集群计算挖矿
1. 挖矿专用的显卡可以用来做渲染集群的计算卡用吗
想组一台B250MiningExpert+5块p106显卡,使用oc渲染,不知道可不可行。
2. 集群矿场挖矿的工具比如矿池主要是什么作用
3. 云计算,网格计算,分布式计算,集群计算,超级计算的不同是什么
整体来说都有奖任务分割、运算、组合,只是协同和处理的重点不同;
超级计算强调的是高并行计算能力,应用设备多是超级计算机如天河一号,是infiniband的高并行处理架构,实现总线级协同,一般采用计算能力更强的GPU而非CPU;
集群计算和分布式计算是相对于设备部署结构来说,这种计算相对超算来说,对于计算的并行处理及响应要求较低,需要实现的是网络环境下的协同,实现的效果受网络环境影响。
网格计算是集群计算和分布式计算与超级计算中间的产物,是在原来集群计算和分布式计算不能满足需求,而超算又过于难以实现的情况下,想通过增进网络带宽方式来实现通过集群计算和分布式计算能够达到接近超级计算的结果,国家网格节点之间的带宽都是T级别的,就可想而知对于基础资源的需求。
而云计算是更接近应用的资源整合,在协调资源整合应用的前提下,对于应用处理的并行处理要求跟低,只是一种松散耦合的方式,但强调将任务分解、处理、组合的过程,以充分利用现有资源。
4. 如何获得和持续使用足够的集群计算资源
简单说,分布式是以缩短单个任务的执行时间来提升效率的,而集群则是通过提高单位时间内执行的任务数来提升效率。
例如:
如果一个任务由10个子任务组成,每个子任务单独执行需1小时,则在一台服务器上执行改任务需10小时。
采用分布式方案,提供10台服务器,每台服务器只负责处理一个子任务,不考虑子任务间的依赖关系,执行完这个任务只需一个小时。(这种工作模式的一个典型代表就是Hadoop的Map/Rece分布式计算模型)
而采用集群方案,同样提供10台服务器,每台服务器都能独立处理这个任务。假设有10个任务同时到达,10个服务器将同时工作,10小后,10个任务同时完成,这样,整身来看,还是1小时内完成一个任务!
以下是摘抄自网络文章:
一、集群概念
1. 两大关键特性
集群是一组协同工作的服务实体,用以提供比单一服务实体更具扩展性与可用性的服务平台。在客户端看来,一个集群就象是一个服务实体,但事实上集群由一组服务实体组成。与单一服务实体相比较,集群提供了以下两个关键特性:
· 可扩展性--集群的性能不限于单一的服务实体,新的服务实体可以动态地加入到集群,从而增强集群的性能。
· 高可用性--集群通过服务实体冗余使客户端免于轻易遇到out of service的警告。在集群中,同样的服务可以由多个服务实体提供。如果一个服务实体失败了,另一个服务实体会接管失败的服务实体。集群提供的从一个出 错的服务实体恢复到另一个服务实体的功能增强了应用的可用性。
2. 两大能力
为了具有可扩展性和高可用性特点,集群的必须具备以下两大能力:
· 负载均衡--负载均衡能把任务比较均衡地分布到集群环境下的计算和网络资源。
· 错误恢复--由于某种原因,执行某个任务的资源出现故障,另一服务实体中执行同一任务的资源接着完成任务。这种由于一个实体中的资源不能工作,另一个实体中的资源透明的继续完成任务的过程叫错误恢复。
负载均衡和错误恢复都要求各服务实体中有执行同一任务的资源存在,而且对于同一任务的各个资源来说,执行任务所需的信息视图(信息上下文)必须是一样的。
3. 两大技术
实现集群务必要有以下两大技术:
· 集群地址--集群由多个服务实体组成,集群客户端通过访问集群的集群地址获取集群内部各服务实体的功能。具有单一集群地址(也叫单一影像)是集群的一个基本特征。维护集群地址的设置被称为负载均衡器。负载均衡器内部负责管理各个服务实体的加入和退出,外部负责集群地址向内部服务实体地址的转换。有的负载均衡器实现真正的负载均衡算法,有的只支持任务的转换。只实现任务转换的负载均衡器适用于支持ACTIVE-STANDBY的集群环境,在那里,集群中只有一个服务实体工作,当正在工作的服务实体发生故障时,负载均衡器把后来的任务转向另外一个服务实体。
· 内部通信--为了能协同工作、实现负载均衡和错误恢复,集群各实体间必须时常通信,比如负载均衡器对服务实体心跳测试信息、服务实体间任务执行上下文信息的通信。
具有同一个集群地址使得客户端能访问集群提供的计算服务,一个集群地址下隐藏了各个服务实体的内部地址,使得客户要求的计算服务能在各个服务实体之间分布。内部通信是集群能正常运转的基础,它使得集群具有均衡负载和错误恢复的能力。
二、集群分类
Linux集群主要分成三大类(高可用集群, 负载均衡集群,科学计算集群)
高可用集群(High Availability Cluster)
负载均衡集群(Load Balance Cluster)
科学计算集群(High Performance Computing Cluster)
具体包括:
Linux High Availability 高可用集群
(普通两节点双机热备,多节点HA集群,RAC, shared, share-nothing集群等)
Linux Load Balance 负载均衡集群
(LVS等....)
Linux High Performance Computing 高性能科学计算集群
(Beowulf 类集群....)
三、详细介绍
1. 高可用集群(High Availability Cluster)
常见的就是2个节点做成的HA集群,有很多通俗的不科学的名称,比如"双机热备","双机互备","双机"。
高可用集群解决的是保障用户的应用程序持续对外提供服务的能力。 (请注意高可用集群既不是用来保护业务数据的,保护的是用户的业务程序对外不间断提供服务,把因软件/硬件/人为造成的故障对业务的影响降低到最小程度)。
2. 负载均衡集群(Load Balance Cluster)
负载均衡系统:集群中所有的节点都处于活动状态,它们分摊系统的工作负载。一般Web服务器集群、数据库集群和应用服务器集群都属于这种类型。
负载均衡集群一般用于相应网络请求的网页服务器,数据库服务器。这种集群可以在接到请求时,检查接受请求较少,不繁忙的服务器,并把请求转到这些服务器上。从检查其他服务器状态这一点上看,负载均衡和容错集群很接近,不同之处是数量上更多。
3. 科学计算集群(High Performance Computing Cluster)
高性能计算(High Perfermance Computing)集群,简称HPC集群。这类集群致力于提供单个计算机所不能提供的强大的计算能力。
3.1 高性能计算分类
3.1.1 高吞吐计算(High-throughput Computing)
有一类高性能计算,可以把它分成若干可以并行的子任务,而且各个子任务彼此间没有什么关联。象在家搜寻外星人( SETI@HOME -- Search for Extraterrestrial Intelligence at Home )就是这一类型应用。这一项目是利用Internet上的闲置的计算资源来搜寻外星人。SETI项目的服务器将一组数据和数据模式发给Internet上参加SETI的计算节点,计算节点在给定的数据上用给定的模式进行搜索,然后将搜索的结果发给服务器。服务器负责将从各个计算节点返回的数据汇集成完整的 数据。因为这种类型应用的一个共同特征是在海量数据上搜索某些模式,所以把这类计算称为高吞吐计算。所谓的Internet计算都属于这一类。按照 Flynn的分类,高吞吐计算属于SIMD(Single Instruction/Multiple Data)的范畴。
3.1.2 分布计算(Distributed Computing)
另一类计算刚好和高吞吐计算相反,它们虽然可以给分成若干并行的子任务,但是子任务间联系很紧密,需要大量的数据交换。按照Flynn的分类,分布式的高性能计算属于MIMD(Multiple Instruction/Multiple Data)的范畴。
四、分布式(集群)与集群的联系与区别
分布式是指将不同的业务分布在不同的地方;而集群指的是将几台服务器集中在一起,实现同一业务。
分布式中的每一个节点,都可以做集群。 而集群并不一定就是分布式的。
举例:就比如新浪网,访问的人多了,他可以做一个群集,前面放一个响应服务器,后面几台服务器完成同一业务,如果有业务访问的时候,响应服务器看哪台服务器的负载不是很重,就将给哪一台去完成。
而分布式,从窄意上理解,也跟集群差不多, 但是它的组织比较松散,不像集群,有一个组织性,一台服务器垮了,其它的服务器可以顶上来。
分布式的每一个节点,都完成不同的业务,一个节点垮了,那这个业务就不可访问了。
5. 集群矿场推出后,个人单独挖矿会消失吗
集群矿场其实只是一带一路通证经济商家俱乐部推出的MLT挖矿,不是集群矿场开启之后就没有了个人挖矿,这两个东西其实没有冲突的。
6. 我看星际空间Filecoin有个人挖矿和集群挖矿,怎么进行选择
对于资金实力相对比较强的矿工来说(目前集群投入至少在1500万以上),可以选择专业的挖矿技术解决方案提供商自建集群。如果是资金相对比较小的个人来说,更适合加入专业的矿池。
7. 集群计算需要什么软件
MPICP, OpenPBS等。现在集群计算主要是在Unix和Linux系统上,运行程序一般都是没有窗口的(即使有,也不过是一个调度程序而已)。
8. 集群矿场是什么
集群矿场是一带一路通证经济商家俱乐部生态下的一个挖矿场景,简单来说就是将所有矿机集中到一起构建成新的矿池,让更多矿工可以采取租赁矿机算力的方式参与挖矿。
9. 集群计算,高性能计算,分布式计算,并行计算,云计算有什么区别
参考此链接:http://wenku..com/view/0895bd75a417866fb84a8ebc.html
10. 集群计算的Cluster computing
In computers, clustering is the use of multiple computers, typically PCs or UNIX workstations, multiple storage devices, and rendant interconnections, to form what appears to users as a single highly available system. Cluster computing can be used for load balancing as well as for high availability. Advocates of clustering suggest that the approach can help an enterprise achieve 99.999 availability in some cases. One of the main ideas of cluster computing is that, to the outside world, the cluster appears to be a single system.
A common use of cluster computing is to load balance traffic on high-traffic Web sites. A Web page request is sent to a manager server, which then determines which of several identical or very similar Web servers to forward the request to for handling. Having a Web farm (as such a configuration is sometimes called) allows traffic to be handled more quickly.
Clustering has been available since the 1980s when it was used in DEC's VMSsystems. IBM's sysplex is a cluster approach for a mainframe system. Microsoft, Sun Microsystems, and other leading hardware and software companies offer clustering packages that are said to offer scalability as well as availability. As traffic or availability assurance increases, all or some parts of the cluster can be increased in size or number.
Cluster computing can also be used as a relatively low-cost form of parallel processing for scientific and other applications that lend themselves to parallel operations. An early and well-known example was the Beowulf project in which a number of off-the-shelf PCs were used to form a cluster for scientific applications.