比10G的老显卡提升了一倍不止。
这张显卡在运行4K的战地5和使命召唤黑色行动4时,帧率能达到120和104。
❺ 为什么选择CUDA
CUDA比较稳定,opencl最近才开始支持的。当然也取决于你的显卡,只有N卡才有CUDA。
❻ 一张3060的显卡算力61八张是多少
摘要 目前狗狗币是和其他货币一起挖的,不能单独挖狗狗币。挖莱特币附赠狗狗币,两个业务合并了。莱特币挖起来算力低,挖一个给2000doge,但是现在挖都不够电费的。一小时0.2,rx588,如果觉得电费抵不上收益的话,不如挖以太,再兑换狗狗,挖以太坊一天30。
❼ NVIDIA GeForce GT 610M运行CUDA时的计算能力
GT610m实际是GT520m的超频版,入门级显卡,低端。
着色器数量:48Unified
制造工艺:40nm
光栅单元:4
位宽:64bit
容量:2048M
运算能力为:
像素填充率:1.7GPixel/S
纹理填充率:6.8GTexel/S
显存带宽:12.8GB。
希望帮到你。
❽ cuda核心数量有什么用
cuda核心数量越多运算速度就会越快。
同样架构下,运算速度和核心数量等比例递增,Cuda核心里面有运算器,例如一个Float32浮点运算器,1000个核心,1G主频,则FP32的算力为1T Flops,就是这么简单。
新的架构下:
1、Float的运算器可能是 64位的,可以实现双精度计算,在单精度上翻倍。
2、新的Tensor Core运算器支持FP16、INT8、INT4的计算能力,速度等比例翻倍。
3、新的Tensor Core可以支持4*4 个运算在一个时钟周期内完成,性能翻16倍数,Cuda Core和Tensor Core是不同的硬件单元,计算性能累加。

中央处理器(central processing unit,简称CPU)作为计算机系统的运算和控制核心,是信息处理、程序运行的最终执行单元。CPU自产生以来,在逻辑结构、运行效率以及功能外延上取得了巨大发展。
CPU出现于大规模集成电路时代,处理器架构设计的迭代更新以及集成电路工艺的不断提升促使其不断发展完善。
从最初专用于数学计算到广泛应用于通用计算,从4位到8位、16位、32位处理器,最后到64位处理器,从各厂商互不兼容到不同指令集架构规范的出现,CPU 自诞生以来一直在飞速发展。
冯诺依曼体系结构是现代计算机的基础。在该体系结构下,程序和数据统一存储,指令和数据需要从同一存储空间存取。
经由同一总线传输,无法重叠执行。根据冯诺依曼体系,CPU的工作分为以下 5 个阶段:取指令阶段、指令译码阶段、执行指令阶段、访存取数和结果写回。
❾ GPU的浮点运算能力为什么会如此恐怖
它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。 开发人员现在可以使用C语言来为CUDA™架构编写程序,C语言是应用最广泛的一种高级编程语言。所编写出的程序于是就可以在支持CUDA™的处理器上以超高性能运行。 将来还会支持其它语言,包括FORTRAN以及C++。
随着显卡的发展,GPU越来越强大,而且GPU为显示图像做了优化。在计算上已经超越了通用的CPU。如此强大的芯片如果只是作为显卡就太浪费了,因此NVidia推出CUDA,让显卡可以用于图像计算以外的目的。
目前只有G80、G92、G94和GT200平台的NVidia显卡才能使用CUDA,工具集的核心是一个C语言编译器。G80中拥有128个单独的ALU,因此非常适合并行计算,而且数值计算的速度远远优于CPU。
CUDA的SDK中的编译器和开发平台支持Windows、Linux系统,可以与Visual Studio2005集成在一起。
目前这项技术处在起步阶段,仅支持32位系统,编译器不支持双精度数据等问题要在晚些时候解决。Geforce8CUDA(Compute Unified Device Architecture)是一个新的基础架构,这个架构可以使用GPU来解决商业、工业以及科学方面的复杂计算问题。它是一个完整的GPGPU解决方案,提供了硬件的直接访问接口,而不必像传统方式一样必须依赖图形API接口来实现GPU的访问。
在架构上采用了一种全新的计算体系结构来使用GPU提供的硬件资源,从而给大规模的数据计算应用提供了一种比CPU更加强大的计算能力。CUDA采用C语言作为编程语言提供大量的高性能计算指令开发能力,使开发者能够在GPU的强大计算能力的基础上建立起一种效率更高的密集数据计算解决方案。
❿ 如何选择显卡做CUDA通用计算
显卡因为其架构,其计算能力其实远远强于CPU,针对显卡开发的一些软件或者特性可以调用显卡的计算能力,从而大大提升计算的效率。
主要用于科学计算、视频渲染、视频处理等领域。
我们日常使用电脑较少使用到显卡的通用计算能力,影响很小。
