当前位置:首页 » 算力简介 » 自动驾驶去中心化

自动驾驶去中心化

发布时间: 2022-05-09 02:59:19

A. 自动驾驶应该取消吗

自动驾驶总有一天会取代手动驾驶,这是大趋势。我们不可能因为发生一次意外就取消自动驾驶这一功能。人类科学是朝着进步去的,有瑕疵就改进,技术是慢慢熟练的。即使现在无法做到自动驾驶安全出行,但我相信将来科学家一定能攻克这一难题。

如果遇到问题就放弃现有的技术,人类还怎么进步?科学还怎么去探索?每一项发明,从问世到家喻户晓,中间都会经历一段磕磕绊绊的历程。每一件新发明,都是从生疏,不断改进,到最后完善的过程。遇到问题,就该去解决问题。放弃自动驾驶,是愚蠢的做法。

此前涉及汽车自动驾驶的一起安全事故轰动网络。8月14日晚间,“美一好”发布讣告称创始人林文钦(昵称“萌剑客”)驾驶蔚来 ES8 汽车启用自动驾驶功能(NOP 领航状态)后,在沈海高速涵江段发生交通事故,不幸逝世,终年 31 岁。

针对这起事故,蔚来品牌部人士回复称,Navigate on Pilot(NOP)领航辅助不是自动驾驶,后续有调查结果会向外界同步信息。关于事故的具体原因,交通部门还在调查中。

自动驾驶安全引监管重视

8月12日,工信部印发《关于加强智能网联汽车生产企业及产品准入管理的意见》。《意见》要求,企业实施在线升级活动前,应当确保汽车产品符合国家法律法规、技术标准及技术规范等相关要求并向工业和信息化部备案;

涉及安全、节能、环保、防盗等技术参数变更的应提前向工业和信息化部申报,保证汽车产品生产一致性。未经审批,不得通过在线等软件升级方式新增或更新汽车自动驾驶功能。

毫无疑问,随着智能网联汽车的普及,自动驾驶的安全问题将成为监管的重中之重,车企在进行技术升级的同时,也将始终将安全问题摆在首位。

B. 自动驾驶以后会实现吗

目前国内普遍采用的是美国汽车工程师协会SAE制订的无人驾驶等级,分六个阶段,分别是:L0没有自动化,L1驾驶辅助,L2部分自动驾驶,L3有条件自动驾驶,L4高度自动驾驶,L5完全自动驾驶。前三个是人类驾驶,后三个为自动驾驶。

国内大多数车企如吉利、长安则已经实现了L2级别的自动驾驶,部分车企业已经宣称达到L2.5级别自动驾驶,如小鹏G3。

那么当前已经量产的汽车到了哪一个水平呢?答案是L3,代表车型是第四代奥迪A8。

国内今年即将上市小鹏P7号称也能达到L3自动驾驶水平。

就目前的各项技术发展趋势判断,最早能够实现量产的L4自动驾驶车型预计会到2022年左右实现,而L5级别的则会在2025年之后。

C. 自动驾驶“芯”战争

今年,新冠疫情的爆发、经济的下滑、国际政治环境的恶化,让汽车产业充满了巨大的不确定。多家咨询机构预计,今年全球汽车销量将面临10%-20%的下滑。

然而,在不确定中,汽车行业对未来的方向又十分笃定。自动驾驶集中出现了几则大新闻——

6月23日,刚刚与宝马在自动驾驶领域宣布和平分手的奔驰,宣布与芯片供应商英伟达达成合作,将使用后者的Orin芯片,开发下一代车载计算系统,为奔驰量产车型2024年将全面搭载的L2-L3级自动驾驶功能,以及最高可达L4级的自动泊车功能提供算力支持。

6月25日,沃尔沃汽车集团宣布,沃尔沃将与谷歌旗下自动驾驶公司Waymo达成战略合作伙伴关系,在一个全新的电动汽车平台上,进行L4级自动驾驶技术的合作,探索自动驾驶网约车等商业场景。

6月26日,亚马逊正式收购美国自动驾驶公司Zoox,亚马逊为此付出超过12亿美元。

6月27日,滴滴自动驾驶网约车载人示范运营在上海正式启动,央视对其全过程进行了直播。从这一天开始,滴滴在上海嘉定的自动驾驶测试车将面向公众开放,滴滴在APP中上线了“未来出行”页面,供公众申请自动驾驶网约车试乘。

一时间,大公司近乎开启了一场自动驾驶军备竞赛。毫无疑问,参与其中的企业都意识到,未来的汽车,将是跑在轮子上的超级计算机。高性能的计算芯片,在这场军备竞赛中至关重要的地位,愈发凸显。

一、奔驰另结新欢,只是因为它?

6月23日,在与宝马的自动驾驶合作宣告暂停后4天,奔驰向芯片供应商英伟达投怀送抱,双方达成合作,为奔驰将在2024年量产的自动驾驶车型开发计算平台。

在几天前的公告中,双方还表示,“鉴于建立共享技术平台所需的费用,以及当前的商业和经济状况,现在并不是成功实施合作的一个合适的时机。”太烧钱,看起来是让双方决定暂停技术合作的关键原因。

不过,奔驰随后与英伟达光速结伴的举动,倒是指向了钱以外的因素。通常来说,车企与车企之间的合作,并不会对车企与供应商的合作产生影响,但奔驰与宝马之间的合作不同。在与奔驰达成合作之前,宝马已经与全球最大的ADAS系统供应商Mobileye组建了一个自动驾驶同盟,基于其EyeQ系列芯片研发自动驾驶。

与宝马的合作意味着,奔驰要选用Mobileye的芯片来构建关键的自动驾驶计算单元。而这或许是双方分歧中尤为重要的那一个。国外咨询机构Guidehouse首席分析师SamAbuelsamid称,“我怀疑这两家汽车制造商无法就使用的平台达成共识,现在,与英特尔/Mobileye的产品相比,Orin看起来是更强大的解决方案。”

从公开的信息来看,Sam的分析不无道理。Mobileye规划的下一代自动驾驶芯片EyeQ5,其算力为24TOPS(每秒运算24万亿次),而英伟达去年底发布的Orin,算力则高达200TOPS。此外,Mobileye过去在与车企的合作中一贯表现强势(尽管承诺EyeQ5将会更加开放),其提供的功能模块对主机厂常常是“黑箱”;而英伟达自动驾驶构建的DriveAGX软件平台一开始就走了一条开放的道路,可以支持车厂在其计算平台上自主进行算法开发。

其实在此之前,奔驰探索研发自动驾驶网约车时,因为该技术对芯片算力的高要求,奔驰就选用了来自英伟达的DrivePEGASUS车载电脑。6月23日官宣的信息,意味着奔驰在自动驾驶时代的芯片选择上,全面倒向英伟达,将双方的合作扩展到奔驰的量产车型中。

而与沃尔沃达成自动驾驶战略合作的Waymo,则是依托谷歌在AI领域的技术实力,使用自研的TPU。虽然Waymo用于车辆端的TPU算力并未公布,但据Waymo官方的透露,在使用TPU后,其自动驾驶系统的性能提升了15倍。

芯片在自动驾驶中的地位,可以用“隐形冠军”来形容。从车辆外观你看不见它的存在,但一台自动驾驶汽车能够顺利运行,它绝对是头号功臣。

二、自动驾驶竞赛,亦是一场芯片竞赛

无论是奔驰弃宝马牵手英伟达,还是沃尔沃与Waymo高达战略级别的联盟,又或者是滴滴的自动驾驶网约车发车,上周集中发生的大新闻说明,汽车公司与科技公司都将自动驾驶放在了至关重要的位置:从近期看,自动驾驶功能是汽车产品力的重要组成部分;从长远看,L4级自动驾驶投入大规模应用后,可能会彻底改变汽车行业的商业模式。

推动这一切变化的基础,是一枚小小的芯片。为了在自动驾驶能力上获取竞争优势,参与这场竞赛的企业或独立研发,或合纵连横,只为寻得一块高性能的自动驾驶芯片。行业内有个非常典型的例子:特斯拉。

作为智能电动汽车的领头羊,特斯拉和当前市场上的两家主流自动驾驶芯片厂商都有过合作经历。但是由于Mobileye的强势和封闭,英伟达降不下来的功耗和高昂的开发成本,合作都未能长远。特斯拉为了发挥软硬件一体在自动驾驶中的优势,率先在车企中独立研发了自动驾驶计算平台的FSD,其算力达到144TOPS。FSD对自动驾驶的算力支持主要来自两块AI芯片,其单芯片算力约72TOPS。

迄今为止,特斯拉的FSD仍然保持着量产车自动驾驶算力纪录。而特斯拉认为,FSD足以为其将推出的完全自动驾驶(FullSelf-Driving)功能提供支持。

毫无疑问,自动驾驶的竞赛,同样也是芯片的竞赛。整个汽车行业向自动驾驶的重视乃至全面转向,将创造巨大的自动驾驶芯片需求。如果哪家企业在自动驾驶芯片市场占据了可观的份额,那么对应的或许是千亿美元市值的想象空间。

当前,在巨大市场的吸引下,自动驾驶芯片领域已经出现了或新或老的四种势力:

第一类,是Mobileye等老牌的ADAS芯片/自动驾驶芯片供应商。

这一类企业,是汽车行业开始研发高级辅助驾驶系统(ADAS)时,就参与市场竞争的企业。这些企业面向自动驾驶的竞争策略是,通过在ADAS市场积累的技术以及客户资源,不断向上升级其既有产品,实现向自动驾驶的平滑过渡,典型的就是Mobileye对EyeQ系列芯片的不断迭代。

除了Mobileye,瑞萨、恩智浦、德州仪器、电装等老牌汽车半导体供应商,都有各自的自动驾驶芯片规划。

第二类,是看到自动驾驶芯片机遇,跨领域而来的半导体巨头。

比如上文提到的英伟达,此前其主力业务为属于消费电子的GPU,以及数据中心等,但英伟达洞察到自动驾驶对高性能芯片的需求后,迅速进入了这一市场,目前已经推出DrivePX、DriveAGXXavier、DriveOrin三代产品,并获得了不少车企的订单。

主力业务为通信,制霸基带芯片、手机SoC的高通,则在尝试收购恩智浦获得自动驾驶竞赛入场券的努力告吹后,于今年CES上推出了SnapdragonRide自动驾驶计算平台。根据高通官方的信息,这一基于高通芯片打造的计算平台最高算力可达700TOPS,可支持L4--L5级自动驾驶。

而在高通之前,主力业务同样为通信以及消费电子的华为,就已经发布了自动驾驶计算平台MDC600。这一计算平台由8颗昇腾310AI芯片整合而成,最高算力达到352TOPS。

第三类,是在新机遇下诞生的自动驾驶芯片初创企业。

在国内以地平线为典型代表。

本月,搭载地平线车规级AI芯片征程2的长安UNIT正式上市。借此,地平线实现了国产自动驾驶芯片的率先“上车”。另一方面,算力为4TOPS的征程2,也是中国首款车规级AI芯片。

而在今年晚些时候,地平线还将发布算力达到96TOPS、支持16路高清摄像头信号的征程5,这款芯片算力超越特斯拉的FSD,将面向高等级自动驾驶。

最后一类,则是特斯拉为代表的车企自研派。

由于车企基本没有半导体的制造经验,因此他们通常会向供应商采购芯片。而总部位于硅谷的特斯拉,则有着不同的基因、为了最大程度发挥软硬件一体化的优势,特斯拉依托硅谷的半导体人才资源,自行研发了FSD。

目前来看,车企自研自动驾驶芯片的模式难以复制,特斯拉很可能会是这条路径的独苗。

在国内,无论是传统车企还是造车新势力,目前都无自研自动驾驶芯片的计划。作为全球最大的单一汽车市场,中国顺理成章地成为自动驾驶芯片供应商的兵家必争之地。

三、中国能否催生自动驾驶芯片巨头?

如此多的参赛者,让自动驾驶芯片这个仍待开发的蓝海市场,看上去已经呈现出红海的竞争态势。近两年中美围绕芯片发生的一系列事件,让人们对中国芯片产业的的弱势心有戚戚。从年初国家11部位联合发布的《智能汽车创新发展战略》到“新基建”,都将车载芯片的研发作为战略重点,中国汽车行业都希望能有更多本土芯片企业强势崛起。

如今,在汽车行业进行智能化转型、创造大量自动驾驶芯片需求的态势下,中国芯片能否迎头赶上,培育出一家能够在市场上立足的中国本土自动驾驶芯片供应商?答案并不确定,但6月地平线征程2芯片搭载于长安UNIT的“上车”,至少已经开了一个好头。据了解,在ADAS芯片领域,征程2芯片所展现的感知计算性能已经在多个指标上超越了行业龙头Mobileye的芯片,特别是针对中国的特殊路况,并已经成功签下了来自中国各大汽车集团的十多款定点车型。

地平线创始人余凯在一次媒体采访中如此总结地平线的差异化优势:“在全球范围内,能提供这样功耗和算力水平、且开放赋能的芯片企业,我们是独一家。英伟达在辅助驾驶、智能座舱多模交互等方面完全没有产品,芯片功耗也比较高。我们的功耗和算力可以跟Mobileye正面PK,但Mobileye不开放,而我们能满足车企自主开发的需求”,并表示未来有信心拿到全球1/3的市场。

事实上,当自动驾驶潮流席卷而来,如地平线这样率先瞄准车载AI芯片市场,并已通过前装量产得到市场验证的中国芯片企业确实迎来了最好的时代。中国作为全球最大的汽车市场,再加上自动驾驶技术开发的一些典型特征与需求,为本土自动驾驶芯片企业创造了难得的机遇。

首先,自动驾驶技术有强地域性。

因为世界各地自然条件、交通场景、交通规则乃至是文化传统的差异,所以在一国一地开发的自动驾驶技术很难复用到其他地区。这种影响会直接传导到硬件层面——因为与具体数据、算法高度整合,自动驾驶芯片很难不受地域特征的支配。

在此情况下,一家拥有强大本土研发团队、对中国的数据与场景更加了解的企业,有更大的概率研发出更适合中国场景,且算法与硬件结合更加高效的自动驾驶芯片。

其次,当汽车被越来越多的人们看作电子产品时,人们对其功能迭代的频率与速度,都有了更高的期望,自动驾驶功能也不例外。

此前,主要由国外供应商占据市场主流的ADAS,在功能搭载上车后便永不更新。但当汽车变得智能化,车辆其实可以通过不断地OTA,实现功能的升级,甚至实现从ADAS到半自动驾驶、自动驾驶的跨越。比如特斯拉通过升级实现Model3的NOA(高速公路自动驾驶辅助)功能,就是典型的例子。

当然,特斯拉仅此一家。对于更多车企来说,要完成这样的任务,需要他们与自动驾驶芯片供应商保持高频、紧密的联系,由双方进行联合研发。

这一变化,更加考验供应商对车企需求的快速响应。换句话说,这需要自动驾驶芯片供应商建立一个成规模的现场支持团队,做到对车企需求的快速反馈、支援。显然,一个本土的、没有文化语言隔阂的团队,能够更好地胜任。

最后,车企在自动驾驶研发上有更多的功能差异化诉求。

当ADAS功能在汽车产品已经高度标准化或者雷同时,它很难再成为吸引消费者的亮点。对此,有远见、有能力的车企,纷纷选择基于场景去开发新的、有差异的自动驾驶功能(比如宝马的自动循迹倒车),从而获得新的竞争力。

这一趋势对自动驾驶芯片供应商提出的要求是,不能再单纯采用过往的“黑箱”模式,直接给车企一个完整但“知其然不知其所以然”的功能模块,而是要赋予车企进行二次开发、深度开发的权利。或者说,这要求自动驾驶芯片供应商转变思路,去赋能车企的自动驾驶开发。

具体而言,这要求芯片供应商转变思路,在战略上开放,为车企的自动驾驶开发赋能;在产品策略上则要为车企分忧解难,通过打造工具链,降低车企基于自动驾驶芯片进行差异化功能开发的难度与成本。

从上述三点特征来看,自动驾驶潮流的到来,将更加考验自动驾驶供应商的服务意识与快速开发能力。而国外芯片供应商,因为历史、成本、政治等因素,很少在国内搭建起成规模的研发与现场支持团队,过往的开放程度与开发速度也难以满足新的需求。而这,正是中国本土自动驾驶芯片供应商崛起的突破口。

最终,从形势上来说,国外芯片巨头产业先天更加成熟、进入汽车行业更早、各自拥有不同的壁垒。对中国本土自动驾驶芯片供应商来说,与他们同台竞技并最终突出重围,并不容易。

但如果本土自动驾驶芯片供应商在芯片算力、功耗等指标上的表现能迎头赶上,并发挥自己的核心优势,抓住车企智能化转型的时代机遇,那么,中国诞生一个本土自动驾驶芯片巨头或将是大概率事件。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

D. 自动驾驶的2019:驶出黑暗区

除此之外,激光雷达鼻祖Velodyne正式决定裁掉中国办公室,包括直销团队和部分技术支持,并且将其销售模式,从直销模式恢复到刚进入中国的“代理模式”,这意味着,Velodyne基本不在扩大中国市场。

资本是理性而追求效率的,历史上已经有无数的例子告诉我们,当市场出现了合并这样的重大变革,很快,烧钱铺量的行业乱象就会停止。

毕竟,资本已经过了之前那段只以流量论英雄的时代,接下来,盈利能力才是决定融资能力的根本。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

E. 全球自动驾驶技术的落地竞争加剧,中国已走到哪一步

随着信息技术的不断发展,国家支持自动驾驶政策的密集出台,关键技术的日益成熟,以及消费者对自动驾驶技术的开放态度,2020年自动驾驶技术将迎来爆发!”宋新雨说,根据人对车辆控制的程度不同,美国汽车工程师协会SAE界定了五级自动驾驶方案:L3级之前环境的观察者都是人,进入L3则意味着道路环境的观察和驾驶操作都由系统来完成,人只需要对所有的系统请求进行应答。



当然,在这些所谓将实现L3级自动驾驶的车型落地之前,所有的宣传都还不值得拿来作为佐证,并且L3级自动驾驶距离真正的自动驾驶(L4、L5级)还有很大差距。事实上,目前在自动驾驶领域拼的最凶的并非只有整车厂商。
在海外,目前在自动驾驶方面走在最前的是谷歌、Uber和Lyft等科技领域巨头,而在国内,网络最先发起了Apollo(阿波罗)计划,计划打造开放的自动驾驶平台,可以整合到各个品牌的硬件平台中;随后另外两大互联网巨头阿里巴巴和腾讯也相继加入了自动驾驶的竞争行列。
谷歌旗下自动驾驶公司Waymo以及Uber的自动驾驶测试场目前均已在美国道路上开始测试。欧洲委员会也曾表示,希望在2030年步入以完全自动驾驶为标准的社会,“使欧洲在完全自动驾驶领域处于世界领先地位”。
而中国并没有落后,目前中国已经开放了上海国家智能网联汽车示范区、辽宁盘锦北汽无人驾驶体验项目、京冀智能汽车与智慧交通产业创新示范区、浙江5G车联网应用示范区、重庆智能汽车与智慧交通应用示范区、武汉智能网联汽车示范区、吉林智能汽车与智慧交通应用示范基地、深圳无人驾驶示范区等会多个无人驾驶测试场地,包括网络、腾讯、上汽、宝马、蔚来、德尔福等在内的多家国内外主机厂及零部件供应商均已经在此进行无人驾驶道路测试。
在无人驾驶技术真正陆地之前,通过公开资料谈论各个品牌的无人驾驶技术先进层度为时尚早。且无人驾驶很多零部件供应商是开放供应的,各个品牌最终落地产品的靠谱程度取决于整合能力和研发理念。
由于发展较晚,中国汽车工业在技术层面长期处于弱势的地位。自动驾驶来临,说中国也能够在整个领域超越欧美企业显然并不现实。不过后起的中国有着自己的优势。比如在网络时代,中国在互联网技术方面相比西方尚有一定差距,但在应用层面中国已经取得了巨大的优势,例如互联网购物、外卖点餐、在线购票等等,欧美长期形成的线下优势严重限制了互联网线上的发展,而后起的中国更容易形成优势。
同样,在自动驾驶方面,中国活跃的发展氛围相比海外更容易实现落地。例如除了BAT三巨头,京东也在发展自己的自动驾驶项目。不过与载人的完全自动驾驶不同,京东致力于打造无人驾驶的物流体系,通过与上汽大通、东风等合作,京东目前测试的无人驾驶车辆包括了长途无人驾驶卡车,各种级别的市内无人驾驶物流车,到微型小区快递配送车。物流车相比传统意义上载人的自动驾驶汽车,行驶的路段会相对单一,每台车可以只导入相应路段的高精地图,而不需要在线实时大区域高精地图配合,路况复杂程度也稍小一些,而这些车大量投入运营积累的数据对以后无人驾驶有巨大的帮助。
说到无人驾驶大家总觉得还剩遥远的话题,其实不然。除了可预期落地的京东无人驾驶物流体系,当汽车实现L3级自动驾驶,可自动驶出/驶入停车场时,当下正火的共享汽车就可以通过固定的停车场实现随时随地叫车,随时随地还车,而L3级自动驾驶已经在陆续实现。共享经济是中国目前领跑世界的项目,这同样是中国的优势。无人驾驶将会以我们意想不到的方式以远超我们预期的速度进入我们的生活。

F. 小马智行获批在京开启自动驾驶无人化应用 北京首批企业

易车讯 4月28日,小马智行取得北京市智能网联汽车政策先行区首批“无人化示范应用道路测试”通知书,获准向公众提供“主驾位无安全员、副驾有安全员”的自动驾驶出行服务(Robotaxi)。北京成为国内首个开启乘用车无人化运营试点的城市,也为自动驾驶无人化测试后续发展提供政策创新及支持。

小马智行已在北京、广州等多个城市开启主驾“去安全员”的无人化测试,逐步扩大测试范围、时段及车辆规模。其中,小马智行已在广州向特邀用户开放体验主驾位无人的Robotaxi,目前已完成近千次行程订单,目的在于收集乘坐反馈,从而快速反哺技术研发和服务升级。

截至2022年4月,小马智行在全国已累计完成20万公里自动驾驶无人化测试里程,对无人化场景进行了多重技术验证及迭代,提升在系统冗余设计、远程辅助平台研发、极端场景处理应对机制、车队运营管理等环节的能力。

G. 自动驾驶芯片市场火爆,科技巨头抢滩,中国企业能否一战

[汽车之家 新鲜技术解读]? 自动驾驶系统,最关键的部件是什么呢?是传感器?是控制软件?还是处理芯片呢?我个人认为在目前这个阶段来说,处理芯片是一个最关键的部件,它的性能直接影响自动驾驶系统的好坏。过去,顶尖的芯片技术一直是国外企业垄断的,但随着中国芯片企业近年的快速追赶,情况已经有所改观。今天我们就来聊聊中国自动驾驶芯片究竟处于一个怎样的水平?
● 自动驾驶芯片是干什么用的?
虽然目前L3级别有条件自动驾驶车辆在中国尚未落地,但从一些带有高阶L2驾驶辅助系统的车辆上我们可以发现,这些车辆都带有数量不少的传感器用以检测车辆周围的障碍物,从而为控制系统决策提供数据支持。这些传感器包括毫米波雷达、超声波雷达、摄像头等。这些传感器每秒钟会产生数GB(1GB=1024MB=10242KB)的数据,自动驾驶芯片需要流畅地处理这些数据才能保证系统及时作出正确的决策,从而确保车辆的行驶安全。
可能大家对每秒数GB的数据没有概念,这里举一个生活中的例子。普通的USB3.0接口U盘,其读取速度峰值接近200MB/s,要从这个U盘中读取1GB的文件大约需要5秒左右的时间,足见每秒数GB的数据量是相当大的。
自动驾驶系统除了需要解决大流量数据传输问题,还需要解决的就是如何能快速处理这些海量数据,而强大的自动驾驶芯片正是那把正确的钥匙。
● 国外的自动驾驶芯片处在怎样的水平?
虽然本文主要是讲中国自动驾驶芯片的,但知己知彼,百战百胜,在审视本土状况之前,我们还是先要来简单了解国外的情况。国外自动驾驶芯片真正能够大规模进入量产车市场的无非三家,英伟达、Mobileye(现已被英特尔收购)、特斯拉。
其中,走实用路线的Mobileye目前市场占有率在70%以上,市场上的产品主要是应用于L2驾驶辅助系统的EyeQ3芯片(算力0.256TOPS,“TOPS”是每秒万亿次运算的意思,详细介绍请看这篇文章相关介绍,本文标注的算力如无特别说明均指的是8位整数计算能力)以及具备L3级别自动驾驶能力的EyeQ4芯片(算力2.5TOPS)。像是小鹏G3、蔚来ES6/ES8、广汽新能源Aion LX就采用了EyeQ4芯片作为其驾驶辅助系统的核心。
相较于英伟达上代自动驾驶平台旗舰之作DRIVE PX Pegasus 320TOPS的算力,新的DRIVE AGX Orin平台的旗舰配置实现了成倍的性能增长。此外,DRIVE AGX Orin平台的扩展柔性化程度相比以往平台进一步提升,能够通过硬件配置的增减,满足从一般驾驶辅助到L5级别完全自动驾驶等不同级别车辆的需求。
特斯拉Autopilot 1.0系统采用的是1颗英伟达Tegra3芯片+1颗Mobileye EyeQ3芯片;Autopilot 2.0系统采用的是1颗英伟达Tegra Parker芯片+1颗Pascal架构GPU芯片;Autopilot 2.5系统采用的是2颗英伟达Tegra Parker芯片+1颗Pascal架构GPU芯片。
已经搭载在最新下线特斯拉车型上的自研FSD芯片,单颗芯片算力为72TOPS,Full Self-Driving Computer集成有两颗独立工作的FSD芯片,一颗“挂了”,另外一颗马上“顶上”,提升了整套系统的安全性和稳定性。
当然了,除了上面三家锋芒毕露的企业,还有不少企业在垂涎自动驾驶芯片这块蛋糕,其中包括高通、赛灵思、恩智浦等,但这些企业真正走向量产车的自动驾驶芯片还不成规模,限于篇幅,这里就不作介绍了。
● 迅速崛起的中国自动驾驶芯片企业
好了,看完国外的情况,我们目光回到国内。自动驾驶芯片市场火爆,国外科技巨头抢滩登陆,中国企业究竟实力怎么样呢?下面我们一起来看看。
◆ 寒武纪
中科寒武纪科技股份有限公司(下称“寒武纪”)的前身是中国科学院计算技术研究所下,由陈云霁和陈天石两兄弟领导的一个课题组。该课题组在2008年开始研究神经网络算法和芯片,并在2012年开始陆续发表研究成果。
2016年,上述课题组提出的深度学习处理器指令集DianNaoYu被ISCA2016所接受,实验表明搭载该指令集的芯片相较于传统执行X86指令集的芯片,在神经网络计算方面有两个数量级的性能优势。随着课题组的研究成果趋于成熟,中科寒武纪科技股份有限公司正式成立,并着手将其芯片和指令集向商业领域转化。也是在2016年,寒武纪发布了首款商用深度学习处理器寒武纪1A。
聊完这家公司的身世,下面我们来看看它的产品。目前寒武纪有两款最新的人工智能芯片IP授权,分别是Cambricon-1M和Cambricon-1H。性能指标最强的Cambricon-1M-4K在1GHz时钟频率下拥有8TOPS的算力;性能指标最弱的Cambricon-1H8mini在1GHz时钟频率下拥有0.5TOPS的算力。所有型号的详细算力参数可以参看下表。
Cambricon-1M和Cambricon-1H被定义为终端智能处理器IP。我们在手机或者汽车这些终端上出现的人脸识别、指纹识别、障碍物识别、路标识别等应用都能通过在芯片中集成上述处理器IP实现加速。
上面提到的“边缘”一词来自于“边缘计算”。 边缘计算是指在靠近智能设备(终端)或数据源头(云端)的一端,提供网络、存储、计算、应用等能力,达到更快的网络服务响应,更安全的本地数据传输。边缘计算可以满足系统在实时业务、智能应用、安全隐私保护等方面的要求,为用户提供本地的智能服务。思元220在边缘计算中扮演着提高数据安全、降低处理延时以及优化带宽利用的角色。
目前寒武纪高算力芯片产品被定义为智能加速卡,可用于服务器中加速人工智能运算。谷歌的AlphaGo人工智能机器人打败韩国世界围棋冠军李世石的新闻相信各位有所耳闻,AlphaGo人工智能机器人的背后其实是谷歌自研的TPU芯片。寒武纪的高算力芯片产品的特性和应用也与谷歌TPU类似,当然它们之间也可以算是竞争对手了。
所不同的是思元270-S4采用的是被动散热设计,最大热设计功耗为70W,定位为高能效比人工智能推理设计的数据中心加速卡。这也意味着该卡会有“功耗墙”设定,即当加速卡功耗达到阈值上限时会降低算力以保证较低的功耗和发热。
思元270-F4相当于是“满血版” 思元270-S4,最大热设计功耗150W,采用涡轮风扇进行主动散热。良好的散热和充足的供电使得思元270-F4能够发挥出思元270芯片的全部性能。该卡定位是为桌面环境提供数据中心级人工智能计算力,简而言之就是为台式机配的高性能人工智能加速卡。
虽然思元270在制造工艺上只采用了台积电的16nm工艺,但整体能耗比还是做得比较不错的。虽然单卡算力不及最新的英伟达旗舰计算卡,但5张思元270-S4/思元270-F4并行的话,峰值算力也能达到英伟达A100的水平。只是英伟达A100更先进的工艺应该在能耗比上面会有一定的优势。
其中思元100-C搭载了视频和图像解码单元,采用被动散热方式,最大热设计功耗为110W;思元100-D不搭载视频和图像解码单元,采用被动散热方式,最大热设计功耗为75W。目前思元100系列产品已经于2019年在滴滴云和金山云上得到应用。其中滴滴云采用思元100板卡加速弹性推理服务,该服务用于深度学习推理任务;而金山云则采用思元100板卡加速语音、图像、视频等人工智能应用。
前面讲的尽是服务器级的计算卡,这是不是偏离了我们应该聊的自动驾驶芯片话题呢?其实不然。前面也提到了,寒武纪目前是一家专注于人工智能芯片开发的企业,自动驾驶领域确实涉足不深,但通过和其他国内友商的联合还是有一些建树的。
WiseADCU CN1自动驾驶运算域控制器提供了L3或以上级别自动驾驶系统所需的算力以及传感器连接数量需求,实现了仿真、模型、系统、架构、编码、加速、算法七个关键控制点的自主可控。
实际上威盛集团由于处理器产品性能竞争力弱,早就退出了主流X86处理器市场的竞争,市场中就剩下英特尔和AMD在角力。兆芯成立后,吃透了威盛的X86技术,并在威盛当时最新的处理器架构基础上进行全面的改进和优化,先后推出了ZX-A、ZX-C以及ZX-C+等处理器产品。
6月2日,科创板上市委发布2020年第33次审议会议结果公告,寒武纪上市获得通过,从受理到审批通过,寒武纪只用了68天,刷新了科创板审核速度。寒武纪上市后成为A股中唯一一家人工智能芯片公司,该领域的市场空间在2022年有望超过500亿美元,发展潜力巨大。打通了A股融资渠道的寒武纪究竟能否凭借其独特的技术优势进一步发展壮大呢?这谁都说不准,但可以确定的是,寒武纪的成功上市让很多投身于该领域的公司赢得了信心,看到了希望,中国人工智能芯片时代或将由此开启。
◆ 地平线机器人
好了,聊完寒武纪,我们来聊聊另外一家人工智能芯片企业——地平线机器人技术研发有限公司(下简称“地平线”)。地平线是由前网络深度学习研究院常务副院长余凯于2015年创立的,专注于自动驾驶与人工智能芯片的一家公司。余凯也是网络自动驾驶的发起人。
余凯建立的地平线,一直以来坚持的是软件和硬件相结合的方向。他认为,算法、芯片和云计算将构成自动驾驶的三个核心支点。相比起前面介绍的寒武纪注重打造高性能硬件芯片,地平线的商业模式是把以“算法+芯片”为核心的嵌入式人工智能解决方案,提供给下游厂商。打个比方比较好理解,如果说寒武纪卖的是处理器芯片,那么地平线卖的就是安装了操作系统的整机。产品方面,相较寒武纪从终端到云端的芯片产品布局,地平线虽然自研芯片,但更偏重的是以产品功能来划分产品线。
硬件上,征程二代芯片内部集成了两个Cortex A53核心、两个自研的BPU(Brain Processing Unit,可用于加速人工智能算法)核心、DDR4内存控制器以及输入输出控制器,算力达到4TOPS,典型功耗为2W,这比起目前主流的Mobileye EyeQ4芯片的算力和能耗比都更优秀。
这些智能音箱有较强的自然语义识别功能,能够识别人们发出的语音命令,结合物联网技术,人们通过简单的语音命令除了能够让音箱播放在线音频资源外,还能够控制各种家电,如开关、灯泡、风扇、空调等。这就是AIoT的一个最简单的应用例子。
从硬件方面看,旭日二代芯片内部集成了两个ARM Cortex A53核心、两个自研的BPU核心、DDR4内存控制器以及输入输出控制器,算力达到4TOPS,典型功耗为2W。从参数上看,旭日二代和征程二代好像没什么差别,实际上征程二代可以看做是旭日二代的车规版,它满足AEC-Q100标准,在工作温度、电磁辐射等标准上会更高一些。虽然征程二代和旭日二代均采用台积电28nm工艺制造,但旭日二代芯片尺寸为14x14mm,比征程二代芯片17x17mm的尺寸更小,更有利于内嵌到AIoT设备当中。
和寒武纪一样,地平线同样拥有自研的人工智能加速芯片技术。所不同的是,地平线更注重软件和硬件的整合,从而为下游厂商提供成熟的解决方案。在资本市场,地平线同样受到追捧,其投资者众多,其中包括了世界半导体行业巨头英特尔和SK海力士以及国内的一线汽车集团等。未来地平线是否会和寒武纪一样登录科创板目前还不得而知,但CEO余凯对于在科创板上市是持积极态度的。我个人是支持有更多像地平线这样的企业登录科创板,更充分的竞争可以避免垄断同时促进该领域的加速发展。
◆ 西井科技
西井科技创办于2015年,它起初是一家做类脑芯片的厂商。所谓的类脑芯片简单来说就是以人脑的工作方式设计制造出来的芯片。目前大行其道的冯?诺依曼结构处理器芯片,其计算模块和存储单元是分离的,芯片工作的过程中需要通过数据总线来连接计算模块和存储单元,数据传输上的开销太大从而限制着这类芯片的工作效率和能耗比的提升。
类脑芯片模仿的是大脑神经元的工作形式,大脑的处理单元是神经元,内存就是突触。神经元和突触是物理相连的,所以每个神经元计算都是本地的,而从全局来看神经元们是分布式在工作。类脑芯片由于具有本地计算和分布式工作的特点,所以在工作效率和能耗上相比冯?诺依曼结构处理器芯片更有优势。
虽然这种类脑芯片看着和普通的处理器芯片在外观上没有什么不同,但其实内部运作原理与传统的处理器芯片有着本质的区别。国内除了西井科技开发出了类脑芯片,像是清华开发的天机(TianJic)芯片和浙大开发的达尔文(DARWIN)芯片都是类脑芯片。所不同的是,西井科技的DeepSouth芯片是全球首块可商用5000万类脑“神经元”芯片。
西井科技这艘大船拿着投资人动辄过亿的投资款,肯定是要追求盈利的。不管公司的技术有多超前,无法商业化在逐利的资本市场必然是无法接受的。随着人工智能和自动驾驶产业的兴起,西井科技找到了技术商业化的契机。
相比起我们前面两个厂商动辄上百TOPS算力的产品,西井这两款产品的算力确实有点拿不出手。但西井科技的这两款芯片能够实现片上学习,可以随时新增样本进行增量训练来提升推理准确率。
可能大家看到这里还是没看懂西井科技这两块芯片的优势所在,我在这里稍微解析一下大家就能够明白。目前的自动驾驶算法都是通过高性能服务器进行模型训练(让计算机去看摄像头或激光雷达等传感器获取的环境数据,学习目标判断方法),然后将训练好的模型再部署到车载硬件之中(把机器学习到的高效目标判断方法固化到车载自动驾驶系统之中)。
在实际应用方面,西井科技并没有一头冲进乘用车自动驾驶系统领域,而是在智能港口和智能矿场干出了自己的一片天地,并把触角伸向了智慧医疗和智慧物流领域。2017年10月,公司与全球知名港机巨头振华重工建立长期合作伙伴关系,这是西井科技进军智能港口的重要一步。
自动驾驶卡车要在港区自动装卸集装箱,需要自动驾驶系统精细的车辆控制、敏锐的环境识别以及准确的定位,这些都需要港区高清地图配合。西井科技的无人集装箱卡车定位精度在5cm以内,这是实现集装箱自动装卸的关键。全球首辆港区作业无人集装箱卡车作业成功,充分展现了西井科技在卡车自动驾驶系统以及高精度地图绘制领域的实力。
除了自动驾驶和高清地图绘制外,西井科技还为企业打包了一整套智能港口和智能矿场解决方案,利用人工智能技术提升港口和矿场的运作效率,同时能够进一步降低其运营成本。深挖行业中存在的机遇,逐步筑起行业壁垒是西井科技面对人工智能芯片市场激烈竞争的重要策略。
作为全球最早落地行业应用的自动驾驶团队,西井科技旗下自动驾驶品牌Qomolo逐路目前涵盖了无人驾驶跨运车、无人驾驶新能源集卡和无人驾驶矿卡三大项目。
面对乘用车自动驾驶芯片领域的激烈竞争,我认为短期内西井科技不会进入该领域。相反它会通过深耕已有的智能港口、智能矿场以及无人驾驶重卡市场,进一步筑高上述市场的壁垒,扩大自身的行业影响力和竞争力。但不能忽视的是,西井科技掌握的类脑芯片技术或有可能成为未来自动驾驶芯片领域的一个风口。
上文详细介绍中国3家知名自动驾驶芯片公司及其产品,相信大家应该对目前国内自动驾驶芯片现状有了一个更深了解。除了这三家公司,数字地图供应商四维图新通过收购杰发科技也布局自动驾驶芯片市场,但量产芯片目前尚未落地。网络的昆仑芯片以150W的功耗实现了260TOPS的算力,竞争力很强,但其定位为云端全功能人工智能芯片,主要用在服务器之上。网络在自动驾驶领域的亮点还是在于其Apollo自动驾驶软件平台。
● 全文总结:
寒武纪、地平线、西井科技这三家公司都有着各自的特色和亮点。寒武纪专注于芯片研发,产品算力最强;地平线除了研发芯片,还提供完整的自动驾驶软件方案,对主机厂开发更友好;西井科技掌握独特的类脑芯片设计,在智能港口、智能矿场以及无人驾驶卡车领域已经站稳了阵脚。整体来看,中国自动驾驶芯片在性能和功耗上和外国芯片相比并不差,如何在中国开放L3级别有条件自动驾驶车辆落地这个时间节点用产品和服务先发制人是中国自动驾驶芯片企业的制胜关键。究竟鹿死谁手,让我们拭目以待吧,好戏即将上演!(图/文/汽车之家 常庆林?部分图片源于网络)

H. 能自动驾驶还能读懂你!全新S级竟有这些你不知道的黑科技

[汽车之家技术]随着新一代S级的这次在S级德国斯图加特的发布会现场,汽车之家德国站受奔驰德国总部邀请,成为唯一一家受邀的中文汽车媒体。我们也很有幸采访到了负责CASE领域的奔驰董事会成员SajjadKhan先生,以及负责S级开发的总工程师JürgenWeissinger先生,下面就让我们来看看,新S级的研发中是付出了多少的努力,才会让人在看了实车之后直呼“真香”的。

这样一来,无论是什么品牌的轮胎,他们在轮胎特性上都是相近的,确保了奔驰S级的行驶品质。至于为什么不是完全相同。Weissinger先生继续解释,奔驰给出的要求是针对整车层面进行的,是确保轮胎符合奔驰自有的特性。但实际上每个人对噪音及振动的敏感度和敏感区间都不一样,有些人是对低频振动很敏感,有些人是对高频噪音比较厌烦,每个厂家都在奔驰订立的标准上还会进行自己独自各个方向的优化,以适应不同人群的喜好。

总结:

最后,虽然采访的时间非常紧凑,每人才20分钟的时间,但我们依然从两位高管处得到了许多有用且大家都不一定知道的信息,充分体现了奔驰对新S级投入的心血之多。至于实际开起来的效果是不是如奔驰所说的这样的优秀,请期待之后的试驾为大家揭秘。(图/文汽车之家特约撰稿人@Automann_凹凸曼@pkpk1)

I. 自动驾驶汽车的技术原理

汽车自动驾驶技术包括视频摄像头、雷达传感器以及激光测距器来了解周围的交通状况,并通过一个详尽的地图对前方的道路进行导航。这一切都通过谷歌的数据中心来实现,谷歌的数据中心能处理汽车收集的有关周围地形的大量信息。

就这点而言,自动驾驶汽车相当于谷歌数据中心的遥控汽车或者智能汽车。汽车自动驾驶技术物联网技术应用之一。

沃尔沃根据自动化水平的高低区分了四个无人驾驶的阶段:驾驶辅助、部分自动化、高度自动化、完全自动化:

1、驾驶辅助系统(DAS):目的是为驾驶者提供协助,包括提供重要或有益的驾驶相关信息,以及在形势开始变得危急的时候发出明确而简洁的警告。如“车道偏离警告”(LDW)系统等。

2、部分自动化系统:在驾驶者收到警告却未能及时采取相应行动时能够自动进行干预的系统,如“自动紧急制动”(AEB)系统和“应急车道辅助”(ELA)系统等。

3、高度自动化系统:能够在或长或短的时间段内代替驾驶者承担操控车辆的职责,但是仍需驾驶者对驾驶活动进行监控的系统。

4、完全自动化系统:可无人驾驶车辆、允许车内所有乘员从事其他活动且无需进行监控的系统。这种自动化水平允许乘从事计算机工作、休息和睡眠以及其他娱乐等活动。

结构性能

1、激光雷达

车顶的“水桶”形装置是自动驾驶汽车的激光雷达,它能对半径60米的周围环境进行扫描,并将结果以3D地图的方式呈现出来,给予计算机最初步的判断依据。

2、前置摄像头

自动驾驶汽车前置摄像头谷歌在汽车的后视镜附近安置了一个摄像头,用于识别交通信号灯,并在车载电脑的辅助下辨别移动的物体,比如前方车辆、自行车或是行人。

3、左后轮传感器

它通过测定汽车的横向移动来帮助电脑给汽车定位,确定它在马路上的正确位置。

4、前后雷达

后车厢的主控电脑谷歌在无人驾车汽车上分别安装了4个雷达传感器(前方3个,后方1个),用于测量汽车与前(和前置摄像头一同配合测量)后左右各个物体间的距离。

5、主控电脑

自动驾驶汽车最重要的主控电脑被安排在后车厢,这里除了用于运算的电脑外,还有测距信息综合器,这套核心装备将负责汽车的行驶路线、方式的判断和执行。

J. 英伟达“变软”,自动驾驶“破圈”

一个月前,黄仁勋用一小颗自动驾驶SoC芯片完成了整个GTCCHINA2019的“新品发布”。

发布会当天,这位“皮衣男子”赶在闭馆前匆匆去了自动驾驶汽车展位,用半个小时逐一聆听了几家自动驾驶初创企业的思路。那晚的黄教主,向在场工程师们释放出了一种近乎惺惺相惜的善意。

这种情愫很好理解——

要知道,在这届GTCCHINA散场时,很多观众发出的感慨是:“十分硬核,不够性感。”毕竟远道而来的大家直到演讲后半程,才终于等到黄仁勋掏出一块200TOPS深度学习算力的自动驾驶新品“Orin”。取而代之的,是各种“空口无凭”的软件技术升级。

面对一张张略显失望的脸,老黄也很无奈:“我这么努力,你都看不到。就好像你老婆做了一整天家务,你却说她什么都没做。”

众口难调,但这确实是英伟达在接下来的业务发展中必须要面对的问题。与“看得见摸得着”的硬件发布不同,软件迭代周期短、初期人力成本高、落地成果却很难形成清晰的概念……这些都让这家人工智能计算公司的技术发布开始与公众预期逐渐拉开差距。

而就在车云菌险些被观众情绪带跑节奏时,我们在英伟达的官方公众号上发现了一系列由NVIDIADRIVELabs出品的视频。视频内容从工程技术的视角,直观展现出NVIDIADRIVEAV软件团队如何完成一个个自动驾驶的日常任务,诸如从路径感知到交叉路口处理等一系列挑战。

那么,以自动驾驶为起点,车云菌尝试回答:当英伟达不再抛出核弹,他们到底做了些什么?

“直播”自动驾驶

严格来说,目前没有任何一家企业成功制造出一台全自动驾驶汽车,绝大多数玩家仍旧在奔向这一目标的路上相互博弈。

近年,英伟达正式加入战局。公司内部的软件开发人员已经远远超过了硬件工程师的数量。

他们首先打算解决自动驾驶汽车的三个问题:

知道自己在哪里:不光要掌握车辆具体位置,还得知道是在主路的第几条车道上,将定位精确到厘米级;

知道自己周围有什么:像人类大脑一样判断,前方卡车在减速、左后方有辆SUV驶来、右侧人行道有小孩、下一个路口是绿灯且不能左转……

作出正确的驾驶决策:判断从左侧超车可以安通过路口,然后控制车辆完成相应动作。

如今这些工作,都被团队一一摆上了台面。与常规“秀肌肉”的视频演示不同,英伟达实验室将自动驾驶最困难的感知层面的工作拆解成一个个小任务,条分缕析地告诉大家:我们是怎么做到的,以及我们为什么能做到。

任务的分解也很有意思。车队顺利攻克了包括建立感知路径、通过传感器融合实现环绕感知功能、打造像素级感知能力、借助特征追踪确保安全性、自主识别停车位、障碍物分类、车道线识别及自动补偿、测算车辆与障碍物距离、实现准确可靠的目标跟踪、预测目标的未来移动轨迹、不借助地图的情况下识别交叉路口。

https://v.qq.com/x/page/c0919cpz1w3.html

“可靠性”三个字贯穿了所有挑战过程。对此,NVLabs给出的说法是:“对于L2+级自动驾驶系统来说,例如NVIDIADRIVEAP2X平台,实时评估路径感知可靠性意味着评估该系统是否知道何时进行安全的自主操作,以及何时应该将操作权移交给人类驾驶员。”

至于NVIDIADRIVEAP2X。2019年初公司在GTC上刚刚发布了全新平台,其基于NVIDIAXavier系统级芯片运行,采用DriveWorks加速库和实时操作系统DRIVEOS,其中包含DRIVEAutoPilot软件、DRIVEAGX和DRIVE验证工具,并融合了DRIVEAV自动驾驶软件和DRIVEIX智能驾驶舱体验。

得益于二季度发布的DRIVEAP2XSoftware9.0上新增的大量自动驾驶功能加持,该平台成为业界公认的现阶段唯一完备的L2+自动驾驶解决方案。采埃孚、大陆、沃尔沃都心甘情愿为其买单。

于是,团队几个人在硅谷全长50英里的高速公路环路上完成了一次零干预的全自动驾驶。简单来说,这是一次类似“现场直播”的测试,工程师们没有机会像录制视频那样,拿实际路径感知信号与理想参数进行对比,还要随时准备应对过程中有可能发生的意外情况。

譬如,一旦自动驾驶车辆只能接收到一种传感器发射的感知信号,就无法保证最终决策置信度的实时及准确。比这更糟的还在后面——如果这唯一的路径感知输入失败,自动驾驶功能要么大幅影响操作的舒适及平稳度,要么干脆整个失灵。

而BB8完成的任务也足够交上一张漂亮的成绩单。基于NVIDIADRIVEAGX平台,自动驾驶车辆可以实时同步运行功能多样的360度环绕感知,定位以及规划和控制软件。

工程师通过使用感知和定位所提供的输入数据,规划和控制层让自动驾驶汽车能够独立行驶。规划软件通过感知和定位的结果来确定汽车特定操作所需的物理轨迹。视频里也清楚地展示出车辆在自主变换车道时的流畅动作:规划软件先利用环绕摄像头和雷达感知来进行变道操作安全检查,然后计算纵向速度曲线以及从当前车道的中心线移动到目标车道中心线所需的横向路径计划,最后控制软件发出加速/减速和向左/右转向的命令以执行车道变换规划。

正是这些软件组成部分,与硬件一起成就了系统的多样性和安全冗余。而这一系列任务视频,恰恰成了证明英伟达自动驾驶软件技术落地的可靠载体。

在这之外,将无形化的软件沉淀成可视化的视频内容,也能同时以更加轻松的方式触达到消费者层面。当汽车方向盘交到机器手中,用户会天然树立起不安与不信任感。这种先期教育市场的思路,能够消除部分不安心理,重建人们在自动驾驶空间内的安全感。

直观点说,NVLabs的“自动驾驶挑战”系列,是英伟达软件技术“破圈”的先导。

作为曾经游戏市场的霸主,这家芯片巨头必然深谙消费者之道。相比一般车厂对于车辆智能功能“洗脑式”的宣传,此番英伟达率先拿出一部分干货试探市场,占领用户心智。

这种策略直接体现在公司财报数据上,2019年三季度英伟达汽车业务迎来高光时刻。公开数据显示,彼时,该领域营收攀升至创纪录的2.09亿美元,同比增长30%。相比之下,英特尔第二季度的自动驾驶营收为2.01亿美元,同比增加16%。

对比来看,英特尔一季度该项营收2.09亿美元,英伟达为1.66亿美元。这意味着,英伟达环比上涨,英特尔环比下跌。

黄仁勋自己对于“软件公司”的蓝图也相当清晰:“这只是英伟达目前定位中的一部分。”

回顾既往十年,英伟达已经进行了两次业务转变。第一次是从GPU图像芯片公司转变为并行计算公司,典型的应用场景是人工智能。后来,公司又决定在少数特定场景中提供最完善的解决方案,覆盖游戏、专业渲染,超级计算、自动驾驶几大领域。

随着英伟达业务领域越来越广,客户“解放双手”的自由度就越高。这恐怕才是“Themoreyoubuy,themoreyousave”的真实含义。

观看NVLabs全系列视频,请点击:https://www.nvidia.cn/self-driving-cars/drive-labs/

?

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

热点内容
以太坊邮箱 发布:2025-07-09 11:50:11 浏览:194
以太坊发币架构 发布:2025-07-09 11:40:34 浏览:682
去社保中心领社保卡要带什么 发布:2025-07-09 11:16:09 浏览:82
怎么创作区块链 发布:2025-07-09 11:15:19 浏览:7
挖以太坊什么参数最重要 发布:2025-07-09 11:14:10 浏览:741
BTC区块链经济 发布:2025-07-09 11:08:44 浏览:412
以太坊4g不能挖 发布:2025-07-09 11:06:43 浏览:596
数字货币k特币是什么意思 发布:2025-07-09 10:48:50 浏览:759
eth越来越少 发布:2025-07-09 10:46:47 浏览:644
区块链支付EDT 发布:2025-07-09 10:46:45 浏览:855