英偉達怎麼貢獻算力
Ⅰ NVIDIA GeForce GT 610M運行CUDA時的計算能力
GT610m實際是GT520m的超頻版,入門級顯卡,低端。
著色器數量:48Unified
製造工藝:40nm
光柵單元:4
位寬:64bit
容量:2048M
運算能力為:
像素填充率:1.7GPixel/S
紋理填充率:6.8GTexel/S
顯存帶寬:12.8GB。
希望幫到你。
Ⅱ 感覺nvidia開普勒構架計算能力太弱了 雙精度閹割沒了都 quadro k5000渲染AE還
開普勒為了提升能耗比,將雙精度閹割殆盡,大概只剩下24分之一,費米之前是二分之一。
K5000的雙精度只有90GF,而Q4000的雙精度是240GF,接近三倍的差距。
Nvidia希望用戶多用CUDA做通算,或者選擇GK110核心的產品,比如K6000(雙精度1700GF),商人使然。
Ⅲ 英偉達「變軟」,自動駕駛「破圈」
一個月前,黃仁勛用一小顆自動駕駛SoC晶元完成了整個GTCCHINA2019的「新品發布」。
發布會當天,這位「皮衣男子」趕在閉館前匆匆去了自動駕駛汽車展位,用半個小時逐一聆聽了幾家自動駕駛初創企業的思路。那晚的黃教主,向在場工程師們釋放出了一種近乎惺惺相惜的善意。
這種情愫很好理解——
要知道,在這屆GTCCHINA散場時,很多觀眾發出的感慨是:「十分硬核,不夠性感。」畢竟遠道而來的大家直到演講後半程,才終於等到黃仁勛掏出一塊200TOPS深度學習算力的自動駕駛新品「Orin」。取而代之的,是各種「空口無憑」的軟體技術升級。
面對一張張略顯失望的臉,老黃也很無奈:「我這么努力,你都看不到。就好像你老婆做了一整天家務,你卻說她什麼都沒做。」
眾口難調,但這確實是英偉達在接下來的業務發展中必須要面對的問題。與「看得見摸得著」的硬體發布不同,軟體迭代周期短、初期人力成本高、落地成果卻很難形成清晰的概念……這些都讓這家人工智慧計算公司的技術發布開始與公眾預期逐漸拉開差距。
而就在車雲菌險些被觀眾情緒帶跑節奏時,我們在英偉達的官方公眾號上發現了一系列由NVIDIADRIVELabs出品的視頻。視頻內容從工程技術的視角,直觀展現出NVIDIADRIVEAV軟體團隊如何完成一個個自動駕駛的日常任務,諸如從路徑感知到交叉路口處理等一系列挑戰。
那麼,以自動駕駛為起點,車雲菌嘗試回答:當英偉達不再拋出核彈,他們到底做了些什麼?
「直播」自動駕駛
嚴格來說,目前沒有任何一家企業成功製造出一台全自動駕駛汽車,絕大多數玩家仍舊在奔向這一目標的路上相互博弈。
近年,英偉達正式加入戰局。公司內部的軟體開發人員已經遠遠超過了硬體工程師的數量。
他們首先打算解決自動駕駛汽車的三個問題:
知道自己在哪裡:不光要掌握車輛具體位置,還得知道是在主路的第幾條車道上,將定位精確到厘米級;
知道自己周圍有什麼:像人類大腦一樣判斷,前方卡車在減速、左後方有輛SUV駛來、右側人行道有小孩、下一個路口是綠燈且不能左轉……
作出正確的駕駛決策:判斷從左側超車可以安通過路口,然後控制車輛完成相應動作。
如今這些工作,都被團隊一一擺上了檯面。與常規「秀肌肉」的視頻演示不同,英偉達實驗室將自動駕駛最困難的感知層面的工作拆解成一個個小任務,條分縷析地告訴大家:我們是怎麼做到的,以及我們為什麼能做到。
任務的分解也很有意思。車隊順利攻克了包括建立感知路徑、通過感測器融合實現環繞感知功能、打造像素級感知能力、藉助特徵追蹤確保安全性、自主識別停車位、障礙物分類、車道線識別及自動補償、測算車輛與障礙物距離、實現准確可靠的目標跟蹤、預測目標的未來移動軌跡、不藉助地圖的情況下識別交叉路口。
https://v.qq.com/x/page/c0919cpz1w3.html
「可靠性」三個字貫穿了所有挑戰過程。對此,NVLabs給出的說法是:「對於L2+級自動駕駛系統來說,例如NVIDIADRIVEAP2X平台,實時評估路徑感知可靠性意味著評估該系統是否知道何時進行安全的自主操作,以及何時應該將操作權移交給人類駕駛員。」
至於NVIDIADRIVEAP2X。2019年初公司在GTC上剛剛發布了全新平台,其基於NVIDIAXavier系統級晶元運行,採用DriveWorks加速庫和實時操作系統DRIVEOS,其中包含DRIVEAutoPilot軟體、DRIVEAGX和DRIVE驗證工具,並融合了DRIVEAV自動駕駛軟體和DRIVEIX智能駕駛艙體驗。
得益於二季度發布的DRIVEAP2XSoftware9.0上新增的大量自動駕駛功能加持,該平台成為業界公認的現階段唯一完備的L2+自動駕駛解決方案。采埃孚、大陸、沃爾沃都心甘情願為其買單。
於是,團隊幾個人在矽谷全長50英里的高速公路環路上完成了一次零干預的全自動駕駛。簡單來說,這是一次類似「現場直播」的測試,工程師們沒有機會像錄制視頻那樣,拿實際路徑感知信號與理想參數進行對比,還要隨時准備應對過程中有可能發生的意外情況。
譬如,一旦自動駕駛車輛只能接收到一種感測器發射的感知信號,就無法保證最終決策置信度的實時及准確。比這更糟的還在後面——如果這唯一的路徑感知輸入失敗,自動駕駛功能要麼大幅影響操作的舒適及平穩度,要麼乾脆整個失靈。
而BB8完成的任務也足夠交上一張漂亮的成績單。基於NVIDIADRIVEAGX平台,自動駕駛車輛可以實時同步運行功能多樣的360度環繞感知,定位以及規劃和控制軟體。
工程師通過使用感知和定位所提供的輸入數據,規劃和控制層讓自動駕駛汽車能夠獨立行駛。規劃軟體通過感知和定位的結果來確定汽車特定操作所需的物理軌跡。視頻里也清楚地展示出車輛在自主變換車道時的流暢動作:規劃軟體先利用環繞攝像頭和雷達感知來進行變道操作安全檢查,然後計算縱向速度曲線以及從當前車道的中心線移動到目標車道中心線所需的橫向路徑計劃,最後控制軟體發出加速/減速和向左/右轉向的命令以執行車道變換規劃。
正是這些軟體組成部分,與硬體一起成就了系統的多樣性和安全冗餘。而這一系列任務視頻,恰恰成了證明英偉達自動駕駛軟體技術落地的可靠載體。
在這之外,將無形化的軟體沉澱成可視化的視頻內容,也能同時以更加輕松的方式觸達到消費者層面。當汽車方向盤交到機器手中,用戶會天然樹立起不安與不信任感。這種先期教育市場的思路,能夠消除部分不安心理,重建人們在自動駕駛空間內的安全感。
直觀點說,NVLabs的「自動駕駛挑戰」系列,是英偉達軟體技術「破圈」的先導。
作為曾經游戲市場的霸主,這家晶元巨頭必然深諳消費者之道。相比一般車廠對於車輛智能功能「洗腦式」的宣傳,此番英偉達率先拿出一部分干貨試探市場,佔領用戶心智。
這種策略直接體現在公司財報數據上,2019年三季度英偉達汽車業務迎來高光時刻。公開數據顯示,彼時,該領域營收攀升至創紀錄的2.09億美元,同比增長30%。相比之下,英特爾第二季度的自動駕駛營收為2.01億美元,同比增加16%。
對比來看,英特爾一季度該項營收2.09億美元,英偉達為1.66億美元。這意味著,英偉達環比上漲,英特爾環比下跌。
黃仁勛自己對於「軟體公司」的藍圖也相當清晰:「這只是英偉達目前定位中的一部分。」
回顧既往十年,英偉達已經進行了兩次業務轉變。第一次是從GPU圖像晶元公司轉變為並行計算公司,典型的應用場景是人工智慧。後來,公司又決定在少數特定場景中提供最完善的解決方案,覆蓋游戲、專業渲染,超級計算、自動駕駛幾大領域。
隨著英偉達業務領域越來越廣,客戶「解放雙手」的自由度就越高。這恐怕才是「Themoreyoubuy,themoreyousave」的真實含義。
觀看NVLabs全系列視頻,請點擊:https://www.nvidia.cn/self-driving-cars/drive-labs/
?
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
Ⅳ 英偉達發布史上最強計算平台,黃教主:自動駕駛不再擔心算力問題
原本應該在今年 3 月份於加州聖何塞舉辦的英偉達 GTC 2020 大會,因為全球性新冠病毒肺炎的爆發而不得不推遲舉行。
比原計劃晚了將近 2 個月,英偉達 GTC 2020 終於在 5 月 14 日回歸。
不過這一次開發者們沒辦法在線下集會,只能通過線上直播觀看「皮衣教主」黃仁勛的主題演講。老黃此次是在他矽谷的家中完成了這場別開生面的「Kitchen Keynote」。
雖然是廚房舉行,英偉達依然爆出「核彈」,發布了全新一代的 GPU 架構 Ampere(安培)。
在自動駕駛方向上,英偉達通過兩塊 Orin SoC 和兩塊基於安培架構的 GPU 組合,實現了前所未有的?2000 TOPS?算力的 Robotaxi 計算平台,整體功耗為?800W。
有業界觀點認為,實現 L2 自動駕駛需要的計算力小於 10 TOPS,L3 需要的計算力為 30 - 60 TOPS,L4 需要的計算力大於 100 TOPS,L5 需要的計算力至少為 1000 TOPS。
現在的英偉達自動駕駛計算平台已經建立起了從?10TOPS/5W,200TOPS/45W?到?2000 TOPS/800W?的完整產品線,分別對應前視模塊、L2+ADAS?以及?Robotaxi?的各級應用。
從產品線看,英偉達?Drive AGX?將全面對標 Mobileye?EyeQ?系列,希望成為量產供應鏈中的關鍵廠商。
1、全新 GPU 架構:Ampere(安培)
2 個月的等待是值得的,本次 GTC 上,黃仁勛重磅發布了英偉達全新一代 GPU 架構 Ampere(安培)以及基於這一架構的首款 GPU NVIDIA A100。
A100 在整體性能上相比於前代基於 Volta 架構的產品有 20 倍的提升,這顆 GPU 將主要用於數據分析、專業計算以及圖形處理。
在安培架構之前,英偉達已經研發了多代 GPU 架構,它們都是以科學發展史上的偉人來命名的。
比如 Tesla(特斯拉)、Fermi(費米)、Kepler(開普勒)、Maxwell(麥克斯維爾)、Pascal(帕斯卡)、Volta(伏特)以及 Turing(圖靈)。
這些核心架構的升級正是推動英偉達各類 GPU 產品整體性能提升的關鍵。
針對基於安培架構的首款 GPU A100,黃仁勛細數了它的五大核心特點:
集成了超過 540 億個晶體管,是全球規模最大的 7nm 處理器;引入第三代張量運算指令 Tensor Core 核心,這一代 Tensor Core 更加靈活、速度更快,同時更易於使用;採用了結構化稀疏加速技術,性能得以大幅提升;支持單一 A100 GPU 被分割為多達 7 塊獨立的 GPU,而且每一塊 GPU 都有自己的資源,為不同規模的工作提供不同的計算力;集成了第三代 NVLink 技術,使 GPU 之間高速連接速度翻倍,多顆 A100 可組成一個巨型 GPU,性能可擴展。
這些優勢累加起來,最終讓 A100 相較於前代基於 Volta 架構的 GPU 在訓練性能上提升了?6 倍,在推理性能上提升了?7 倍。
最重要的是,A100 現在就可以向用戶供貨,採用的是台積電的 7nm 工藝製程生產。
阿里雲、網路雲、騰訊雲這些國內企業正在計劃提供基於 A100 GPU 的服務。
2、Orin+安培架構 GPU:實現 2000TOPS 算力
隨著英偉達全新 GPU 架構安培的推出,英偉達的自動駕駛平台(NVIDIA Drive)也迎來了一次性能的飛躍。
大家知道,英偉達此前已經推出了多代 Drive AGX 自動駕駛平台以及 SoC,包括?Drive AGX Xavier、Drive AGX Pegasus?以及?Drive AGX Orin。
其中,Drive AGX Xavier 平台包含了兩顆 Xavier SoC,算力可以達到 30TOPS,功耗為 30W。
最近上市的小鵬 P7 上就量產搭載了這一計算平台,用於實現一系列 L2 級自動輔助駕駛功能。
Drive AGX Pegasus 平台則包括了兩顆 Xavier SoC 和兩顆基於圖靈架構的 GPU,算力能做到 320TOPS,功耗為 500W。
目前有文遠知行這樣的自動駕駛公司在使用這一計算平台。
在 2019 年 12 月的 GTC 中國大會上,英偉達又發布了最新一代的自動駕駛計算 SoC Orin。
這顆晶元由 170 億個晶體管組成,集成了英偉達新一代 GPU 架構和 Arm Hercules CPU 內核以及全新深度學習和計算機視覺加速器,最高每秒可運行 200 萬億次計算。
相較於上一代 Xavier 的性能,提升了 7 倍。
如今,英偉達進一步將自動駕駛計算平台的算力往前推進,通過將兩顆 Orin SoC 和兩塊基於安培架構的 GPU 集成起來,達到驚人的 2000TOPS 算力。
相較於 Drive AGX Pegasus 的性能又提升了 6 倍多,相應地,其功耗為 800W。
按一顆 Orin SoC 200TOPS 算力來計算,一塊基於安培架構的 GPU 的算力達到了 800TOPS。
正因為高算力,這個平台能夠處理全自動駕駛計程車運行所需的更高解析度感測器輸入和更先進的自動駕駛深度神經網路。
對於高階自動駕駛技術的發展而言,英偉達正在依靠 Orin SoC 和安培 GPU 架構在計算平台方面引領整個行業。
當然,作為一個軟體定義的平台,英偉達 Drive AGX 具備很好的可擴展性。
特別是隨著安培 GPU 架構的推出,該平台已經可以實現從入門級 ADAS 解決方案到 L5 級自動駕駛計程車系統的全方位覆蓋。
比如英偉達的 Orin 處理器系列中,有一款低成本的產品可以提供 10TOPS 的算力,功耗僅為 5W,可用作車輛前視 ADAS 的計算平台。
換句話說,採用英偉達 Drive AGX 平台的開發者在單一平台上僅基於一種架構便能開發出適應不同細分市場的自動駕駛系統,省去了單獨開發多個子系統(ADAS、L2+ 等系統)的高昂成本。
不過,想採用 Orin 處理器的廠商還得等一段時間,因為這款晶元會從 2021 年開始提供樣品,到?2022 年下半年才會投入生產並開始供貨。
3、英偉達自動駕駛「朋友圈」再擴大
本屆 GTC 上,英偉達的自動駕駛「朋友圈」繼續擴大。
中國自動駕駛公司小馬智行(Pony.ai)、美國電動車創業公司?Canoo?和法拉第未來(Faraday Future)加入到英偉達的自動駕駛生態圈,將採用英偉達的 Drive AGX 計算平台以及相應的配套軟體。
小馬智行將會基於 Drive AGX Pegasus 計算平台打造全新一代 Robotaxi 車型。
此前,小馬智行已經拿到了豐田的 4 億美金投資,不知道其全新一代 Robotaxi 會不會基於豐田旗下車型打造。
美國的電動汽車初創公司 Canoo 推出了一款專門用於共享出行服務的電動迷你巴士,計劃在 2021 年下半年投入生產。
為了實現輔助駕駛的系列功能,這款車型會搭載英偉達 Drive AGX Xavier 計算平台。前不久,Canoo 還和現代汽車達成合作,要攜手開發電動汽車平台。
作為全球新造車圈內比較特殊存在的法拉第未來,這一次也加入到了英偉達的自動駕駛生態圈。
FF 首款量產車 FF91 上的自動駕駛系統將基於 Drive AGX Xavier 計算平台打造,全車搭載了多達 36 顆各類感測器。
法拉第未來官方稱 FF91 有望在今年年底開始交付,不知道屆時會不會再一次跳票。
作為 GPU 領域絕對霸主的英偉達,在高算力的數據中心 GPU 以及高性能、可擴展的自動駕駛計算平台的加持下,已經建起了一個完整的集數據收集、模型訓練、模擬測試、遠程式控制制和實車應用的軟體定義的自動駕駛平台,實現了端到端的完整閉環。
同時,其自動駕駛生態圈也在不斷擴大,包括汽車製造商、一級供應商、感測器供應商、Robotaxi 研發公司和軟體初創公司在內的數百家自動駕駛產業鏈上的企業已經在基於英偉達的計算硬體和配套軟體開發、測試和應用自動駕駛車輛。
未來,在整個自動駕駛產業里,以計算晶元為核心優勢,英偉達的觸角將更加深入,有機會成為產業鏈條上不可或缺的供應商。
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
Ⅳ 顯卡怎麼計算挖礦算力
可以參考下面,根據一些網吧市場常用的顯卡,整理的一份相關顯卡的價格和算力以及預計回本期,大概可以做個參考:
Radeon RX 580顯卡
整機功耗:243W
計算力:22.4M
顯卡售價:1999元
每24小時挖ETH數量:0.015
每24小時產生收益:24.48元
預計回本時間:81.66天
Radeon RX 470顯卡
整機功耗:159W
計算力:24.3M
顯卡售價:1599元
每24小時挖ETH數量:0.017
每24小時產生收益:27.9元
預計回本時間:57.31天
Radeon RX 480顯卡
整機功耗:171W
計算力:24.4M
顯卡售價:1999元
每24小時挖ETH數量:0.017
每24小時產生收益:27.87元
預計回本時間:71.73天
(5)英偉達怎麼貢獻算力擴展閱讀:
顯卡(Video card,Graphics card)全稱顯示介面卡,又稱顯示適配器,是計算機最基本配置、最重要的配件之一。顯卡作為電腦主機里的一個重要組成部分,是電腦進行數模信號轉換的設備,承擔輸出顯示圖形的任務。
顯卡接在電腦主板上,它將電腦的數字信號轉換成模擬信號讓顯示器顯示出來,同時顯卡還是有圖像處理能力,可協助CPU工作,提高整體的運行速度。對於從事專業圖形設計的人來說顯卡非常重要。 民用和軍用顯卡圖形晶元供應商主要包括AMD(超微半導體)和Nvidia(英偉達)2家。現在的top500計算機,都包含顯卡計算核心。在科學計算中,顯卡被稱為顯示加速卡。
Ⅵ 怎麼能知道Nvidia的顯卡哪個計算能力強
N卡顯卡設置有 高性能、性能、質量、高質量 .4個選項,這4個選項由高到低,代表什麼肯定是大家疑惑的地方,
高性能代表的是,不需要圖形效果能玩就行,就犧牲畫面效果換取3D流暢度,高質量代表的是,跟性能剛好相反,就是為了更好的畫面效果犧牲流暢性
默認就是高性能,N卡驅動一直做的很好,就是N卡普遍做法就是犧牲畫面換取流暢度,
看你是個低端顯卡,建議默認就好,默認就是犧牲畫面,起碼可以玩,這個做法也是可取的
Ⅶ 算力高達700TOPS,功耗低於英偉達,高通CES推出全新自動駕駛平台
文/BY
5G會成為2020年出現頻率最高的詞彙,在過去的一年裡,全球已有45家電信運營商開始5G的部署,顯然,5G會以遠超於4G的普及速度快速改變我們的生活。作為全球最大的手機晶元供應商,本屆CES上高通也首次展示了其5G時代的全面布局,初步完成對手機、電腦、汽車及雲端的全面覆蓋。
區別於以往發布會中手機業務占據C位,高通本屆CES發布會上最大的篇幅是關於汽車業務。汽車領域首次成為高通布局的重點,除了此前已經布局的車聯網業務,此次高通還將觸角伸向了自動駕駛。
更靈活更低功耗的自動駕駛平台
CES前夕的高通發布會上,高通正式推出全新SnapdragonRide平台,官方列舉當前自動駕駛遇到的種種問題,並表示自家平台是汽車行業最先進且可擴展的開放自動駕駛解決方案之一。這種場面就如同,一個之前做手機晶元的,有一天突然站在一堆汽車Tier1面前,深嘆一口氣:「一個能打的都沒有,自動駕駛解決方案這事還得我來。」
隨著5G及人工智慧技術的發展,已經有越來越多科技公司加入到汽車行業之中,利用在晶元及軟體上的優勢賦能智能汽車,加速汽車的智能化、網聯化進程。或許,擁有一台更智能更便捷的汽車,會比我們想像中實現得早。
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
Ⅷ 英偉達是賓士最好的選擇
當然在GPU硬體方面,英偉達也在不斷鞏固、增強固有優勢。2019年,英偉達收購了成立於1999年的Mellanox公司,該公司是全球數據中心端到端連接解決方案的領先供應商,其領先的InfiniBand互聯方案是超算系統的核心組件,速度遠超其它技術,占統治地位。也就是說,英偉達通過收購Mellanox公司,彌補了其在數據中心低延遲互聯及網路方面的欠缺,不僅具備了超高的伺服器計算能力,同時也具備了超快的伺服器連接速度。
毫無疑問,通過這些年的發展,如今的英偉達已經不能簡單的用顯卡供應商來形容了,那麼我們該如何定義它?黃仁勛曾說過,英偉達是一家AI公司,更強調英偉達是一家軟體公司,和蘋果類似,通過售賣硬體盈利的軟體公司。
圖|來源於網路
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
Ⅸ 請問如何計算NVIDIA TX2的計算能力
sisoftware 類似軟體測峰值計算能力