当前位置:首页 » 挖矿知识 » 比原链挖矿计算

比原链挖矿计算

发布时间: 2023-01-26 19:44:22

1. 进币圈必须知道的事:挖矿挖的是什么

这篇文章的主题是币圈挖矿挖的是什么,在本文中我们将通过表象、算法、本质3个不同层次来看这个问题,希望大家能坚持看完三层的看法,如果您对币圈比较熟悉,也可以直接看第三层。

第一层:从表面上看

有人说比特币预计会在2140年挖完,总计2100万枚,其实只要是理解了比特币算法的人,都很清楚,比特币永远不会被挖完1,只是挖到最后可能几年甚至几十年几百年才能挖出一枚来,所以自然就没人去挖了,也就相当于挖没了。同样的道理,总计2100万的比特币数量,最终也只是个大概数字而已。

大家看到的挖矿挖的是什么呢?拿币圈的开创者比特币来说, 挖矿挖的是一个个的数字区块,而这个区块被人们称之为“电子货币” 。这当然不是本文要说的本质。

之所以它能被称为货币,是因为在它的信众之间可以用来实物或者法币交易,所以毫无疑问,大家都认可币圈挖矿挖的是“电子货币”。

第二层:从算法上来看

      这一层我们还是用币圈的开创货币比特币说明。

      前文已经说过,比特币挖矿会随着时间的推移,越来越难挖到,为什么会这样呢?因为在比特币的算法里,有一个动态调整的难度值,这个难度值会随着时间的推移,不断的增大,以保证比特币越来越难挖到。这里不对难度值怎么调整展开说,读者先知道有难度值这回事。

      比特币的挖矿,是用包含前一个区块的hash值(类似这样的一串数据)、随机数、以及一些其他数据进行计算,得到另外一个hash值,如果得到的hash值比用难度值确定的一个hash值小,就算是挖到了矿。

再通俗一点说(通俗就是是不精确

),比如说跟据当前的难度值,我们确定出所有挖矿计算出来的hash值,都需要小于的难度所对应的hash值, 那么如果挖到的hash值前面有更多的0,则算你挖到了矿。

      大家现在也看到了,比特币挖矿挖的就是一块儿数据计算出来的hash值,大家可以讨论下这串数字有什么价值了。

有人说挖比特币是在解数学难题 ,我觉得如果挖比特币能把数学难题给解出来了,那确实是给数学界做贡献了。但实际大家应该明白了,根本就没什么数学难题,只是那一些随机的东西,去试通过一定计算得到的hash值够不够小。

      到这里大家应该明白了从算法上看, 币圈挖的是也就是计算出来的一串数字 ,这里只是拿比特币做了说明,其他的币可能有着不同的算法,但本质是相同。

第三层:挖矿的实质

2017年币圈着实是火爆了一把,各种币的价值都是几十倍甚至几百倍的增长,就连空气币也能引来不少投资者的跟进。

火爆的币圈市场,让很多连区块链是什么、连比特币是怎么回事的人都冲了进去,因为大家都看到了各种币的疯狂增值,但好景不长,到了17年12月份比特币到达2万美元的峰值后,就开始下挫,导致有一些人可能连2018年的春节都没有过好。

       既然想进币圈,我觉得先弄清楚币圈的挖矿的本质为好,不然成为韭菜就一点不冤枉了。

      在我看来, 币圈挖矿实质挖的是信众 ,不管是什么币,信众多则价值高,信众少则价值少,信众不足则直接破发。

      去年币圈市场的火爆,让很多以前并不怎么关注虚拟货币的人,甚至以前都没听说过比特币的人,看到别人在币圈发了财,也盲目的成了信众,成了先进入者的矿。到了17年12月份,经历了疯狂之后,多少人还敢相信还能继续涨,没有了新的信众进入,则各种币就失去了“矿源”,也就失去了增长的动力。

      既然明白了币圈挖矿挖的是信众,那么一种币能坚持存在多久,就要看信众们能坚持多久了。一种带不来实际价值的虚拟货币,如果没有了新的信众,原有的信众就会慢慢失去信心和耐性,当原有的信众也开始放弃,则这种币就离破灭不久了。

      以上是个人的一点观点,如果您同意我的看法,请点赞转发,如果有不同的观点,请文明留言,欢迎讨论。

总结

     最后一句话总结, 区块链技术有着广阔的应用空间,但是虚拟货币终究是无源之水,“矿”终有一天会挖完 ,具体原因可以期待我的下一篇文章:《区块链的应用场景在哪儿?教你两步找到区块链的应用场景》。

1.比特币永远不会被挖完是相对的,如果能保证挖比特币的算力不会减少,并且永不放弃的前提下,有一天也会挖到最后一枚,但现实情况是当难度增加到一定值,有些算力会放弃,虽然保证一段时间内的能挖出来的数量保持不变,但算力的减少,算法中的挖矿难度有可能会降低,这样就导致能挖到的总量又会增多。

作者简介:

      李景晨,子无忧创始人,原网络码农,独立游戏制作人,自研并使用区块链技术的经典互联网人。

2. 比特币挖矿一天挣多少

大概有37块钱。


我先来介绍一下比特币系统的奖励机制。


比特币通过系统设置,基本能稳定在平均每10分钟挖出一个区块。每一次出块奖励都给挖出该区块的矿工。挖出区块的矿工称为出块矿工。出块矿工会把比特币网络中的合法交易记录到区块链上,这样矿工就能收到记账的手续费。


出块矿工的奖励包含两部分:一部分是系统给奖励,称为Coinbase奖励(也称为系统发行奖励),另一部分是记账记账奖励,称为矿工费。Coinbase奖励,最开始是50枚比特币,区块高度每到21万的整数倍,Coinbase奖励就会减半,这就是我们常听到的比特币挖矿奖励四年减半。


目前阶段Coinbase奖励为12.5枚比特币。就目前阶段而言,矿工挖出一个区块的奖励,收到的交易矿工费平均大约在0.1枚比特币(不固定),也就是说矿工挖出一个区块得到的平均奖励约为12.6枚比特币。


矿工的奖励99%左右来自系统的Coinbase奖励。根据比特币系统平均每10分钟可挖出一个区块,一天可挖出的新区块数量为144(60*24/10=144),目前每天可挖出比特币数量为1800BTC(144*12.5BTC=1800BTC)。加上每个区块约0.1BTC的矿工费,所有矿工一天得到的总奖励约为1814.4BTC。


3. btm币有价值吗

BTM币有价值的。
BTM为比原链的原生代币,总量为21亿个,思慕的分发份额为7%,1CO的份额占30%,比原币项目基金会预留了20%,这一部分是1CO结束后的一年内全部冻结,之后分为四年分期解冻,每年解冻5%。 除此之外,比原币商业拓展预留了10%的份额,那么剩下的33%则是比原币的挖矿份额。 从分配数据上来看,是相对合理并且有规划的,并且挖矿分发每四年产量减半,甚至不再会有新快奖励产生,这样将会对挖矿数量每年依次递减,那么BTM的价值起源就是其能够方便的表征和度量比原链上数字化经济活动。
拓展资料
代币经济:
BTM为比原链的原生代币,总量为21亿个,思慕的分发份额为7%,1CO的份额占30%,比原币项目基金会预留了20%,这一部分是1CO结束后的一年内全部冻结,之后分为四年分期解冻,每年解冻5%。除此之外,比原币商业拓展预留了10%的份额,那么剩下的33%则是比原币的挖矿份额。
从分配数据上来看,是相对合理并且有规划的,并且挖矿分发每四年产量减半,甚至不再会有新快奖励产生,这样将会对挖矿数量每年依次递减,那么BTM的价值起源就是其能够方便的表征和度量比原链上数字化经济活动。比原币既代表比原链的所有权又代表使用权:使用比原链的应用需用比原币支付一定的费用,体现比原币的使用权特性;持有比原币,代表拥有比原链的一部分,相当于比原链股东,能够参与到比原链治理的最高决策,体现比原币的所有权特性。
技术创新:
与市面其他的公链项目不同,比原链在1CO项目治理机制中提出了三层治理结构:财务预算管理、信息披露制度、投资风险提示。除此之外,比原链也专注于区块链在资产登记流通领域的创新:
1.通过侧链技术实现收益权资产的分红;
2.采用开放数据索引|标准来命名资产;
3.采用对人工智能ASIC芯片友好型的PoW创新算法;
4.扩展性UTXO模型。
如果说其它公链项目像是区块链领域的FPGA,强调智能合约的可编程性与通用性,适用于不同商业场景,那么比原链就是区块链的ASIC,更强调智能合约在资产领域的专用性,针对资产的属性,在资源不可复制性、可控匿名性、安全与合规性上做了许多创新。

4. 比特币的挖矿到底在计算什么

比特币的挖矿计算其实就是大家一起做数学题,题干是需要被记录的交易,大家通过做题抢夺记账权,抢到的矿工就能获得系统奖励和交易手续费。比特币用的SHA256算法的特点是已知答案验证正确很容易,但是要得到答案非常麻烦,需要一个一个数字去试。最先得到答案的矿工大家就都认可他是抢到了记账权,奖励就归他了。大家继续抢下一题的记账权。简单来说这些计算的意义只在于保证整个系统的稳定安全,并没有更多的意义。

把比特币看作是计算的副产品是不全面的,比特币的产生发行、比特币链上所有的交易流通、比特币系统的稳定性,都是计算的目的,是一体的。当然除了维护这个系统之外,的确并没有产生其他的价值和产物。这也是比特币被指责不环保浪费资源的一个黑点。总的来说,比特币作为一个里程碑式的区块链数字货币,其源于大量的算力投入和用户信任的巨大价值。这一点还是毋庸置疑的。

5. 比特币之挖矿与共识(二)

比特币共识机制的第三步是通过网络中的每个节点独立校验每个新区块。当新区块在网络中传播时,每一个节点在将它 转发到其节点之前,会进行一系列的测试去验证它。这确保了只有有效的区块会在网络中传播。

独立校验还确保了诚实 的矿工生成的区块可以被纳入到区块链中,从而获得奖励。行为不诚实的矿工所产生的区块将被拒绝,这不但使他们失 去了奖励,而且也浪费了本来可以去寻找工作量证明解的机会,因而导致其电费亏损。

当一个节点接收到一个新的区块,它将对照一个长长的标准清单对该区块进行验证,若没有通过验证,这个区块将被拒 绝。这些标准可以在比特币核心客户端的CheckBlock函数和CheckBlockHead函数中获得

它包括:

为什么矿工不为他们自己记录一笔交易去获得数以千计的比特币?

这 是因为每一个节点根据相同的规则对区块进行校验。一个无效的coinbase交易将使整个区块无效,这将导致该区块被拒 绝,因此,该交易就不会成为总账的一部分。矿工们必须构建一个完美的区块,基于所有节点共享的规则,并且根据正 确工作量证明的解决方案进行挖矿,他们要花费大量的电力挖矿才能做到这一点。如果他们作弊,所有的电力和努力都 会浪费。这就是为什么独立校验是去中心化共识的重要组成部分。

比特币去中心化的共识机制的最后一步是将区块集合至有最大工作量证明的链中。一旦一个节点验证了一个新的区块, 它将尝试将新的区块连接到到现存的区块链,将它们组装起来。

节点维护三种区块:第一种是连接到主链上的,第二种是从主链上产生分支的(备用链),最后一种是在已知链中没有 找到已知父区块的。在验证过程中,一旦发现有不符合标准的地方,验证就会失败,这样区块会被节点拒绝,所以也不 会加入到任何一条链中。

任何时候,主链都是累计了最多难度的区块链。在一般情况下,主链也是包含最多区块的那个链,除非有两个等长的链 并且其中一个有更多的工作量证明。主链也会有一些分支,这些分支中的区块与主链上的区块互为“兄弟”区块。这些区 块是有效的,但不是主链的一部分。 保留这些分支的目的是如果在未来的某个时刻它们中的一个延长了并在难度值上超 过了主链,那么后续的区块就会引用它们。

如果节点收到了一个有效的区块,而在现有的区块链中却未找到它的父区块,那么这个区块被认为是“孤块”。孤块会被 保存在孤块池中,直到它们的父区块被节点收到。一旦收到了父区块并且将其连接到现有区块链上,节点就会将孤块从 孤块池中取出,并且连接到它的父区块,让它作为区块链的一部分。当两个区块在很短的时间间隔内被挖出来,节点有 可能会以相反的顺序接收到它们,这个时候孤块现象就会出现。

选择了最大难度的区块链后,所有的节点最终在全网范围内达成共识。随着更多的工作量证明被添加到链中,链的暂时性差异最终会得到解决。挖矿节点通过“投票”来选择它们想要延长的区块链,当它们挖出一个新块并且延长了一个链, 新块本身就代表它们的投票。

因为区块链是去中心化的数据结构,所以不同副本之间不能总是保持一致。区块有可能在不同时间到达不同节点,导致节点有不同的区块链全貌。

解决的办法是,每一个节点总是选择并尝试延长代表累计了最大工作量证明的区块链,也就 是最长的或最大累计工作的链(greatest cumulative work chain)。节点通过累加链上的每个区块的工作量,得到建立这个链所要付出的工作量证明的总量。只要所有的节点选择最长累计工作的区块链,整个比特币网络最终会收敛到一致的状态。分叉即在不同区块链间发生的临时差异,当更多的区块添加到了某个分叉中,这个问题便会迎刃而解。

提示由于全球网络中的传输延迟,本节中描述的区块链分叉自动会发生。

然而,倒三角形的区块不会被丢弃。它被链接到星形链的父区块,并形成备用链。虽然节点X认为自己已经正确选择了获胜链,但是它还会保存“丢失”链,使得“丢失”链如果可能最终“获胜”,它还具有重新打包的所需的信息。

这是一个链的重新共识,因为这些节点被迫修改他们对块链的立场,把自己纳入更长的链。任何从事延伸星形-倒三角形的矿工现在都将停止这项工作,因为他们的候选人是“孤儿”,因为他们的父母“倒三角形”不再是最长的连锁。

“倒三角形”内的交易重新插入到内存池中用来包含在下一个块中,因为它们所在的块不再位于主链中。

整个网络重新回到单一链状态,星形-三角形-菱形,“菱形”成为链中的最后一个块。所有矿工立即开始研究以“菱形”为父区块的候选块,以扩展这条星形-三角形-菱形链。

从理论上来说,两个区块的分叉是有可能的,这种情况发生在因先前分叉而相互对立起来的矿工,又几乎同时发现了两个不同区块的解。

然而,这种情况发生的几率是很低的。单区块分叉每周都会发生,而双块分叉则非常罕见。比特币将区块间隔设计为10分钟,是在更快速的交易确认和更低的分叉概率间作出的妥协。更短的区块产生间隔会让交易清算更快地完成,也会导致更加频繁地区块链分叉。与之相对地,更长的间隔会减少分叉数量,却会导致更长的清算时间。

2012年以来,比特币挖矿发展出一个解决区块头基本结构限制的方案。在比特币的早期,矿工可以通过遍历随机数 (Nonce)获得符合要求的hash来挖出一个块。

难度增长后,矿工经常在尝试了40亿个值后仍然没有出块。然而,这很容 易通过读取块的时间戳并计算经过的时间来解决。因为时间戳是区块头的一部分,它的变化可以让矿工用不同的随机值 再次遍历。当挖矿硬件的速度达到了4GH/秒,这种方法变得越来越困难,因为随机数的取值在一秒内就被用尽了。

当出现ASIC矿机并很快达到了TH/秒的hash速率后,挖矿软件为了找到有效的块, 需要更多的空间来储存nonce值 。可以把时间戳延后一点,但将来如果把它移动得太远,会导致区块变为无效。

区块头需要信息来源的一个新的“变革”。解决方案是使用coinbase交易作为额外的随机值来源,因为coinbase脚本可以储存2-100字节的数据,矿工们开始使用这个空间作为额外随机值的来源,允许他们去探索一个大得多的区块头值范围来找到有效的块。这个coinbase交易包含在merkle树中,这意味着任何coinbase脚本的变化将导致Merkle根的变化。

8个字节的额外随机数,加上4个字节的“标准”随机数,允许矿工每秒尝试2^96(8后面跟28个零)种可能性而无需修改时间戳。如果未来矿工穿过了以上所有的可能性,他们还可以通过修改时间戳来解决。同样,coinbase脚本中也有更多额外的空间可以为将来随机数的扩展做准备。

比特币的共识机制指的是,被矿工(或矿池)试图使用自己的算力实行欺骗或破坏的难度很大,至少理论上是这样。就像我们前面讲的,比特币的共识机制依赖于这样一个前提,那就是绝大多数的矿工,出于自己利益最大化的考虑,都会 通过诚实地挖矿来维持整个比特币系统。然而,当一个或者一群拥有了整个系统中大量算力的矿工出现之后,他们就可以通过攻击比特币的共识机制来达到破坏比特币网络的安全性和可靠性的目的。

值得注意的是,共识攻击只能影响整个区块链未来的共识,或者说,最多能影响不久的过去几个区块的共识(最多影响过去10个块)。而且随着时间的推移,整个比特币块链被篡改的可能性越来越低。

理论上,一个区块链分叉可以变得很长,但实际上,要想实现一个非常长的区块链分叉需要的算力非常非常大,随着整个比特币区块链逐渐增长,过去的区块基本可以认为是无法被分叉篡改的。

同时,共识攻击也不会影响用户的私钥以及加密算法(ECDSA)。

共识攻击也 不能从其他的钱包那里偷到比特币、不签名地支付比特币、重新分配比特币、改变过去的交易或者改变比特币持有纪录。共识攻击能够造成的唯一影响是影响最近的区块(最多10个)并且通过拒绝服务来影响未来区块的生成。

共识攻击的一个典型场景就是“51%攻击”。想象这么一个场景,一群矿工控制了整个比特币网络51%的算力,他们联合起来打算攻击整个比特币系统。由于这群矿工可以生成绝大多数的块,他们就可以通过故意制造块链分叉来实现“双重支 付”或者通过拒绝服务的方式来阻止特定的交易或者攻击特定的钱包地址。

区块链分叉/双重支付攻击指的是攻击者通过 不承认最近的某个交易,并在这个交易之前重构新的块,从而生成新的分叉,继而实现双重支付。有了充足算力的保证,一个攻击者可以一次性篡改最近的6个或者更多的区块,从而使得这些区块包含的本应无法篡改的交易消失。

值得注意的是,双重支付只能在攻击者拥有的钱包所发生的交易上进行,因为只有钱包的拥有者才能生成一个合法的签名用于双重支付交易。攻击者在自己的交易上进行双重支付攻击,如果可以通过使交易无效而实现对于不可逆转的购买行为不予付款, 这种攻击就是有利可图的。

攻击者Mallory在Carol的画廊买了描绘伟大的中本聪的三联组画(The Great Fire),Mallory通过转账价值25万美金的比特币 与Carol进行交易。在等到一个而不是六个交易确认之后,Carol放心地将这幅组画包好,交给了Mallory。这时,Mallory 的一个同伙,一个拥有大量算力的矿池的人Paul,在这笔交易写进区块链的时候,开始了51%攻击。

首先,Paul利用自己矿池的算力重新计算包含这笔交易的块,并且在新块里将原来的交易替换成了另外一笔交易(比如直接转给了Mallory 的另一个钱包而不是Carol的),从而实现了“双重支付”。这笔“双重支付”交易使用了跟原有交易一致的UTXO,但收款人被替换成了Mallory的钱包地址。

然后,Paul利用矿池在伪造的块的基础上,又计算出一个更新的块,这样,包含这 笔“双重支付”交易的块链比原有的块链高出了一个块。到此,高度更高的分叉区块链取代了原有的区块链,“双重支付”交 易取代了原来给Carol的交易,Carol既没有收到价值25万美金的比特币,原本拥有的三幅价值连城的画也被Mallory白白 拿走了。

在整个过程中,Paul矿池里的其他矿工可能自始至终都没有觉察到这笔“双重支付”交易有什么异样,因为挖矿程序都是自动在运行,并且不会时时监控每一个区块中的每一笔交易。

为了避免这类攻击,售卖大宗商品的商家应该在交易得到全网的6个确认之后再交付商品。或者,商家应该使用第三方 的多方签名的账户进行交易,并且也要等到交易账户获得全网多个确认之后再交付商品。一条交易的确认数越多,越难 被攻击者通过51%攻击篡改。

对于大宗商品的交易,即使在付款24小时之后再发货,对买卖双方来说使用比特币支付也 是方便并且有效率的。而24小时之后,这笔交易的全网确认数将达到至少144个(能有效降低被51%攻击的可能性)。

需要注意的是,51%攻击并不是像它的命名里说的那样,攻击者需要至少51%的算力才能发起,实际上,即使其拥有不 到51%的系统算力,依然可以尝试发起这种攻击。之所以命名为51%攻击,只是因为在攻击者的算力达到51%这个阈值 的时候,其发起的攻击尝试几乎肯定会成功。

本质上来看,共识攻击,就像是系统中所有矿工的算力被分成了两组,一 组为诚实算力,一组为攻击者算力,两组人都在争先恐后地计算块链上的新块,只是攻击者算力算出来的是精心构造 的、包含或者剔除了某些交易的块。因此,攻击者拥有的算力越少,在这场决逐中获胜的可能性就越小。

从另一个角度 讲,一个攻击者拥有的算力越多,其故意创造的分叉块链就可能越长,可能被篡改的最近的块或者或者受其控制的未来 的块就会越多。一些安全研究组织利用统计模型得出的结论是,算力达到全网的30%就足以发动51%攻击了。全网算力的急剧增长已经使得比特币系统不再可能被某一个矿工攻击,因为一个矿工已经不可能占据全网哪怕的1%算 力。

待补充

待补充

6. 详解比特币挖矿原理

可以将区块链看作一本记录所有交易的公开总帐簿(列表),比特币网络中的每个参与者都把它看作一本所有权的权威记录。

比特币没有中心机构,几乎所有的完整节点都有一份公共总帐的备份,这份总帐可以被视为认证过的记录。

至今为止,在主干区块链上,没有发生一起成功的攻击,一次都没有。

通过创造出新区块,比特币以一个确定的但不断减慢的速率被铸造出来。大约每十分钟产生一个新区块,每一个新区块都伴随着一定数量从无到有的全新比特币。每开采210,000个块,大约耗时4年,货币发行速率降低50%。

在2016年的某个时刻,在第420,000个区块被“挖掘”出来之后降低到12.5比特币/区块。在第13,230,000个区块(大概在2137年被挖出)之前,新币的发行速度会以指数形式进行64次“二等分”。到那时每区块发行比特币数量变为比特币的最小货币单位——1聪。最终,在经过1,344万个区块之后,所有的共20,999,999.9769亿聪比特币将全部发行完毕。换句话说, 到2140年左右,会存在接近2,100万比特币。在那之后,新的区块不再包含比特币奖励,矿工的收益全部来自交易费。

在收到交易后,每一个节点都会在全网广播前对这些交易进行校验,并以接收时的相应顺序,为有效的新交易建立一个池(交易池)。

每一个节点在校验每一笔交易时,都需要对照一个长长的标准列表:

交易的语法和数据结构必须正确。

输入与输出列表都不能为空。

交易的字节大小是小于MAX_BLOCK_SIZE的。

每一个输出值,以及总量,必须在规定值的范围内 (小于2,100万个币,大于0)。

没有哈希等于0,N等于-1的输入(coinbase交易不应当被中继)。

nLockTime是小于或等于INT_MAX的。

交易的字节大小是大于或等于100的。

交易中的签名数量应小于签名操作数量上限。

解锁脚本(Sig)只能够将数字压入栈中,并且锁定脚本(Pubkey)必须要符合isStandard的格式 (该格式将会拒绝非标准交易)。

池中或位于主分支区块中的一个匹配交易必须是存在的。

对于每一个输入,如果引用的输出存在于池中任何的交易,该交易将被拒绝。

对于每一个输入,在主分支和交易池中寻找引用的输出交易。如果输出交易缺少任何一个输入,该交易将成为一个孤立的交易。如果与其匹配的交易还没有出现在池中,那么将被加入到孤立交易池中。

对于每一个输入,如果引用的输出交易是一个coinbase输出,该输入必须至少获得COINBASE_MATURITY (100)个确认。

对于每一个输入,引用的输出是必须存在的,并且没有被花费。

使用引用的输出交易获得输入值,并检查每一个输入值和总值是否在规定值的范围内 (小于2100万个币,大于0)。

如果输入值的总和小于输出值的总和,交易将被中止。

如果交易费用太低以至于无法进入一个空的区块,交易将被拒绝。

每一个输入的解锁脚本必须依据相应输出的锁定脚本来验证。

以下挖矿节点取名为 A挖矿节点

挖矿节点时刻监听着传播到比特币网络的新区块。而这些新加入的区块对挖矿节点有着特殊的意义。矿工间的竞争以新区块的传播而结束,如同宣布谁是最后的赢家。对于矿工们来说,获得一个新区块意味着某个参与者赢了,而他们则输了这场竞争。然而,一轮竞争的结束也代表着下一轮竞争的开始。

验证交易后,比特币节点会将这些交易添加到自己的内存池中。内存池也称作交易池,用来暂存尚未被加入到区块的交易记录。

A节点需要为内存池中的每笔交易分配一个优先级,并选择较高优先级的交易记录来构建候选区块。

一个交易想要成为“较高优先级”,需满足的条件:优先值大于57,600,000,这个值的生成依赖于3个参数:一个比特币(即1亿聪),年龄为一天(144个区块),交易的大小为250个字节:

High Priority > 100,000,000 satoshis * 144 blocks / 250 bytes = 57,600,000

区块中用来存储交易的前50K字节是保留给较高优先级交易的。 节点在填充这50K字节的时候,会优先考虑这些最高优先级的交易,不管它们是否包含了矿工费。这种机制使得高优先级交易即便是零矿工费,也可以优先被处理。

然后,A挖矿节点会选出那些包含最小矿工费的交易,并按照“每千字节矿工费”进行排序,优先选择矿工费高的交易来填充剩下的区块。

如区块中仍有剩余空间,A挖矿节点可以选择那些不含矿工费的交易。有些矿工会竭尽全力将那些不含矿工费的交易整合到区块中,而其他矿工也许会选择忽略这些交易。

在区块被填满后,内存池中的剩余交易会成为下一个区块的候选交易。因为这些交易还留在内存池中,所以随着新的区块被加到链上,这些交易输入时所引用UTXO的深度(即交易“块龄”)也会随着变大。由于交易的优先值取决于它交易输入的“块龄”,所以这个交易的优先值也就随之增长了。最后,一个零矿工费交易的优先值就有可能会满足高优先级的门槛,被免费地打包进区块。

UTXO(Unspent Transaction Output) : 每笔交易都有若干交易输入,也就是资金来源,也都有若干笔交易输出,也就是资金去向。一般来说,每一笔交易都要花费(spend)一笔输入,产生一笔输出,而其所产生的输出,就是“未花费过的交易输出”,也就是 UTXO。

块龄:UTXO的“块龄”是自该UTXO被记录到区块链为止所经历过的区块数,即这个UTXO在区块链中的深度。

区块中的第一笔交易是笔特殊交易,称为创币交易或者coinbase交易。这个交易是由挖矿节点构造并用来奖励矿工们所做的贡献的。假设此时一个区块的奖励是25比特币,A挖矿的节点会创建“向A的地址支付25.1个比特币(包含矿工费0.1个比特币)”这样一个交易,把生成交易的奖励发送到自己的钱包。A挖出区块获得的奖励金额是coinbase奖励(25个全新的比特币)和区块中全部交易矿工费的总和。

A节点已经构建了一个候选区块,那么就轮到A的矿机对这个新区块进行“挖掘”,求解工作量证明算法以使这个区块有效。比特币挖矿过程使用的是SHA256哈希函数。

用最简单的术语来说, 挖矿节点不断重复进行尝试,直到它找到的随机调整数使得产生的哈希值低于某个特定的目标。 哈希函数的结果无法提前得知,也没有能得到一个特定哈希值的模式。举个例子,你一个人在屋里打台球,白球从A点到达B点,但是一个人推门进来看到白球在B点,却无论如何是不知道如何从A到B的。哈希函数的这个特性意味着:得到哈希值的唯一方法是不断的尝试,每次随机修改输入,直到出现适当的哈希值。

需要以下参数

• block的版本 version

• 上一个block的hash值: prev_hash

• 需要写入的交易记录的hash树的值: merkle_root

• 更新时间: ntime

• 当前难度: nbits

挖矿的过程就是找到x使得

SHA256(SHA256(version + prev_hash + merkle_root + ntime + nbits + x )) < TARGET

上式的x的范围是0~2^32, TARGET可以根据当前难度求出的。

简单打个比方,想象人们不断扔一对色子以得到小于一个特定点数的游戏。第一局,目标是12。只要你不扔出两个6,你就会赢。然后下一局目标为11。玩家只能扔10或更小的点数才能赢,不过也很简单。假如几局之后目标降低为了5。现在有一半机率以上扔出来的色子加起来点数会超过5,因此无效。随着目标越来越小,要想赢的话,扔色子的次数会指数级的上升。最终当目标为2时(最小可能点数),只有一个人平均扔36次或2%扔的次数中,他才能赢。

如前所述,目标决定了难度,进而影响求解工作量证明算法所需要的时间。那么问题来了:为什么这个难度值是可调整的?由谁来调整?如何调整?

比特币的区块平均每10分钟生成一个。这就是比特币的心跳,是货币发行速率和交易达成速度的基础。不仅是在短期内,而是在几十年内它都必须要保持恒定。在此期间,计算机性能将飞速提升。此外,参与挖矿的人和计算机也会不断变化。为了能让新区块的保持10分钟一个的产生速率,挖矿的难度必须根据这些变化进行调整。事实上,难度是一个动态的参数,会定期调整以达到每10分钟一个新区块的目标。简单地说,难度被设定在,无论挖矿能力如何,新区块产生速率都保持在10分钟一个。

那么,在一个完全去中心化的网络中,这样的调整是如何做到的呢?难度的调整是在每个完整节点中独立自动发生的。每2,016个区块(2周产生的区块)中的所有节点都会调整难度。难度的调整公式是由最新2,016个区块的花费时长与20,160分钟(两周,即这些区块以10分钟一个速率所期望花费的时长)比较得出的。难度是根据实际时长与期望时长的比值进行相应调整的(或变难或变易)。简单来说,如果网络发现区块产生速率比10分钟要快时会增加难度。如果发现比10分钟慢时则降低难度。

为了防止难度的变化过快,每个周期的调整幅度必须小于一个因子(值为4)。如果要调整的幅度大于4倍,则按4倍调整。由于在下一个2,016区块的周期不平衡的情况会继续存在,所以进一步的难度调整会在下一周期进行。因此平衡哈希计算能力和难度的巨大差异有可能需要花费几个2,016区块周期才会完成。

举个例子,当前A节点在挖277,316个区块,A挖矿节点一旦完成计算,立刻将这个区块发给它的所有相邻节点。这些节点在接收并验证这个新区块后,也会继续传播此区块。当这个新区块在网络中扩散时,每个节点都会将它作为第277,316个区块(父区块为277,315)加到自身节点的区块链副本中。当挖矿节点收到并验证了这个新区块后,它们会放弃之前对构建这个相同高度区块的计算,并立即开始计算区块链中下一个区块的工作。

比特币共识机制的第三步是通过网络中的每个节点独立校验每个新区块。当新区块在网络中传播时,每一个节点在将它转发到其节点之前,会进行一系列的测试去验证它。这确保了只有有效的区块会在网络中传播。

每一个节点对每一个新区块的独立校验,确保了矿工无法欺诈。在前面的章节中,我们看到了矿工们如何去记录一笔交易,以获得在此区块中创造的新比特币和交易费。为什么矿工不为他们自己记录一笔交易去获得数以千计的比特币?这是因为每一个节点根据相同的规则对区块进行校验。一个无效的coinbase交易将使整个区块无效,这将导致该区块被拒绝,因此,该交易就不会成为总账的一部分。

比特币去中心化的共识机制的最后一步是将区块集合至有最大工作量证明的链中。一旦一个节点验证了一个新的区块,它将尝试将新的区块连接到到现存的区块链,将它们组装起来。

节点维护三种区块:

· 第一种是连接到主链上的,

· 第二种是从主链上产生分支的(备用链),

· 第三种是在已知链中没有找到已知父区块的。

有时候,新区块所延长的区块链并不是主链,这一点我们将在下面“ 区块链分叉”中看到。

如果节点收到了一个有效的区块,而在现有的区块链中却未找到它的父区块,那么这个区块被认为是“孤块”。孤块会被保存在孤块池中,直到它们的父区块被节点收到。一旦收到了父区块并且将其连接到现有区块链上,节点就会将孤块从孤块池中取出,并且连接到它的父区块,让它作为区块链的一部分。当两个区块在很短的时间间隔内被挖出来,节点有可能会以相反的顺序接收到它们,这个时候孤块现象就会出现。

选择了最大难度的区块链后,所有的节点最终在全网范围内达成共识。随着更多的工作量证明被添加到链中,链的暂时性差异最终会得到解决。挖矿节点通过“投票”来选择它们想要延长的区块链,当它们挖出一个新块并且延长了一个链,新块本身就代表它们的投票。

因为区块链是去中心化的数据结构,所以不同副本之间不能总是保持一致。区块有可能在不同时间到达不同节点,导致节点有不同的区块链视角。解决的办法是, 每一个节点总是选择并尝试延长代表累计了最大工作量证明的区块链,也就是最长的或最大累计难度的链。

当有两个候选区块同时想要延长最长区块链时,分叉事件就会发生。正常情况下,分叉发生在两名矿工在较短的时间内,各自都算得了工作量证明解的时候。两个矿工在各自的候选区块一发现解,便立即传播自己的“获胜”区块到网络中,先是传播给邻近的节点而后传播到整个网络。每个收到有效区块的节点都会将其并入并延长区块链。如果该节点在随后又收到了另一个候选区块,而这个区块又拥有同样父区块,那么节点会将这个区块连接到候选链上。其结果是,一些节点收到了一个候选区块,而另一些节点收到了另一个候选区块,这时两个不同版本的区块链就出现了。

分叉之前

分叉开始

我们看到两个矿工几乎同时挖到了两个不同的区块。为了便于跟踪这个分叉事件,我们设定有一个被标记为红色的、来自加拿大的区块,还有一个被标记为绿色的、来自澳大利亚的区块。

假设有这样一种情况,一个在加拿大的矿工发现了“红色”区块的工作量证明解,在“蓝色”的父区块上延长了块链。几乎同一时刻,一个澳大利亚的矿工找到了“绿色”区块的解,也延长了“蓝色”区块。那么现在我们就有了两个区块:一个是源于加拿大的“红色”区块;另一个是源于澳大利亚的“绿色”。这两个区块都是有效的,均包含有效的工作量证明解并延长同一个父区块。这个两个区块可能包含了几乎相同的交易,只是在交易的排序上有些许不同。

比特币网络中邻近(网络拓扑上的邻近,而非地理上的)加拿大的节点会首先收到“红色”区块,并建立一个最大累计难度的区块,“红色”区块为这个链的最后一个区块(蓝色-红色),同时忽略晚一些到达的“绿色”区块。相比之下,离澳大利亚更近的节点会判定“绿色”区块胜出,并以它为最后一个区块来延长区块链(蓝色-绿色),忽略晚几秒到达的“红色”区块。那些首先收到“红色”区块的节点,会即刻以这个区块为父区块来产生新的候选区块,并尝试寻找这个候选区块的工作量证明解。同样地,接受“绿色”区块的节点会以这个区块为链的顶点开始生成新块,延长这个链。

分叉问题几乎总是在一个区块内就被解决了。网络中的一部分算力专注于“红色”区块为父区块,在其之上建立新的区块;另一部分算力则专注在“绿色”区块上。即便算力在这两个阵营中平均分配,也总有一个阵营抢在另一个阵营前发现工作量证明解并将其传播出去。在这个例子中我们可以打个比方,假如工作在“绿色”区块上的矿工找到了一个“粉色”区块延长了区块链(蓝色-绿色-粉色),他们会立刻传播这个新区块,整个网络会都会认为这个区块是有效的,如上图所示。

所有在上一轮选择“绿色”区块为胜出者的节点会直接将这条链延长一个区块。然而,那些选择“红色”区块为胜出者的节点现在会看到两个链: “蓝色-绿色-粉色”和“蓝色-红色”。 如上图所示,这些节点会根据结果将 “蓝色-绿色-粉色” 这条链设置为主链,将 “蓝色-红色” 这条链设置为备用链。 这些节点接纳了新的更长的链,被迫改变了原有对区块链的观点,这就叫做链的重新共识 。因为“红”区块做为父区块已经不在最长链上,导致了他们的候选区块已经成为了“孤块”,所以现在任何原本想要在“蓝色-红色”链上延长区块链的矿工都会停下来。全网将 “蓝色-绿色-粉色” 这条链识别为主链,“粉色”区块为这条链的最后一个区块。全部矿工立刻将他们产生的候选区块的父区块切换为“粉色”,来延长“蓝色-绿色-粉色”这条链。

从理论上来说,两个区块的分叉是有可能的,这种情况发生在因先前分叉而相互对立起来的矿工,又几乎同时发现了两个不同区块的解。然而,这种情况发生的几率是很低的。单区块分叉每周都会发生,而双块分叉则非常罕见。

比特币将区块间隔设计为10分钟,是在更快速的交易确认和更低的分叉概率间作出的妥协。更短的区块产生间隔会让交易清算更快地完成,也会导致更加频繁地区块链分叉。与之相对地,更长的间隔会减少分叉数量,却会导致更长的清算时间。

7. 比特币挖矿计算的是什么

1、计算的就是比特币本身。这一计算过程就是比特币的发行过程。
2、因上述原因,我觉得可以理解为没有实际意义。
3、你说的是货币包的数目吧?那个就是你连接的其他客户端的数量(毕竟是P2P),这很重要!这个数值要达到一定程度账户才可正常运作。一直开着就好了。

8. 比特币矿机运算的是什么

从用户的角度来看,比特币就是一个手机应用或电脑程序,可以提供一个个人比特币钱包,用户可以用它支付和接收比特币。这就是比特币对于大多数用户的运作原理。

在幕后,整个比特币网络共享一个称作“块链”的公共总帐。这份总帐包含了每一笔处理过的交易,使得用户的电脑可以核实每一笔交易的有效性。每一笔交易的真实性由发送地址对应的电子签名保护,这使得用户能够完全掌控从他们自己的比特币地址转出的比特币。另外,任何人都可以利用专门硬件的计算能力来处理交易并为此获得比特币奖励。这一服务经常被称作“挖矿”。

比特币挖矿经历了三个发展阶段,在比特币刚刚诞生时,比特币的价格很低,大家只是把比特币当做一种游戏,使用自己普通的电脑进行挖矿,但在2012年随着比特币价格的上升,人们发现显卡挖矿速度较快,因此,人们开始购买大量显卡组装到一起进行挖矿,俗称“烧显卡”;第三阶段,就是大家熟知的ASIC矿机挖矿,自从阿瓦隆生产出世界上第一台ASIC比特币矿机,比特币挖矿就彻底的被颠覆了,挖矿成为了一个特别专业的事情。

9. 区块链是怎么挖矿赚钱的

挖矿赚钱的原理:PoW和挖矿。

最开始比特币可以用显卡挖出,但在 13 年时,已经无法用显卡通用计算程序挖出比特币 BTC,比特币现在全部都是用 ASIC 矿机进行"挖矿"。

类似地,14 年莱特币 ASIC 矿机上市也终结了显卡挖莱特币的挖矿历史。目前显卡能够"挖矿"的数字货币是以太坊 ETH、以太经典 ETC、Zcash 零币 ZEC。

显卡"挖矿"并不是一本万利的生意,事实上起步越早,收益越高,而且收益会随着更多的矿工和显卡的加入递减。

直白说,现在买高价的显卡入场"挖矿"绝对是亏死你,购置专业矿机才是更高性价比的选择。如今个人挖矿的必备工具是矿池,矿池的作用是集合大量矿机算力,增大你挖到币的几率,同时你未来能挖到的币提前平均分配到你的账户里。

以比特币为例,假如现在比特币全网每 10 分钟产生一个区块,这个区块包含 25 个比特币。假设全球有 1W 人参与挖矿,那么在这 10 分钟内,只有 1 个幸运儿拿走了这 25 个比特币。

其它人则颗粒无收。而矿池的原理是大家组队挖矿,并按约定的分配方式分配,使得矿工的挖币回报趋于稳定,减少矿工的风险。

为增强性价比,还可选购一些类似玩客云这样的实用矿机,既能当普通硬件产品使用,也能挖矿,一举两得。

(9)比原链挖矿计算扩展阅读

块链交易和数字货币的运作核心有几个:

去中心化数据库连成的交易网络——称为区块链,大家所有的客户端(包括矿机)一起记账,确认转账交易;按时间发行一定量的数字货币。

因为赢家通吃,导致中小散户矿工要联合起来组成"矿池",以 Shares 记录累积工作量,联合算力越高,矿池联合体先找到数字货币的概率就越大,增大找到新发数字货币的概率,瓜分挖到的数字货币。这就叫 PoW 工作量证明机制。

热点内容
调研组在调研btc天 发布:2025-05-18 04:19:18 浏览:556
数字货币ddm是什么意思 发布:2025-05-18 04:14:59 浏览:266
怎么算摩擦力的能量 发布:2025-05-18 04:13:26 浏览:694
币印矿池dcr算力骤减 发布:2025-05-18 04:11:52 浏览:646
虚拟货币唯有茅台和比特币 发布:2025-05-18 03:56:07 浏览:944
比特币挖矿不是浪费钱 发布:2025-05-18 03:51:32 浏览:403
usdt如何卖出人民币 发布:2025-05-18 03:43:08 浏览:417
元宇宙区块链代币yyz 发布:2025-05-18 03:42:28 浏览:419
测绘次新元宇宙 发布:2025-05-18 02:37:55 浏览:970
比特币转让币手续 发布:2025-05-18 02:37:53 浏览:204