当前位置:首页 » 挖矿知识 » 比原链挖矿算

比原链挖矿算

发布时间: 2023-02-05 15:48:47

Ⅰ 同志btm是什么意思

btm现在在币圈指的是比原链,比原链作为公链,有多项技术创新,挖矿采用人工智能ASIC芯片友好型的POW算法,比原链上的代币是比原币,比原币现在在中币以有大量的用户去了解去投了。

Ⅱ btm币有价值吗

BTM币有价值的。
BTM为比原链的原生代币,总量为21亿个,思慕的分发份额为7%,1CO的份额占30%,比原币项目基金会预留了20%,这一部分是1CO结束后的一年内全部冻结,之后分为四年分期解冻,每年解冻5%。 除此之外,比原币商业拓展预留了10%的份额,那么剩下的33%则是比原币的挖矿份额。 从分配数据上来看,是相对合理并且有规划的,并且挖矿分发每四年产量减半,甚至不再会有新快奖励产生,这样将会对挖矿数量每年依次递减,那么BTM的价值起源就是其能够方便的表征和度量比原链上数字化经济活动。
拓展资料
代币经济:
BTM为比原链的原生代币,总量为21亿个,思慕的分发份额为7%,1CO的份额占30%,比原币项目基金会预留了20%,这一部分是1CO结束后的一年内全部冻结,之后分为四年分期解冻,每年解冻5%。除此之外,比原币商业拓展预留了10%的份额,那么剩下的33%则是比原币的挖矿份额。
从分配数据上来看,是相对合理并且有规划的,并且挖矿分发每四年产量减半,甚至不再会有新快奖励产生,这样将会对挖矿数量每年依次递减,那么BTM的价值起源就是其能够方便的表征和度量比原链上数字化经济活动。比原币既代表比原链的所有权又代表使用权:使用比原链的应用需用比原币支付一定的费用,体现比原币的使用权特性;持有比原币,代表拥有比原链的一部分,相当于比原链股东,能够参与到比原链治理的最高决策,体现比原币的所有权特性。
技术创新:
与市面其他的公链项目不同,比原链在1CO项目治理机制中提出了三层治理结构:财务预算管理、信息披露制度、投资风险提示。除此之外,比原链也专注于区块链在资产登记流通领域的创新:
1.通过侧链技术实现收益权资产的分红;
2.采用开放数据索引|标准来命名资产;
3.采用对人工智能ASIC芯片友好型的PoW创新算法;
4.扩展性UTXO模型。
如果说其它公链项目像是区块链领域的FPGA,强调智能合约的可编程性与通用性,适用于不同商业场景,那么比原链就是区块链的ASIC,更强调智能合约在资产领域的专用性,针对资产的属性,在资源不可复制性、可控匿名性、安全与合规性上做了许多创新。

Ⅲ btm是啥意思

btm(Bytom)是一种多样性资产、多节点资产的交互协议,运行在比原链区块链上的不同形态的、异构的比特资产和原子资产可以通过该协议进行登记、交换、对赌、和基于合约的更具复杂性的互交操作。

btm为比原链的原生代币,总量为21亿个,私募的分发份额为7%,ICO的份额占30%,比原币项目基金会预留了20%,这一部分是ICO结束后的一年内全部冻结,之后分为四年分期解冻,每年解冻5%。除此之外,比原币商业拓展预留了10%的份额,剩下的33%则是比原币的挖矿份额。

(3)比原链挖矿算扩展阅读:

项目btm(比原链)专注于资产链,应用于收益权资产管理、非上市公司股权管理、证券化资产管理。并且btm与比特币 UTXO 的设计兼容,支持国密标准,采用人工智能 ASIC 芯片友好型 POW 算法,使用侧链支持跨链资产交易及分红,增强了交易的灵活性。

Ⅳ 比特币和区块链什么原理矿机挖矿怎么回事

比特币是基于一种特定算法所产生的数字货币

比特币相当于数字黄金,黄金作为大家所公认的一般等价物,天然具有货币属性,自古就被当做是一种流通货币。比特币诞生于2009年,是一位名为中本聪的人所创造的,作为最早的数字货币在创造之初可以说是一文不值,而直到2017年比特币的交易价格最高超过3万人民币,之所以比特币变成了一种有价的数字货币有以下原因:

首先,它就像黄金一样,作为一种天然矿物,总量是有限的,比特币同样根据自身算法无法超发,也就不会出现因为货币滥发,导致货币急速贬值的情况,比特币的数量由于算法原因被控制在不超过2100万个,无法大量发行,让其价值得到了保证。

Ⅳ 比特币矿机运算的是什么

从用户的角度来看,比特币就是一个手机应用或电脑程序,可以提供一个个人比特币钱包,用户可以用它支付和接收比特币。这就是比特币对于大多数用户的运作原理。

在幕后,整个比特币网络共享一个称作“块链”的公共总帐。这份总帐包含了每一笔处理过的交易,使得用户的电脑可以核实每一笔交易的有效性。每一笔交易的真实性由发送地址对应的电子签名保护,这使得用户能够完全掌控从他们自己的比特币地址转出的比特币。另外,任何人都可以利用专门硬件的计算能力来处理交易并为此获得比特币奖励。这一服务经常被称作“挖矿”。

比特币挖矿经历了三个发展阶段,在比特币刚刚诞生时,比特币的价格很低,大家只是把比特币当做一种游戏,使用自己普通的电脑进行挖矿,但在2012年随着比特币价格的上升,人们发现显卡挖矿速度较快,因此,人们开始购买大量显卡组装到一起进行挖矿,俗称“烧显卡”;第三阶段,就是大家熟知的ASIC矿机挖矿,自从阿瓦隆生产出世界上第一台ASIC比特币矿机,比特币挖矿就彻底的被颠覆了,挖矿成为了一个特别专业的事情。

Ⅵ 比特币之挖矿与共识(二)

比特币共识机制的第三步是通过网络中的每个节点独立校验每个新区块。当新区块在网络中传播时,每一个节点在将它 转发到其节点之前,会进行一系列的测试去验证它。这确保了只有有效的区块会在网络中传播。

独立校验还确保了诚实 的矿工生成的区块可以被纳入到区块链中,从而获得奖励。行为不诚实的矿工所产生的区块将被拒绝,这不但使他们失 去了奖励,而且也浪费了本来可以去寻找工作量证明解的机会,因而导致其电费亏损。

当一个节点接收到一个新的区块,它将对照一个长长的标准清单对该区块进行验证,若没有通过验证,这个区块将被拒 绝。这些标准可以在比特币核心客户端的CheckBlock函数和CheckBlockHead函数中获得

它包括:

为什么矿工不为他们自己记录一笔交易去获得数以千计的比特币?

这 是因为每一个节点根据相同的规则对区块进行校验。一个无效的coinbase交易将使整个区块无效,这将导致该区块被拒 绝,因此,该交易就不会成为总账的一部分。矿工们必须构建一个完美的区块,基于所有节点共享的规则,并且根据正 确工作量证明的解决方案进行挖矿,他们要花费大量的电力挖矿才能做到这一点。如果他们作弊,所有的电力和努力都 会浪费。这就是为什么独立校验是去中心化共识的重要组成部分。

比特币去中心化的共识机制的最后一步是将区块集合至有最大工作量证明的链中。一旦一个节点验证了一个新的区块, 它将尝试将新的区块连接到到现存的区块链,将它们组装起来。

节点维护三种区块:第一种是连接到主链上的,第二种是从主链上产生分支的(备用链),最后一种是在已知链中没有 找到已知父区块的。在验证过程中,一旦发现有不符合标准的地方,验证就会失败,这样区块会被节点拒绝,所以也不 会加入到任何一条链中。

任何时候,主链都是累计了最多难度的区块链。在一般情况下,主链也是包含最多区块的那个链,除非有两个等长的链 并且其中一个有更多的工作量证明。主链也会有一些分支,这些分支中的区块与主链上的区块互为“兄弟”区块。这些区 块是有效的,但不是主链的一部分。 保留这些分支的目的是如果在未来的某个时刻它们中的一个延长了并在难度值上超 过了主链,那么后续的区块就会引用它们。

如果节点收到了一个有效的区块,而在现有的区块链中却未找到它的父区块,那么这个区块被认为是“孤块”。孤块会被 保存在孤块池中,直到它们的父区块被节点收到。一旦收到了父区块并且将其连接到现有区块链上,节点就会将孤块从 孤块池中取出,并且连接到它的父区块,让它作为区块链的一部分。当两个区块在很短的时间间隔内被挖出来,节点有 可能会以相反的顺序接收到它们,这个时候孤块现象就会出现。

选择了最大难度的区块链后,所有的节点最终在全网范围内达成共识。随着更多的工作量证明被添加到链中,链的暂时性差异最终会得到解决。挖矿节点通过“投票”来选择它们想要延长的区块链,当它们挖出一个新块并且延长了一个链, 新块本身就代表它们的投票。

因为区块链是去中心化的数据结构,所以不同副本之间不能总是保持一致。区块有可能在不同时间到达不同节点,导致节点有不同的区块链全貌。

解决的办法是,每一个节点总是选择并尝试延长代表累计了最大工作量证明的区块链,也就 是最长的或最大累计工作的链(greatest cumulative work chain)。节点通过累加链上的每个区块的工作量,得到建立这个链所要付出的工作量证明的总量。只要所有的节点选择最长累计工作的区块链,整个比特币网络最终会收敛到一致的状态。分叉即在不同区块链间发生的临时差异,当更多的区块添加到了某个分叉中,这个问题便会迎刃而解。

提示由于全球网络中的传输延迟,本节中描述的区块链分叉自动会发生。

然而,倒三角形的区块不会被丢弃。它被链接到星形链的父区块,并形成备用链。虽然节点X认为自己已经正确选择了获胜链,但是它还会保存“丢失”链,使得“丢失”链如果可能最终“获胜”,它还具有重新打包的所需的信息。

这是一个链的重新共识,因为这些节点被迫修改他们对块链的立场,把自己纳入更长的链。任何从事延伸星形-倒三角形的矿工现在都将停止这项工作,因为他们的候选人是“孤儿”,因为他们的父母“倒三角形”不再是最长的连锁。

“倒三角形”内的交易重新插入到内存池中用来包含在下一个块中,因为它们所在的块不再位于主链中。

整个网络重新回到单一链状态,星形-三角形-菱形,“菱形”成为链中的最后一个块。所有矿工立即开始研究以“菱形”为父区块的候选块,以扩展这条星形-三角形-菱形链。

从理论上来说,两个区块的分叉是有可能的,这种情况发生在因先前分叉而相互对立起来的矿工,又几乎同时发现了两个不同区块的解。

然而,这种情况发生的几率是很低的。单区块分叉每周都会发生,而双块分叉则非常罕见。比特币将区块间隔设计为10分钟,是在更快速的交易确认和更低的分叉概率间作出的妥协。更短的区块产生间隔会让交易清算更快地完成,也会导致更加频繁地区块链分叉。与之相对地,更长的间隔会减少分叉数量,却会导致更长的清算时间。

2012年以来,比特币挖矿发展出一个解决区块头基本结构限制的方案。在比特币的早期,矿工可以通过遍历随机数 (Nonce)获得符合要求的hash来挖出一个块。

难度增长后,矿工经常在尝试了40亿个值后仍然没有出块。然而,这很容 易通过读取块的时间戳并计算经过的时间来解决。因为时间戳是区块头的一部分,它的变化可以让矿工用不同的随机值 再次遍历。当挖矿硬件的速度达到了4GH/秒,这种方法变得越来越困难,因为随机数的取值在一秒内就被用尽了。

当出现ASIC矿机并很快达到了TH/秒的hash速率后,挖矿软件为了找到有效的块, 需要更多的空间来储存nonce值 。可以把时间戳延后一点,但将来如果把它移动得太远,会导致区块变为无效。

区块头需要信息来源的一个新的“变革”。解决方案是使用coinbase交易作为额外的随机值来源,因为coinbase脚本可以储存2-100字节的数据,矿工们开始使用这个空间作为额外随机值的来源,允许他们去探索一个大得多的区块头值范围来找到有效的块。这个coinbase交易包含在merkle树中,这意味着任何coinbase脚本的变化将导致Merkle根的变化。

8个字节的额外随机数,加上4个字节的“标准”随机数,允许矿工每秒尝试2^96(8后面跟28个零)种可能性而无需修改时间戳。如果未来矿工穿过了以上所有的可能性,他们还可以通过修改时间戳来解决。同样,coinbase脚本中也有更多额外的空间可以为将来随机数的扩展做准备。

比特币的共识机制指的是,被矿工(或矿池)试图使用自己的算力实行欺骗或破坏的难度很大,至少理论上是这样。就像我们前面讲的,比特币的共识机制依赖于这样一个前提,那就是绝大多数的矿工,出于自己利益最大化的考虑,都会 通过诚实地挖矿来维持整个比特币系统。然而,当一个或者一群拥有了整个系统中大量算力的矿工出现之后,他们就可以通过攻击比特币的共识机制来达到破坏比特币网络的安全性和可靠性的目的。

值得注意的是,共识攻击只能影响整个区块链未来的共识,或者说,最多能影响不久的过去几个区块的共识(最多影响过去10个块)。而且随着时间的推移,整个比特币块链被篡改的可能性越来越低。

理论上,一个区块链分叉可以变得很长,但实际上,要想实现一个非常长的区块链分叉需要的算力非常非常大,随着整个比特币区块链逐渐增长,过去的区块基本可以认为是无法被分叉篡改的。

同时,共识攻击也不会影响用户的私钥以及加密算法(ECDSA)。

共识攻击也 不能从其他的钱包那里偷到比特币、不签名地支付比特币、重新分配比特币、改变过去的交易或者改变比特币持有纪录。共识攻击能够造成的唯一影响是影响最近的区块(最多10个)并且通过拒绝服务来影响未来区块的生成。

共识攻击的一个典型场景就是“51%攻击”。想象这么一个场景,一群矿工控制了整个比特币网络51%的算力,他们联合起来打算攻击整个比特币系统。由于这群矿工可以生成绝大多数的块,他们就可以通过故意制造块链分叉来实现“双重支 付”或者通过拒绝服务的方式来阻止特定的交易或者攻击特定的钱包地址。

区块链分叉/双重支付攻击指的是攻击者通过 不承认最近的某个交易,并在这个交易之前重构新的块,从而生成新的分叉,继而实现双重支付。有了充足算力的保证,一个攻击者可以一次性篡改最近的6个或者更多的区块,从而使得这些区块包含的本应无法篡改的交易消失。

值得注意的是,双重支付只能在攻击者拥有的钱包所发生的交易上进行,因为只有钱包的拥有者才能生成一个合法的签名用于双重支付交易。攻击者在自己的交易上进行双重支付攻击,如果可以通过使交易无效而实现对于不可逆转的购买行为不予付款, 这种攻击就是有利可图的。

攻击者Mallory在Carol的画廊买了描绘伟大的中本聪的三联组画(The Great Fire),Mallory通过转账价值25万美金的比特币 与Carol进行交易。在等到一个而不是六个交易确认之后,Carol放心地将这幅组画包好,交给了Mallory。这时,Mallory 的一个同伙,一个拥有大量算力的矿池的人Paul,在这笔交易写进区块链的时候,开始了51%攻击。

首先,Paul利用自己矿池的算力重新计算包含这笔交易的块,并且在新块里将原来的交易替换成了另外一笔交易(比如直接转给了Mallory 的另一个钱包而不是Carol的),从而实现了“双重支付”。这笔“双重支付”交易使用了跟原有交易一致的UTXO,但收款人被替换成了Mallory的钱包地址。

然后,Paul利用矿池在伪造的块的基础上,又计算出一个更新的块,这样,包含这 笔“双重支付”交易的块链比原有的块链高出了一个块。到此,高度更高的分叉区块链取代了原有的区块链,“双重支付”交 易取代了原来给Carol的交易,Carol既没有收到价值25万美金的比特币,原本拥有的三幅价值连城的画也被Mallory白白 拿走了。

在整个过程中,Paul矿池里的其他矿工可能自始至终都没有觉察到这笔“双重支付”交易有什么异样,因为挖矿程序都是自动在运行,并且不会时时监控每一个区块中的每一笔交易。

为了避免这类攻击,售卖大宗商品的商家应该在交易得到全网的6个确认之后再交付商品。或者,商家应该使用第三方 的多方签名的账户进行交易,并且也要等到交易账户获得全网多个确认之后再交付商品。一条交易的确认数越多,越难 被攻击者通过51%攻击篡改。

对于大宗商品的交易,即使在付款24小时之后再发货,对买卖双方来说使用比特币支付也 是方便并且有效率的。而24小时之后,这笔交易的全网确认数将达到至少144个(能有效降低被51%攻击的可能性)。

需要注意的是,51%攻击并不是像它的命名里说的那样,攻击者需要至少51%的算力才能发起,实际上,即使其拥有不 到51%的系统算力,依然可以尝试发起这种攻击。之所以命名为51%攻击,只是因为在攻击者的算力达到51%这个阈值 的时候,其发起的攻击尝试几乎肯定会成功。

本质上来看,共识攻击,就像是系统中所有矿工的算力被分成了两组,一 组为诚实算力,一组为攻击者算力,两组人都在争先恐后地计算块链上的新块,只是攻击者算力算出来的是精心构造 的、包含或者剔除了某些交易的块。因此,攻击者拥有的算力越少,在这场决逐中获胜的可能性就越小。

从另一个角度 讲,一个攻击者拥有的算力越多,其故意创造的分叉块链就可能越长,可能被篡改的最近的块或者或者受其控制的未来 的块就会越多。一些安全研究组织利用统计模型得出的结论是,算力达到全网的30%就足以发动51%攻击了。全网算力的急剧增长已经使得比特币系统不再可能被某一个矿工攻击,因为一个矿工已经不可能占据全网哪怕的1%算 力。

待补充

待补充

Ⅶ 天天说挖矿,比特币挖矿流程概述。

通俗易懂的大概流程

如果你之前对挖矿根本没有了解,这段介绍就适合你阅读,进入状态后再进行更深层次的学习。

其实通俗来讲原理很简单,比特币作为一种点对点的电子货币体系,挖矿的过程就是一个纪录数据的过程,因为整个系统是开放的,人人可参与的,所以人人都可以进行挖矿,虽然理论上人人都可以参与,但无利不起早没有人会平白无故的参与到网络的建设中,中本聪就利用Hash函数设计了一种激励和竞争方式。

大家都进行数据的处理工作,谁处理的又快又准确,谁就获得记账权,同时获得该区块的奖励。既有奖励又有竞争才使得比特币网络得以正常运转。

想要竞争成功就要经历几个基本的流程。

一、首先你要将没有被记录的交易信息检查并归集到一个数据块中。

二、数据块打包好后,进行哈希运算,算出哈希值,哈希值这个概念在昨天文章中已经详细的介绍过。

三、算出哈希值后进行全网广播,其他矿工接收到后进行验证,验证没有问题就会将这一个数据块连接到整个区块链上,就可以获得这个区块的奖励了。

大致过程了解后就可以开始详细的了解整个过程了。

开始挖矿前的准备工作

这里所说的准备,可不是让你准备买矿机或者给矿机通电,说的是在进行POW工作量证明之前记账节点所作的准备工作。也就是前面流程的第一步的具体解释。

想要收集齐全交易信息,第一步就是收集广播中还没有被记录账本的原始交易信息。收集完成后就要自己先进行验证,主要验证两个方面,1.每个交易信息中的付款地址有没有足够付款的余额。2.验证交易是否有正确的签名。这两项必不可少,通俗一点就是你给别人打钱银行需要确认的就是两点,你账号里到底有没有那么多钱,是不是你本人或本人同意的行为。

这两项验证完后就可以将验证好的数据进行打包,打包完成后当然没有完,因为还有对于矿工来说最最重要的 一 步,添加一个奖励交易,写一个给自己地址增加6.25枚比特币的交易。

如果你竞争成功,那么你的账户地址内就会增加6.25枚比特币,在这里也顺便提一下减半,最开始一个区块的记账奖励是50个比特币,比特币大概每4年奖励就进行减半,前一段时间的减半过后比特币一个区块的奖励已经变成了6.25枚。

值得一提的是前两次减半后都伴随着牛市的来临,现在第三次减半已过,在之后会有什么样的变化呢?

准备工作完成后就要正式的争夺了

因为10分钟左右就一个记账的名额,在这个阶段全世界的矿工,都进行着一场没有硝烟的战争。

那这场仗怎么打呢?其实就是计算Hash函数,矿工算力的比拼,所以说在比特币网络哪里都离不开Hash函数。为了保证在10分钟只有一个人能够成功,这个哈希函数的难度必须适当。直接哈希难度过低,所以规定Hash出的结果必须以若干个0构成。

可能直接这么说开头若干个0还没有什么难度概念,那就简单分析一下,进行这样的计算有多难 , 也就顺便可以解释为什么单打独斗的矿工已经不吃香了。

Hash值跟平常我们设置的密码要求相似,是由数字、字母组成,其中字母区分大小写。也就是说每一位都有62种可能,哈希运算本质就是试错,相当于给你一个不限出错次数的手机让你开锁一样 。 而比特币的哈希值是以18个0开头的,理论上需要进行62的18次方,这个数字在普通计算器上都是以科学计数法显示的,结果为1.832527122*10的32次方。

指数爆炸式的运算次数增长保证了其挖矿的难度。同时也因为难度大带来了一些争议,有人就会说耗费那么大却不产生价值,之前挖矿还在一份意见征集稿中放到了落后产能里。可以说对于挖矿行业的争议是一直存在的。

最后一步验证

找到哈希值后,进行广播打包区块,网络节点就会进行验证。

情况无非就是两种,一种是验证通过,那么表明这个区块成功挖出,其他矿工就不再竞争,选择接受这个区块,将这个区块进行记录,挖出这个区块的矿工就获得了该区块的奖励,并且进入下一个区块的竞争。

另外一种就是不通过,那么前面的那些工作都白费了,投入的成本就没有办法收回,所以矿工们都自觉的遵守着打包和验证的规则,因为作恶成本较高,也就维护了比特币网络的安全。

相信你读完文章已经大致了解了比特币挖矿的整个流程,不过挖矿实际操作起来又是另一个概念了,其中什么时候适合进场挖矿、入手什么样的矿机进行挖矿、通过什么样的方式参与挖矿都是有一定学问的。

挖矿有风险投资需谨慎呀,搞懂再行动,没搞懂之前就要多学习。

Ⅷ 比特币的挖矿到底在计算什么

比特币的挖矿计算其实就是大家一起做数学题,题干是需要被记录的交易,大家通过做题抢夺记账权,抢到的矿工就能获得系统奖励和交易手续费。比特币用的SHA256算法的特点是已知答案验证正确很容易,但是要得到答案非常麻烦,需要一个一个数字去试。最先得到答案的矿工大家就都认可他是抢到了记账权,奖励就归他了。大家继续抢下一题的记账权。简单来说这些计算的意义只在于保证整个系统的稳定安全,并没有更多的意义。

把比特币看作是计算的副产品是不全面的,比特币的产生发行、比特币链上所有的交易流通、比特币系统的稳定性,都是计算的目的,是一体的。当然除了维护这个系统之外,的确并没有产生其他的价值和产物。这也是比特币被指责不环保浪费资源的一个黑点。总的来说,比特币作为一个里程碑式的区块链数字货币,其源于大量的算力投入和用户信任的巨大价值。这一点还是毋庸置疑的。

热点内容
我的世界粘液科技筛矿机怎么用 发布:2025-07-19 05:50:34 浏览:285
eth难度查询 发布:2025-07-19 03:24:56 浏览:253
流量矿机矿场托管 发布:2025-07-19 02:38:08 浏览:665
usdt世纪佳缘 发布:2025-07-19 02:10:40 浏览:593
维华物联网数字货币騙局 发布:2025-07-19 02:10:10 浏览:745
区块链首 发布:2025-07-19 02:05:19 浏览:967
以太坊会跌倒什么价格 发布:2025-07-19 01:46:42 浏览:809
比特币做任务 发布:2025-07-19 01:31:58 浏览:786
16年比特币合约 发布:2025-07-19 01:27:46 浏览:118
虚拟数字货币趋势狂人 发布:2025-07-19 01:17:19 浏览:156