當前位置:首頁 » 比特幣問答 » 比特幣量子力學

比特幣量子力學

發布時間: 2021-04-21 20:01:33

❶ 為什麼說比特幣是不能破解的,用量子計算機也不行

因為加密遠比解密代價小
假設以數字+大小寫字母(共62種字元)設置密碼,某超級計算機1秒能暴力嘗試10億個密碼,那麼:
破解5位密碼需要1秒(62^5=9.2億),
破解6位密碼需要62秒,
破解7位需要1小時,
破解8位需要2.5天,
破解9位需要半年,
破解12位需要10萬年(超過人類文明史),
破解15位需要243億年(超過宇宙年齡)。
15位密碼不過比5位密碼多輸入幾位,耗時幾秒,卻導致解密代價高到了幾乎不可能的程度。
量子計算機即使帶來一億倍的破解速度提升,那也不過是抵消了比特幣256位私鑰長度中的27位而已(2^27=1.3億)。就算外星人出現,連續發生了數次一億倍破解速度提升(每次抵消27位私鑰長度),比特幣也只要簡單地把私鑰長度升級到512位即可。

❷ 「量子力學在哪

一、陌生的量子,不陌生的晶體管

美國《探索》雜志在線版給出的真實世界中量子力學的一大應用,就是人們早已不陌生的晶體管。

1945年的秋天,美國軍方成功地製造出世界上第一台真空管計算機ENIAC。據當時的記載,這台龐然大物總重量超過30噸,佔地面積接近一個小型住宅,總花費高達100萬美元。如此巨額的投入,註定了真空管這種能源和空間消耗大戶,在計算機的發展史中只能是一個過客。因為彼時,貝爾實驗室的科學家們已在加緊研製足以替代真空管的新發明晶體管。

晶體管的優勢在於它能夠同時扮演電子信號放大器和轉換器的角色。這幾乎是所有現代電子設備最基本的功能需求。但晶體管的出現,首先必須要感謝的就是量子力學。

正是在量子力學基礎研究領域獲得的突破,斯坦福大學的研究者尤金·瓦格納及其學生弗里德里希·塞茨得以在1930年發現半導體的性質同時作為導體和絕緣體而存在。在晶體管上加電壓能實現門的功能,控制管中電流的導通或者截止,利用這個原理便能實現信息編碼,以至於編寫一種1和0的語言來操作它們。此後的十年中,貝爾實驗室的科學家製作和改良了世界首枚晶體管。到1954年,美國軍方成功製造出世界首台晶體管計算機TRIDAC。與之前動輒樓房般臃腫的不靠譜的真空管計算機前輩們相比,TRIDAC只有3立方英尺大,耗電不過100瓦特。今天,英特爾和AMD的尖端晶元上,已經能夠擺放數十億個微處理器。而這一切都必須歸功於量子力學。

二、量子干涉「搞定」能量回收

無論怎樣心懷尊敬,對於我們來說,不太容易能把量子力學代表的理論和它帶來的成果聯系在一起,因為他們聽起來就是完全不相乾的兩件事。而此「能量回收」就是個例子。

每次駕車出行,人們都會不可避免地做一件負面的事情浪費能量。因為在引擎點燃燃料以產生推動車身前進的驅動力同時,相當一部分能量以熱量的形式散失,或者直白地說,浪費在空氣當中。對於這種情況,亞利桑那大學的研究人員試圖藉助量子力學中的量子干涉原理來解決這一問題。

量子干涉描述了同一個量子系統若干個不同態疊加成一個純態的情況,這聽起來讓人完全不知所謂,但研究人員利用它研製了一種分子溫差電材料,能夠有效的將熱量轉化為電能。更重要的是,這種材料的厚度僅僅只有百萬分之一英尺,在其發揮功效時,不需要再額外安裝其他外部運動部件,也不會產生任何污染。研究團隊表示,如果用這種材料將汽車的排氣系統包裹起來的話,車輛因此將獲得足以點亮200枚100瓦燈泡的電能盡管理論讓人茫然,這數字可是清楚明白。

該團隊因此對新型材料的前途充滿信心,確定在其他存在熱量損失的領域,該材料同樣能夠發揮作用,將熱能轉變為電能,比如光伏太陽能板。而我們只需知道,這都是量子干涉「搞定」的。

三、不確定的量子,極其確定的時鍾

作為普通人, 一般是不會介意自己的手錶是快了半分鍾,還是慢了十幾秒。但是,如果是像美國海軍氣象天文台那樣為一個國家的時間負責,那麼這半分半秒的誤差都是不被允許的。好在這些重要的組織單位都能夠依靠原子鍾來保持時間的精準無誤。這些原子鍾比之前所有存在過的鍾表都要精確。其中最強悍的是一台銫原子鍾,能夠在2000萬年之後,依然保持誤差不超過1秒。

看到這種精確的能讓人紊亂的鍾表後,你也許會疑惑難道真的有什麼人或者什麼場合會用到它們?答案是肯定的,確實有人需要。比如航天工程師在計算宇宙飛船的飛行軌跡時,必須清楚地了解目的地的位置。不管是恆星還是小行星,它們都時刻處在運動當中。同時距離也是必須考慮的因素。一旦將來我們飛出了所在星系的范圍,留給誤差的邊際范圍將會越來越小。

那麼,量子力學又與這些有什麼關系呢?對於這些極度精準的原子鍾來說,導致誤差產生的最大敵人,是量子雜訊。它們能夠消減原子鍾測量原子振動的能力。現在,來自德國大學的兩位研究人員已經開發出,通過調整銫原子的能量層級來抑制量子雜訊程度的方法。它們目前正在試圖將這一方法應用到所有原子鍾上去。畢竟科技越發達,對准時的要求就越高。

四、量子密碼之戰無不勝篇

斯巴達人一向以戰斗中的勇敢與兇猛聞名於世,但是人們並不能因此而輕視他們在謀略方面的才幹。為了防止敵人事先得知自己的軍事行動,斯巴達人使用一種被稱作密碼棒的東西來為機密信息加密和解密。他們先將一張羊皮紙裹在一根柱狀物上,然後在上面書寫信息,最後再將羊皮紙取下。藉助這種方式,斯巴達的軍官能夠發出一條敵人看起來顯得語無倫次的命令。而己方人員只需再次將羊皮紙裹在同等尺寸的柱狀物上,就能夠閱讀真正的命令。

斯巴達人樸素的技巧,僅僅是密碼學漫長歷史的開端。如今,依靠微觀物質一些奇異特性的量子密碼學,已經公開宣稱自己無解。它是一種利用量子糾纏效應、基於單光子偏振態的全新信息傳輸方式。其安全之處在於,每當有人闖入傳輸網路,光子束就會出現紊亂,每個結點的探測器就會指出錯誤等級的增加,從而發出受襲警報;發送與接收雙方也會隨機選取鍵值的子集進行比較,全部匹配才認為沒有人竊聽。換句話說,黑客無法闖入一個量子系統同時不留下干擾痕跡,因為僅僅嘗試解碼這一舉動,就會導致量子密碼系統改變自己的狀態。相應的,即便有黑客成功攔截獲得了一組密碼信息的解碼鑰匙,那他在完成這一舉動的同一時刻,也導致了密鑰的變化。因而當合法的信息接收者檢查鑰匙時,就會輕易發現倪端,進而更換新的密鑰。

量子密碼的出現一直被視為「絕對安全」的回歸,不過,天下沒有不透風的牆。擁有1000多年前那部維京時代海盜史的挪威人,已經打破了量子密碼無解的神話。藉助誤導讀取密碼信息的設備,他們在不嘗試解碼的條件下,就獲得了信息。但他們承認,這只是利用了現存技術上的一個漏洞,在量子密碼術完善後即可趨避。

五、隨機數發生器:上帝的「量子骰子」

所謂的隨機數發生器,並不是老派肥皂劇中那些奇幻神秘的玩意。它們藉助量子力學,能夠召喚出真正的隨機數。不過,科學家們為什麼要不辭勞苦地深入量子世界來尋找隨機數,而不是簡單輕松地拋下硬幣、擲個骰子?答案在於:真正的隨機性只存在於量子層級。實際上只要科學家們收集到關於擲骰子的足夠信息,那麼他們便能夠提前對結果做出預測。這對於輪盤賭博、彩票甚至計算機得出的開獎結果等等,統統有效。

然而,在量子世界,所有的一切都是絕對無法預測的。馬克斯·普朗克大學光學物理研究所的研究人員正是藉助這一不可預知性,製作出了「量子骰子」。他們先是通過在真空中製造波動來產生出量子雜訊,然後測量雜訊所產生的隨機層級,藉此獲得可以用於信息加密、天氣預演等工作的真正隨機數字。值得一提的是,這種骰子被安裝在固態晶元上,能夠勝任多種不同的使用需求。

六、我們與激光險些失之交臂

與量子力學的經歷相似,激光在早期曾經也被認為是「理論上的巨人,實際應用上的侏儒」。但今天,無論是家用CD播放器,還是戰區導彈防禦系統,激光已經在當代人類的社會生活中,占據了核心地位。不過,如果不是量子力學,我們與激光的故事,很可能是以「擦身而過」而收場。

激光器的原理,是先沖擊圍繞原子旋轉的電子,令其在重回低能量級別時迸發出光子。這些光子隨後又會引發周圍的原子發生同樣的變化,即發射出光子。最終,在激光器的引導下,這些光子形成穩定的集中束流,即我們所看到的激光。當然,人們能夠知曉這些,離不開理論物理學家馬克斯·普朗克及其發現的量子力學原理。普朗克指出,原子的能量級別不是連續的,而是分散、不連貫的。當原子發射出能量時,是以在離散值上被稱作量子的最小基本單位進行的。激光器工作的原理,實際上就是激發一個特定量子散發能量。

七、專門挑戰極端的超精密溫度計

如果用普通的醫用溫度計,去測量比絕對零度低百分之一的溫度,這支溫度計的下場可想而知。那麼如何去對付這樣的極端溫度呢?耶魯大學的研究人員發明了一支可以對付這些情況的神奇溫度計。它不僅在極端環境中保持堅挺,更能夠提供無比精確的數值。

為製作這種溫度計,研究團隊必須重新梳理溫度計的設計思路。比如獲得精確數值的方式。幸運的是,在追尋精確的過程中,科學家們藉助量子隧道得到了自己想要的答案。就像鑽入山體內部而不是在其表面爬上爬下,粒子在穿越勢壘的過程中,產生出了量子雜訊。使用研究團隊的量子溫度計去測量這些雜訊,便能夠精確地得出實驗物體的溫度。

雖然這種溫度計對於普通人的日常生活並沒有太大的意義,但是在科學實驗室,尤其是那些需要極低溫度環境的材料實驗室它就可以大展身手了。現在,研究者們還在努力通過各種手段提高該溫度計的精確性,並期望著隨著它應用范圍的拓展,更極端的科研環境都可以從中受益。

八、人人都愛量子計算機

在1965年發表的一篇論文中,英特爾公司的聯合創始人戈登·摩爾對計算機技術的未來發展,做了一些粗陋但卻意義深遠的預測。其中最重要的一條便是日後著名的摩爾定律:每平方英尺集成電路上的晶體管數量,每18個月便會翻兩倍。這一定律對計算機技術的發展產生了深遠影響,但是現在,摩爾定律似乎走到了盡頭,因為到2020年,硅晶元將會達到自身的物理極限,而隨著晶體管體積的不斷縮小,它們將開始遵循量子世界的各種規律。

和量子世界的規律「抱有敵意」相比,順應量子時代或許才是人們最好的選擇。今天,那些從事量子計算機研究的科學家做的正是這件事情。相比傳統計算機,量子計算機具有無可比擬的巨大優勢:並行處理。藉助並行處理的能力,量子計算機能夠同時處理多重任務,而不是像傳統計算機那樣還要分出輕重緩急。量子計算機的這一特性, 註定它在未來將以指數級的速度超越傳統計算機。

不過,在量子計算成為現實之前,科學家們還需要克服一些艱難挑戰。比如,量子計算機使用的是比傳統比特存儲能力高出許多的量子比特,但是不幸的是,量子比特非常難以創造出來,因為這需要多種粒子共同組成網路。直到現在,科學家只能夠一次性將12種粒子纏連起來。而量子計算機若要實現商業化應用,至少需要將這個數字增加數十倍甚至上百倍。

九、想知道什麼是真正的瞬時通信嗎

量子力學在過去的歲月里為人們帶來的成就彌足珍貴,但科學家們有理由相信,其在未來會奉獻的更多。

現在,當你在手機、簡訊、郵件以及MSN、飛信等等諸如此類的通信工具之間徜徉時,可能以為自己已經被所謂的「瞬時通信」覆蓋。實際上,你發出的聲音、文字、圖像都需要一點時間才能達到目的地,或長或短而已。現在的人們日常所能用到的通信方式,所需時間都極其短,但在很遠的未來,人和人之間的交流不會只限於大洲與大洲之間,而可能需要橫跨星系,這就使通信時間大大的增加譬如說,在今年8月6日,人類的「好奇」號火星車登陸火星,傳回的信號到達地球就有十幾分鍾的延遲。但這還只是在太陽系中地球和火星的距離,如果將距離延伸的更遠,那麼科學家們認為,只有量子力學才擁有本事真正實現「即時」的通信,無論距離。

使瞬時通信成為現實的關鍵,在於被稱為量子糾纏的量子力學現象愛因斯坦稱其為「幽靈般的遠距作用」,指處於糾纏態的兩個粒子即使距離遙遠,也保持著特別的關聯性,對一個粒子的操作會影響到另一個粒子。簡單來說就是,當其中一個粒子被測量或者觀測到,另一個粒子也隨之在瞬間發生相應的狀態改變。這種彷彿「心電感應」般的一致行動,已超出了經典物理學規則的解釋范疇,因此才被愛因斯坦視作鬼魅。但利用量子糾纏,我們可以操縱其中一個粒子引起對應粒子的即時、相應變化,從而完成收發「宇宙郵件」的動作。

不過,這一應用還面臨著最大的問題:一些物理學家堅持認為糾纏的粒子實際上並不能傳送信息。如果是這樣的情況,那我們的名單中的下一個項目,則永遠不會成為現實。

十、遠距傳輸從科幻到現實

科幻片,尤其是太空題材的,最愛遠距傳輸:偌大的一個人,在一個地方神秘消失,不需要任何載體的攜帶,又在另一個地方瞬間出現。

遠距離傳輸就是量子態隱形傳輸,是在無比奇特的量子世界裡,量子呈現的「糾纏」運動狀態。該狀態的光子如同有「心電感應」,能使需要傳輸的量子態「超時空穿越」,在一個地方神秘消失,不需要任何載體的攜帶,又在另一個地方瞬間出現。在「超時空穿越」中它傳輸的不再是經典信息,而是量子態攜帶的量子信息,這些量子信息是未來量子通信網路的組成要素。

此前,IBM團隊的6名工程師證明,遠距傳輸完全可以實現,至少從理論上來講是這樣。但必須注意的是,「原對象」在此過程中將消失因為遠距傳輸可不是「傳真機」,你原來那份「文件」是會被它銷毀的。其貌似「復制」原物體的過程,實際也是對原物體的一種改變。

2009年,美國馬里蘭州立大學聯合量子研究所的科學家進行的「量子信息處理」的實驗中,成功地實現了從一個原子到1米外的一個容器里的另一個原子的量子隱形傳輸。盡管在實驗中是一個原子轉變成另一個原子,由第二個原子扮演起第一個原子的角色,與「原物傳送」的概念不同,但原子對原子的傳輸,卻對於研製超密超快的量子計算機和量子通信具有重大意義。

沒錯,遠距傳輸並不僅在傳輸物體這一目標上才有價值,在達到這一目的之前,通往「聖域」的各項研究也被證明在其他多重領域大有作為。而所有的量子力學研究,甚至人類所有的科學活動,亦同此理。

❸ 比特幣被一些人稱為「數字黃金」,比特幣能與黃金相提並論嗎

從某種意義上來講,它確實能與黃金相提並論。但是比特幣是一個通縮貨幣,這使得它與黃金有些類似。全球每年新挖的黃金遠遠趕不上經濟規模的擴張,更趕不上法幣的發行量,所以,黃金在不斷地升值,也可以看作法幣相對於黃金在不斷貶值。

然而,近期全球經濟動盪,股價油價大跌的時候,我們發現,市場的避險資金卻並沒有流向比特幣,幣價大跌,反而是黃金的價格非常堅挺。

這說明比特幣作為“數字黃金”這個地位還沒有被全球主流認可。因為比特幣的價格是全球市場博弈的結果,一小撮堅定的持幣用戶其實對幣價毫無影響。在我看來,主流市場不認可比特幣的避險屬性,恰恰說明比特幣存在巨大的風險。

我認為比特幣未來最大的風險並不是量子計算機破解加密演算法,因為這種風險是逐步積累,並且只需要用更先進的抗量子的加密演算法替換現有演算法即可,這種屬於正常的技術升級,並不影響比特幣的價值。

比特幣最大的風險來源於它的共識,即2100萬的恆定總量實際上是通過代碼實現的,每四年減半的邏輯也是通過代碼實現的,如果將來取消2100萬的上限,比如在本次減半(2020年4月左右)後不再減半了,以恆定的速度通脹下去,也就是改動幾行代碼的事情,非常簡單。

看到這里,幣圈資深人士肯定會笑話我杞人憂天,因為打破了共識比特幣就不再是比特幣,它會一文不值。

❹ 量子比特

在經典圖靈機模型中,儲存經典信息的基本單位叫做比特。它是一個二進制變數,其數值一般記做二進制的 0 或者 1。一個比特要麼是 0,要麼是1,正如向空中拋起一枚硬幣,那麼它落下後要麼正面朝上,要麼反面朝上。我們用二進制的比特理論上可以儲存任何信息,最簡單的,像儲存十進制整數就可以利用二進制和十進制的轉換。3=11, 4=100, 50=110010 等等。當然,非整數也是可以寫成二進制的形式,像 5.5=101.1,也就是說任意實數都可以按精度要求用二進制來表示。而在電子學中,很多器件是非常適合二進製表示的,像電壓的高低和開關,電容器的帶電荷與否等等,都可以來作為一個比特的載體。但在量子世界,一切都發生了改變。一個量子的硬幣不僅可以正面或反面朝上,它甚至可以同時正反面都朝上,在你觀測它之前。著名的薛定諤的貓就是這個道理,這只貓在開箱子,也就是觀測之前,它又是死的又是活的,處於生和死的疊加態 (superposition state)上。正是疊加性這個奇妙的性質引出了量子比特 (quantum bit, qubit) 的概念。
(網路知道里不方便輸入公式,更詳細的介紹見量子研究網站:quantum-study.com/article/795/21.html)
在物理實現上,原則上具有疊加性質的兩態量子系統都適用做qubit。目前的實驗室里,像 核磁共振中處於磁場中的自旋 1/2 粒子 (自旋向上和向下),空腔中的原子的態 (原子的基態和激發態),超導結之間隧穿的庫珀對 (Cooper pairs處於一個結和另外一個結時),都可以被用作 qubit。當然,如果一個硬幣可以同時向上和向下也是可以的,在量子隨機行走中我們就會看到這種量子硬幣(quantum coin)。
現在我們可以回過頭來在看一下經典計算機和量子計算機的差距,這次是存儲容量上的。考慮一個簡單的情況,我們要儲存 45 個自旋 1/2 的粒子,這在量子系統中只是一個很小的體系,只需要 45 個 qubit 就可以實現。但如果我們要用經典計算機完成這個任務,約需要 245 個經典比特,也就是大概4 個 TB 的硬碟!這里有些典型的數據來跟它比較, 4TB 大概是 4000G 或者4000000M,而一部高清藍光電影大概是 10G,一本書大概是 5M。另外一些比較有意思的數據是,美國國會圖書館的所有藏書總容量大概為160TB 或者說 50 個 qubit,而 2007 年人類所擁有的信息量總和為 2.2 × 109 個 TB,也僅相當於 71 個 qubit 的存儲容量。

❺ 量子是什麼意思

量子:一個物理量如果存在最小的不可分割的基本單位,則這個物理量是量子化的,並把最小單位稱為量子。量子一詞來自拉丁語quantus,意為「有多少」,代表「相當數量的某物質」,它最早是由德國物理學家M·普朗克在1900年提出的。他假設黑體輻射中的輻射能量是不連續的,只能取能量基本單位的整數倍,從而很好地解釋了黑體輻射的實驗現象。

(5)比特幣量子力學擴展閱讀:

從經典力學來看,能量不連續的概念是絕對不允許的。但是在詮釋這個公式時,通過將物體中的原子看作微小的量子諧振子,不得不假設這些量子諧振子的總能量不是連續的,即總能量只能是離散的數值(經典物理學的觀點恰好相反)。普朗克進一步假設單獨量子諧振子吸收和放射的輻射能是量子化的,這一觀點嚴重地沖擊了經典物理學。量子論涉及物質運動形式和運動規律的根本變革。

❻ 量子力學中怎樣證明如何用一個量子比特傳輸兩個經典比特的信息求大神,可以寫在紙上照下來

書上有這個證明啊,你看看

❼ 量子計算機是比特幣的致命武器嗎

最近GOOGLE那邊有消息,還特意找了一個量子力學專家驗證,目前所謂的量子計算機還沒達到媒體宣傳到的那種效果,所以量子計算機技術成熟肯定還需要一段時間,再等幾年吧

❽ 量子力學與混沌理論

量子力學(quantum mechanics)是物理學的分支學科。它主要描寫微觀的事物,與相對論一起被認為是現代物理學的兩大基本支柱,許多物理學理論和科學,如原子物理學、固體物理學、核物理學和粒子物理學以及其它相關的學科,都是以其為基礎。

量子力學研究的對象,見下三圖:

❾ 量子比特的基本性質

在經典力學系統中,一個比特的狀態是唯一的,而量子力學允許量子比特是同一時刻兩個狀態的疊加,這是量子計算的基本性質。

❿ 量子比特是什麼對物理學研究有什麼影響

我們將與科技談話者討論量子計算。

首先,量子計算機何以成為量子計算機。我將讓科技談話者來解釋一下。


因此遵循著這兩條法則,量子計算機能夠迅速地執行計算——極其迅速得計算那些過去被認為是不可能在合理的時間內解決的難題。例如,一台運用恰當演算法的量子計算機可以相對輕易地破解牢固的密碼。因此我們離用量子計算機取代智能手機還有多遠?

科技談話者:現在還不必擔心。目前為止,我們的量子計算機還處於用幾個量子比特進行簡單計算的階段。然而,在將來,這將給科技帶來一些十分有趣的改變!

總結

所以這就是量子計算。

如果你感到有些疑惑,別擔心。即使是在量子計算領域的重要科學家也發現,它無法僅靠直覺來領悟。尼爾斯·玻爾說:“那些第一次聽到量子理論而沒被震驚的人,可能還沒能理解它。”理查德·費曼說,“我可以很有把握地說還沒有人能理解量子力學。”

熱點內容
調研組在調研btc天 發布:2025-05-18 04:19:18 瀏覽:556
數字貨幣ddm是什麼意思 發布:2025-05-18 04:14:59 瀏覽:266
怎麼算摩擦力的能量 發布:2025-05-18 04:13:26 瀏覽:694
幣印礦池dcr算力驟減 發布:2025-05-18 04:11:52 瀏覽:646
虛擬貨幣唯有茅台和比特幣 發布:2025-05-18 03:56:07 瀏覽:944
比特幣挖礦不是浪費錢 發布:2025-05-18 03:51:32 瀏覽:403
usdt如何賣出人民幣 發布:2025-05-18 03:43:08 瀏覽:417
元宇宙區塊鏈代幣yyz 發布:2025-05-18 03:42:28 瀏覽:419
測繪次新元宇宙 發布:2025-05-18 02:37:55 瀏覽:970
比特幣轉讓幣手續 發布:2025-05-18 02:37:53 瀏覽:204