当前位置:首页 » 挖矿知识 » 数据挖矿

数据挖矿

发布时间: 2022-01-08 07:25:32

❶ 大数据挖掘通常用哪些软件

1.RapidMiner
只要是从事开源数据挖掘相关的业内人士都知道,RapidMiner在数据挖掘工具榜上虎踞榜首,叫好叫座。是什么让RapidMiner得到如此厚誉呢?首先,RapidMiner功能强大,它除了提供优秀的数据挖掘功能,还提供如数据预处理和可视化、预测分析和统计建模、评估和部署等功能。更厉害的是,它还提供来自WEKA(一种智能分析环境)和R脚本的学习方案、模型和算法,让它成为业界的一棵常春藤。
用Java语言编写的RapidMiner,是通过基于模板的框架为用户提供先进的分析技术的。它最大的好处就是,作为一个服务提供给用户,而不是一款本地软件,用户无需编写任何代码,为用户尤其是精于数据分析但不太懂编程的用户带来了极大的方便。
2.R-Programming
R语言被广泛应用于数据挖掘、开发统计软件以及数据分析中。你以为大名鼎鼎的R只有数据相关功能吗?其实,它还提供统计和制图技术,包括线性和非线性建模,经典的统计测试,时间序列分析、分类、收集等等。
R,R-programming的简称,统称R。作为一款针对编程语言和软件环境进行统计计算和制图的免费软件,它主要是由C语言和FORTRAN语言编写的,并且很多模块都是由R编写的,这是R一个很大的特性。而且,由于出色的易用性和可扩展性,也让R的知名度在近年来大大提高了,它也逐渐成为数据人常用的工具之一。
3.WEKA
WEKA支持多种标准数据挖掘任务,包括数据预处理、收集、分类、回归分析、可视化和特征选取,由于功能多样,让它能够被广泛使用于很多不同的应用——包括数据分析以及预测建模的可视化和算法当中。它在GNU通用公共许可证下是免费的,这也是它与RapidMiner相比的优势所在,因此,用户可以按照自己的喜好选择自定义,让工具更为个性化,更贴合用户的使用习惯与独特需求。
很多人都不知道,WEKA诞生于农业领域数据分析,它的原生的非Java版本也因此被开发了出来。现在的WEKA是基于Java版本的,比较复杂。令人欣喜的是,当它日后添加了序列建模之后,将会变得更加强大,虽然目前并不包括在内。但相信随着时间的推移,WEKA一定会交出一张很好看的成绩单。
4.Orange
对很多数据人来说,Orange并不是一个陌生的名字,它不仅有机器学习的组件,还附加有生物信息和文本挖掘,可以说是充满了数据分析的各种功能。而且,Orange的可视化编程和Python脚本如行云流水,定能让你拥有畅快的使用感。
Orange是一个基于Python语言的功能强大的开源工具,如果你碰巧是一个Python开发者,当需要找一个开源数据挖掘工具时,Orange必定是你的首选,当之无愧。无论是对于初学者还是专家级大神来说,这款与Python一样简单易学又功能强大的工具,都十分容易上手。
5.NLTK
著名的开源数据挖掘工具——NLTK,提供了一个语言处理工具,包括数据挖掘、机器学习、数据抓取、情感分析等各种语言处理任务,因此,在语言处理任务领域中,它一直处于不败之地。
想要感受这款深受数据人喜爱的工具的用户,只需要安装NLTK,然后将一个包拖拽到最喜爱的任务中,就可以继续葛优瘫N日游了,高智能性也是这款工具受人喜爱的最大原因之一。另外,它是用Python语言编写的,用户可以直接在上面建立应用,还可以自定义小任务,十分便捷。
6.KNIME
KNIME是一个开源的数据分析、报告和综合平台,同时还通过其模块化数据的流水型概念,集成了各种机器学习的组件和数据挖掘。我们都知道,提取、转换和加载是数据处理最主要的三个部分,而这三个部分,KNIME均能出色地完成。同时,KNIME还为用户提供了一个图形化的界面,以便用户对数据节点进行进一步的处理,十分贴心。
基于Eclipse,用Java编写的KNIME拥有易于扩展和补充插件特性,还有可随时添加的附加功能。值得一提的是,它的大量的数据集成模块已包含在核心版本中。良好的性能,更让KNIME引起了商业智能和财务数据分析的注意。

❷ 大数据和数据挖掘什么区别

传统的数据挖掘就是在数据中寻找有价值的规律,这和现在热炒的大数据在方向上是一致的。
只不过大数据具有“高维、海量、实时”的特点,就是说数据量大,数据源和数据的维度高,并且更新迅速的特点,传统的数据挖掘技术可能很难解决,需要从算法的改进(提升算法对大数据的处理能力)和方案的框架(分解任务,把大数据分析拆解成若干小单元加以解决,或者通过规律的提取,把重复出现的数据加以整合等等)等多方面去提升处理能力。
所以,可以理解成大数据是场景是问题,而数据挖掘是手段。

❸ 数据挖掘是什么

数据挖掘(Data Mining)是指通过大量数据集进行分类的自动化过程,以通过数据分析来识别趋势和模式,建立关系来解决业务问题。换句话说,数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

❹ 大数据、数据分析和数据挖掘的区别是什么

  • 数据分析与数据挖掘的目的不一样,数据分析是有明确的分析群体,就是对群体进行各个维度的拆、分、组合,来找到问题的所在,而数据发挖掘的目标群体是不确定的,需要我们更多是是从数据的内在联系上去分析,从而结合业务、用户、数据进行更多的洞察解读。

  • 数据分析与数据挖掘的思考的方式不同,一般来讲,数据分析是根据客观的数据进行不断的验证和假设,而数据挖掘是没有假设的,但你也要根据模型的输出给出你评判的标准。

我们经常做分析的时候,数据分析需要的思维性更强一些,更多是运用结构化、MECE的思考方式,类似程序中的IF else

而数据挖掘大多数是大而全,多而精,数据越多模型越可能精确,变量越多,数据之间的关系越明确,什么变量都要,先从模型的意义上选变量(大而全,多而精),之后根据变量的相关系程度、替代关系、重要性等几个方面去筛选,最后全扔到模型里面,最后从模型的参数和解读的意义来判断这种方式合不合理。

  • 大数据感觉并不是数据量大,也不是数据复杂,这些都可以用工具和技术去处理,而是它可以做到千人千面,而且是实时判断规则。

    例如定向广告的推送,就是大数据,它根据你以往的浏览行为,可以准确的给你推相关的信息,基本做到了你一个人就是一个数据库,而不是一条数据。但我们所作的数据分析更多是针对群体的,而非针对每个个人。

所以大数据时代也显露出了各类问题,数据的隐私、数据杀熟、数据孤岛等,这也许就是我们目前看到大数据分析更看重的是技术、手段的原因。

❺ 数据挖掘与数据分析的区别是什么

1.数据挖掘
数据挖掘是指从大量的数据中,通过统计学、人工智能、机器学习等方法,挖掘出未知的、且有价值的信息和知识的过程。数据挖掘主要侧重解决四类问题:分类、聚类、关联和预测,就是定量、定性,数据挖掘的重点在寻找未知的模式与规律。输出模型或规则,并且可相应得到模型得分或标签,模型得分如流失概率值、总和得分、相似度、预测值等,标签如高中低价值用户、流失与非流失、信用优良中差等。主要采用决策树、神经网络、关联规则、聚类分析等统计学、人工智能、机器学习等方法进行挖掘。综合起来,数据分析(狭义)与数据挖掘的本质都是一样的,都是从数据里面发现关于业务的知识(有价值的信息),从而帮助业务运营、改进产品以及帮助企业做更好的决策,所以数据分析(狭义)与数据挖掘构成广义的数据分析。这些内容与数据分析都是不一样的。
2.数据分析
其实我们可以这样说,数据分析是对数据的一种操作手段,或者算法。目标是针对先验的约束,对数据进行整理、筛选、加工,由此得到信息。数据挖掘,是对数据分析手段后的信息,进行价值化的分析。而数据分析和数据挖掘,又是甚至是递归的。就是数据分析的结果是信息,这些信息作为数据,由数据去挖掘。而数据挖掘,又使用了数据分析的手段,周而复始。由此可见,数据分析与数据挖掘的区别还是很明显的。
而两者的具体区别在于:
(其实数据分析的范围广,包含了数据挖掘,在这里区别主要是指统计分析)
数据量上:数据分析的数据量可能并不大,而数据挖掘的数据量极大。
约束上:数据分析是从一个假设出发,需要自行建立方程或模型来与假设吻合,而数据挖掘不需要假设,可以自动建立方程。
对象上:数据分析往往是针对数字化的数据,而数据挖掘能够采用不同类型的数据,比如声音,文本等。
结果上:数据分析对结果进行解释,呈现出有效信息,数据挖掘的结果不容易解释,对信息进行价值评估,着眼于预测未来,并提出决策性建议。
数据分析是把数据变成信息的工具,数据挖掘是把信息变成认知的工具,如果我们想要从数据中提取一定的规律(即认知)往往需要数据分析和数据挖掘结合使用。
举个例子说明:你揣着50元去菜市场买菜,对于琳琅满目的鸡鸭鱼猪肉以及各类蔬菜,想荤素搭配,你逐一询问价格,不断进行统计分析,能各自买到多少肉,多少菜,大概能吃多久,心里得出一组信息,这就是数据分析。而关系到你做出选择的时候就需要对这些信息进行价值评估,根据自己的偏好,营养价值,科学的搭配,用餐时间计划,最有性价比的组合等等,对这些信息进行价值化分析,最终确定一个购买方案,这就是数据挖掘。
数据分析与数据挖掘的结合最终才能落地,将数据的有用性发挥到极致。

❻ 数据挖掘和机器学习区别是什么

数据挖掘倾向于根据已有数据训练出的模型推测未来的数据,指的是知识获取的过程,机器学习就更强调方法,决策树、神经网络、贝叶斯分类等。一般来说数据挖掘范围更大,是包含机器学习的。

数据挖掘跟很多学科领域联系紧密,其中数据库、机器学习、统计学影响是最大。简单地说,数据库提供数据管理技术,机器学习和统计学提供数据分析技术。由于统计学界沉醉于于理论的优美而忽略实际的效用,因此,统计学界提供的很多技术往往都要在机器学习界进一步研究,变成有效果的机器学习算法之后才可以进入数据挖掘领域。从这个意义上说,统计学主要是通过机器学习来对数据挖掘产生影响,而机器学习和数据库则是数据挖掘的两大支撑技术。

关于数据挖掘工程师的课程,推荐CDA数据分析师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”点击预约免费试听课。

❼ 什么是数据挖掘数据挖掘怎么做啊

数据挖掘(Data Mining)是指通过大量数据集进行分类的自动化过程,以通过数据分析来识别趋势和模式,建立关系来解决业务问题。换句话说,数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

原则上讲,数据挖掘可以应用于任何类型的信息存储库及瞬态数据(如数据流),如数据库、数据仓库、数据集市、事务数据库、空间数据库(如地图等)、工程设计数据(如建筑设计等)、多媒体数据(文本、图像、视频、音频)、网络、数据流、时间序列数据库等。也正因如此,数据挖掘存在以下特点:

(1)数据集大且不完整
数据挖掘所需要的数据集是很大的,只有数据集越大,得到的规律才能越贴近于正确的实际的规律,结果也才越准确。除此以外,数据往往都是不完整的。

(2)不准确性
数据挖掘存在不准确性,主要是由噪声数据造成的。比如在商业中用户可能会提供假数据;在工厂环境中,正常的数据往往会收到电磁或者是辐射干扰,而出现超出正常值的情况。这些不正常的绝对不可能出现的数据,就叫做噪声,它们会导致数据挖掘存在不准确性。

(3)模糊的和随机的
数据挖掘是模糊的和随机的。这里的模糊可以和不准确性相关联。由于数据不准确导致只能在大体上对数据进行一个整体的观察,或者由于涉及到隐私信息无法获知到具体的一些内容,这个时候如果想要做相关的分析操作,就只能在大体上做一些分析,无法精确进行判断。
而数据的随机性有两个解释,一个是获取的数据随机;我们无法得知用户填写的到底是什么内容。第二个是分析结果随机。数据交给机器进行判断和学习,那么一切的操作都属于是灰箱操作。

❽ 如何学习数据挖掘

学习一门技术要和行业靠拢,没有行业背景的技术如空中楼阁。技术尤其是计算机领域的技术发展是宽泛且快速更替的(十年前做网页设计都能成立公司),一般人没有这个精力和时间全方位的掌握所有技术细节。但是技术在结合行业之后就能够独当一面了,一方面有利于抓住用户痛点和刚性需求,另一方面能够累计行业经验,使用互联网思维跨界让你更容易取得成功。不要在学习技术时想要面面俱到,这样会失去你的核心竞争力。

想要学习数据挖掘,推荐咨询CDA数据分析师的课程。CDA课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。这种教学方式能够引发学员的独立思考及主观能动性,学员掌握的技能知识可以快速转化为自身能够灵活应用的技能,在面对不同场景时能够自由发挥。点击预约免费试听课。

❾ 什么是数据挖掘

数据挖掘又译为资料探勘、数据采矿。是一种透过数理模式来分析企业内储存的大量资料,以找出不同的客户或市场划分,分析出消费者喜好和行为的方法,它是数据库知识发现中的一个步骤。

❿ 数据挖掘的概念

数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统和模式识别等诸多方法来实现上述目标。

并非所有的信息发现任务都被视为数据挖掘。例如,使用数据库管理系统查找个别的记录,或通过因特网的搜索引擎查找特定的Web页面,则是信息检索(information retrieval)领域的任务。虽然这些任务是重要的,可能涉及使用复杂的算法和数据结构,但是它们主要依赖传统的计算机科学技术和数据的明显特征来创建索引结构,从而有效地组织和检索信息。尽管如此,数据挖掘技术也已用来增强信息检索系统的能力。

关于数据挖掘的相关学习,推荐CDA数据师的相关课程,课程培养学员硬性的数据挖掘理论与Python数据挖掘算法技能的同时,还兼顾培养学员软性数据治理思维、商业策略优化思维、挖掘经营思维、算法思维、预测分析思维,全方位提升学员的数据洞察力。点击预约免费试听课。

热点内容
区块链公文系统 发布:2025-08-29 01:20:00 浏览:531
币圈良心怎么赚钱 发布:2025-08-29 01:02:44 浏览:558
区块链tos下载 发布:2025-08-29 01:00:29 浏览:962
区块链去中心化的应用场景有哪些 发布:2025-08-29 00:59:56 浏览:434
比特币矿工计算的题目是什么 发布:2025-08-29 00:50:08 浏览:851
币圈与国际的区别 发布:2025-08-29 00:50:05 浏览:632
区块链中挖矿难度值 发布:2025-08-29 00:32:35 浏览:442
btc美 发布:2025-08-29 00:19:37 浏览:711
怎么下载usdt钱包 发布:2025-08-29 00:19:35 浏览:774
比特币挖矿对电脑有什么损害 发布:2025-08-28 23:56:21 浏览:377