當前位置:首頁 » 算力簡介 » 去中心化的三把尺子不包括

去中心化的三把尺子不包括

發布時間: 2021-04-20 21:53:41

Ⅰ 根據相對論,尺子在運動時為什麼縮短時間旅行中,時間為什麼會縮短

狹義相對論是建立在四維時空觀上的一個理論,因此要弄清相對論的內容,要先對相對論的時空觀有個大體了解。在數學上有各種多維空間,但目前為止,我們認識的物理世界只是四維,即三維空間加一維時間。現代微觀物理學提到的高維空間是另一層意思,只有數學意義,在此不做討論。
四維時空是構成真實世界的最低維度,我們的世界恰好是四維,至於高維真實空間,至少現在我們還無法感知。我在一個帖子上說過一個例子,一把尺子在三維空間里(不含時間)轉動,其長度不變,但旋轉它時,它的各坐標值均發生了變化,且坐標之間是有聯系的。四維時空的意義就是時間是第四維坐標,它與空間坐標是有聯系的,也就是說時空是統一的,不可分割的整體,它們是一種」此消彼長」的關系。
四維時空不僅限於此,由質能關系知,質量和能量實際是一回事,質量(或能量)並不是獨立的,而是與運動狀態相關的,比如速度越大,質量越大。在四維時空里,質量(或能量)實際是四維動量的第四維分量,動量是描述物質運動的量,因此質量與運動狀態有關就是理所當然的了。在四維時空里,動量和能量實現了統一,稱為能量動量四矢。另外在四維時空里還定義了四維速度,四維加速度,四維力,電磁場方程組的四維形式等。值得一提的是,電磁場方程組的四維形式更加完美,完全統一了電和磁,電場和磁場用一個統一的電磁場張量來描述。四維時空的物理定律比三維定律要完美的多,這說明我們的世界的確是四維的。可以說至少它比牛頓力學要完美的多。至少由它的完美性,我們不能對它妄加懷疑。
相對論中,時間與空間構成了一個不可分割的整體——四維時空,能量與動量也構成了一個不可分割的整體——四維動量。這說明自然界一些看似毫不相乾的量之間可能存在深刻的聯系。在今後論及廣義相對論時我們還會看到,時空與能量動量四矢之間也存在著深刻的聯系。

3 狹義相對論基本原理
物質在相互作用中作永恆的運動,沒有不運動的物質,也沒有無物質的運動,由於物質是在相互聯系,相互作用中運動的,因此,必須在物質的相互關系中描述運動,而不可能孤立的描述運動。也就是說,運動必須有一個參考物,這個參考物就是參考系。
伽利略曾經指出,運動的船與靜止的船上的運動不可區分,也就是說,當你在封閉的船艙里,與外界完全隔絕,那麼即使你擁有最發達的頭腦,最先進的儀器,也無從感知你的船是勻速運動,還是靜止。更無從感知速度的大小,因為沒有參考。比如,我們不知道我們整個宇宙的整體運動狀態,因為宇宙是封閉的。愛因斯坦將其引用,作為狹義相對論的第一個基本原理:狹義相對性原理。其內容是:慣性系之間完全等價,不可區分。
著名的麥克爾遜--莫雷實驗徹底否定了光的以太學說,得出了光與參考系無關的結論。也就是說,無論你站在地上,還是站在飛奔的火車上,測得的光速都是一樣的。這就是狹義相對論的第二個基本原理,光速不變原理。
由這兩條基本原理可以直接推導出相對論的坐標變換式,速度變換式等所有的狹義相對論內容。比如速度變幻,與傳統的法則相矛盾,但實踐證明是正確的,比如一輛火車速度是10m/s,一個人在車上相對車的速度也是10m/s,地面上的人看到車上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情況下,這種相對論效應完全可以忽略,但在接近光速時,這種效應明顯增大,比如,火車速度是0。99倍光速,人的速度也是0。99倍光速,那麼地面觀測者的結論不是1。98倍光速,而是0。999949倍光速。車上的人看到後面的射來的光也沒有變慢,對他來說也是光速。因此,從這個意義上說,光速是不可超越的,因為無論在那個參考系,光速都是不變的。速度變換已經被粒子物理學的無數實驗證明,是無可挑剔的。正因為光的這一獨特性質,因此被選為四維時空的唯一標尺。

4 狹義相對論效應
根據狹義相對性原理,慣性系是完全等價的,因此,在同一個慣性系中,存在統一的時間,稱為同時性,而相對論證明,在不同的慣性系中,卻沒有統一的同時性,也就是兩個事件(時空點)在一個關性系內同時,在另一個慣性系內就可能不同時,這就是同時的相對性,在慣性系中,同一物理過程的時間進程是完全相同的,如果用同一物理過程來度量時間,就可在整個慣性系中得到統一的時間。在今後的廣義相對論中可以知道,非慣性系中,時空是不均勻的,也就是說,在同一非慣性系中,沒有統一的時間,因此不能建立統一的同時性。
相對論導出了不同慣性系之間時間進度的關系,發現運動的慣性系時間進度慢,這就是所謂的鍾慢效應。可以通俗的理解為,運動的鍾比靜止的鍾走得慢,而且,運動速度越快,鍾走的越慢,接近光速時,鍾就幾乎停止了。
尺子的長度就是在一慣性系中"同時"得到的兩個端點的坐標值的差。由於"同時"的相對性,不同慣性系中測量的長度也不同。相對論證明,在尺子長度方向上運動的尺子比靜止的尺子短,這就是所謂的尺縮效應,當速度接近光速時,尺子縮成一個點。

5 狹義相對論效應2
由以上陳述可知,鍾慢和尺縮的原理就是時間進度有相對性。也就是說,時間進度與參考系有關。這就從根本上否定了牛頓的絕對時空觀,相對論認為,絕對時間是不存在的,然而時間仍是個客觀量。比如在下期將討論的雙生子理想實驗中,哥哥乘飛船回來後是15歲,弟弟可能已經是45歲了,說明時間是相對的,但哥哥的確是活了15年,弟弟也的確認為自己活了45年,這是與參考系無關的,時間又是"絕對的"。這說明,不論物體運動狀態如何,它本身所經歷的時間是一個客觀量,是絕對的,這稱為固有時。也就是說,無論你以什麼形式運動,你都認為你喝咖啡的速度很正常,你的生活規律都沒有被打亂,但別人可能看到你喝咖啡用了100年,而從放下杯子到壽終正寢只用了一秒鍾。

6 時鍾佯謬或雙生子佯謬
相對論誕生後,曾經有一個令人極感興趣的疑難問題---雙生子佯謬。一對雙生子A和B,A在地球上,B乘火箭去做星際旅行,經過漫長歲月返回地球。愛因斯坦由相對論斷言,二人經歷的時間不同,重逢時B將比A年輕。許多人有疑問,認為A看B在運動,B看A也在運動,為什麼不能是A比B年輕呢?由於地球可近似為慣性系,B要經歷加速與減速過程,是變加速運動參考系,真正討論起來非常復雜,因此這個愛因斯坦早已討論清楚的問題被許多人誤認為相對論是自相矛盾的理論。如果用時空圖和世界線的概念討論此問題就簡便多了,只是要用到許多數學知識和公式。在此只是用語言來描述一種最簡單的情形。不過只用語言無法更詳細說明細節,有興趣的請參考一些相對論書籍。我們的結論是,無論在那個參考系中,B都比A年輕。
為使問題簡化,只討論這種情形,火箭經過極短時間加速到亞光速,飛行一段時間後,用極短時間掉頭,又飛行一段時間,用極短時間減速與地球相遇。這樣處理的目的是略去加速和減速造成的影響。在地球參考系中很好討論,火箭始終是動鍾,重逢時B比A年輕。在火箭參考系內,地球在勻速過程中是動鍾,時間進程比火箭內慢,但最關鍵的地方是火箭掉頭的過程。在掉頭過程中,地球由火箭後方很遠的地方經過極短的時間劃過半個圓周,到達火箭的前方很遠的地方。這是一個"超光速"過程。只是這種超光速與相對論並不矛盾,這種"超光速"並不能傳遞任何信息,不是真正意義上的超光速。如果沒有這個掉頭過程,火箭與地球就不能相遇,由於不同的參考系沒有統一的時間,因此無法比較他們的年齡,只有在他們相遇時才可以比較。火箭掉頭後,B不能直接接受A的信息,因為信息傳遞需要時間。B看到的實際過程是在掉頭過程中,地球的時間進度猛地加快了。在B看來,A現實比B年輕,接著在掉頭時迅速衰老,返航時,A又比自己衰老的慢了。重逢時,自己仍比A年輕。也就是說,相對論不存在邏輯上的矛盾。

7 狹義相對論小結
相對論要求物理定律要在坐標變換(洛倫茲變化)下保持不變。經典電磁理論可以不加修改而納入相對論框架,而牛頓力學只在伽利略變換中形勢不變,在洛倫茲變換下原本簡潔的形式變得極為復雜。因此經典力學與要進行修改,修改後的力學體系在洛倫茲變換下形勢不變,稱為相對論力學。
狹義相對論建立以後,對物理學起到了巨大的推動作用。並且深入到量子力學的范圍,成為研究高速粒子不可缺少的理論,而且取得了豐碩的成果。然而在成功的背後,卻有兩個遺留下的原則性問題沒有解決。第一個是慣性系所引起的困難。拋棄了絕對時空後,慣性系成了無法定義的概念。我們可以說慣性系是慣性定律在其中成立的參考系。慣性定律實質一個不受外力的物體保持靜止或勻速直線運動的狀態。然而"不受外力"是什麼意思?只能說,不受外力是指一個物體能在慣性系中靜止或勻速直線運動。這樣,慣性系的定義就陷入了邏輯循環,這樣的定義是無用的。我們總能找到非常近似的慣性系,但宇宙中卻不存在真正的慣性系,整個理論如同建築在沙灘上一般。第二個是萬有引力引起的困難。萬有引力定律與絕對時空緊密相連,必須修正,但將其修改為洛倫茲變換下形勢不變的任何企圖都失敗了,萬有引力無法納入狹義相對論的框架。當時物理界只發現了萬有引力和電磁力兩種力,其中一種就冒出來搗亂,情況當然不會令人滿意。
愛因斯坦只用了幾個星期就建立起了狹義相對論,然而為解決這兩個困難,建立起廣義相對論卻用了整整十年時間。為解決第一個問題,愛因斯坦乾脆取消了慣性系在理論中的特殊地位,把相對性原理推廣到非慣性系。因此第一個問題轉化為非慣性系的時空結構問題。在非慣性系中遇到的第一隻攔路虎就是慣性力。在深入研究了慣性力後,提出了著名的等性原理,發現參考系問題有可能和引力問題一並解決。幾經曲折,愛因斯坦終於建立了完整的廣義相對論。廣義相對論讓所有物理學家大吃一驚,引力遠比想像中的復雜的多。至今為止愛因斯坦的場方程也只得到了為數不多的幾個確定解。它那優美的數學形式至今令物理學家們嘆為觀止。就在廣義相對論取得巨大成就的同時,由哥本哈根學派創立並發展的量子力學也取得了重大突破。然而物理學家們很快發現,兩大理論並不相容,至少有一個需要修改。於是引發了那場著名的論戰:愛因斯坦VS哥本哈根學派。直到現在爭論還沒有停止,只是越來越多的物理學家更傾向量子理論。愛因斯坦為解決這一問題耗費了後半生三十年光陰卻一無所獲。不過他的工作為物理學家們指明了方向:建立包含四種作用力的超統一理論。目前學術界公認的最有希望的候選者是超弦理論與超膜理論。

8 廣義相對論概述
相對論問世,人們看到的結論就是:四維彎曲時空,有限無邊宇宙,引力波,引力透鏡,大爆炸宇宙學說,以及二十一世紀的主旋律--黑洞等等。這一切來的都太突然,讓人們覺得相對論神秘莫測,因此在相對論問世頭幾年,一些人揚言"全世界只有十二個人懂相對論"。甚至有人說"全世界只有兩個半人懂相對論"。更有甚者將相對論與"通靈術","招魂術"之類相提並論。其實相對論並不神秘,它是最腳踏實地的理論,是經歷了千百次實踐檢驗的真理,更不是高不可攀的。
相對論應用的幾何學並不是普通的歐幾里得幾何,而是黎曼幾何。相信很多人都知道非歐幾何,它分為羅氏幾何與黎氏幾何兩種。黎曼從更高的角度統一了三種幾何,稱為黎曼幾何。在非歐幾何里,有很多奇怪的結論。三角形內角和不是180度,圓周率也不是3。14等等。因此在剛出台時,倍受嘲諷,被認為是最無用的理論。直到在球面幾何中發現了它的應用才受到重視。
空間如果不存在物質,時空是平直的,用歐氏幾何就足夠了。比如在狹義相對論中應用的,就是四維偽歐幾里得空間。加一個偽字是因為時間坐標前面還有個虛數單位i。當空間存在物質時,物質與時空相互作用,使時空發生了彎曲,這是就要用非歐幾何。
相對論預言了引力波的存在,發現了引力場與引力波都是以光速傳播的,否定了萬有引力定律的超距作用。當光線由恆星發出,遇到大質量天體,光線會重新匯聚,也就是說,我們可以觀測到被天體擋住的恆星。一般情況下,看到的是個環,被稱為愛因斯坦環。愛因斯坦將場方程應用到宇宙時,發現宇宙不是穩定的,它要麼膨脹要麼收縮。當時宇宙學認為,宇宙是無限的,靜止的,恆星也是無限的。於是他不惜修改場方程,加入了一個宇宙項,得到一個穩定解,提出有限無邊宇宙模型。不久哈勃發現著名的哈勃定律,提出了宇宙膨脹學說。愛因斯坦為此後悔不已,放棄了宇宙項,稱這是他一生最大的錯誤。在以後的研究中,物理學家們驚奇的發現,宇宙何止是在膨脹,簡直是在爆炸。極早期的宇宙分布在極小的尺度內,宇宙學家們需要研究粒子物理的內容來提出更全面的宇宙演化模型,而粒子物理學家需要宇宙學家們的觀測結果和理論來豐富和發展粒子物理。這樣,物理學中研究最大和最小的兩個目前最活躍的分支:粒子物理學和宇宙學竟這樣相互結合起來。就像高中物理序言中說的那樣,如同一頭怪蟒咬住了自己的尾巴。值得一提的是,雖然愛因斯坦的靜態宇宙被拋棄了,但它的有限無邊宇宙模型卻是宇宙未來三種可能的命運之一,而且是最有希望的。近年來宇宙項又被重新重視起來了。黑洞問題將在今後的文章中討論。黑洞與大爆炸雖然是相對論的預言,它們的內容卻已經超出了相對論的限制,與量子力學,熱力學結合的相當緊密。今後的理論有希望在這里找到突破口。

9 廣義相對論基本原理
由於慣性系無法定義,愛因斯坦將相對性原理推廣到非慣性系,提出了廣義相對論的第一個原理:廣義相對性原理。其內容是,所有參考系在描述自然定律時都是等效的。這與狹義相對性原理有很大區別。在不同參考系中,一切物理定律完全等價,沒有任何描述上的區別。但在一切參考系中,這是不可能的,只能說不同參考系可以同樣有效的描述自然律。這就需要我們尋找一種更好的描述方法來適應這種要求。通過狹義相對論,很容易證明旋轉圓盤的圓周率大於3。14。因此,普通參考系應該用黎曼幾何來描述。第二個原理是光速不變原理:光速在任意參考系內都是不變的。它等效於在四維時空中光的時空點是不動的。當時空是平直的,在三維空間中光以光速直線運動,當時空彎曲時,在三維空間中光沿著彎曲的空間運動。可以說引力可使光線偏折,但不可加速光子。第三個原理是最著名的等效原理。質量有兩種,慣性質量是用來度量物體慣性大小的,起初由牛頓第二定律定義。引力質量度量物體引力荷的大小,起初由牛頓的萬有引力定律定義。它們是互不相乾的兩個定律。慣性質量不等於電荷,甚至目前為止沒有任何關系。那麼慣性質量與引力質量(引力荷)在牛頓力學中不應該有任何關系。然而通過當代最精密的試驗也無法發現它們之間的區別,慣性質量與引力質量嚴格成比例(選擇適當系數可使它們嚴格相等)。廣義相對論將慣性質量與引力質量完全相等作為等效原理的內容。慣性質量聯系著慣性力,引力質量與引力相聯系。這樣,非慣性系與引力之間也建立了聯系。那麼在引力場中的任意一點都可以引入一個很小的自由降落參考系。由於慣性質量與引力質量相等,在此參考系內既不受慣性力也不受引力,可以使用狹義相對論的一切理論。初始條件相同時,等質量不等電荷的質點在同一電場中有不同的軌道,但是所有質點在同一引力場中只有唯一的軌道。等效原理使愛因斯坦認識到,引力場很可能不是時空中的外來場,而是一種幾何場,是時空本身的一種性質。由於物質的存在,原本平直的時空變成了彎曲的黎曼時空。在廣義相對論建立之初,曾有第四條原理,慣性定律:不受力(除去引力,因為引力不是真正的力)的物體做慣性運動。在黎曼時空中,就是沿著測地線運動。測地線是直線的推廣,是兩點間最短(或最長)的線,是唯一的。比如,球面的測地線是過球心的平面與球面截得的大圓的弧。但廣義相對論的場方程建立後,這一定律可由場方程導出,於是慣性定律變成了慣性定理。值得一提的是,伽利略曾認為勻速圓周運動才是慣性運動,勻速直線運動總會閉合為一個圓。這樣提出是為了解釋行星運動。他自然被牛頓力學批的體無完膚,然而相對論又將它復活了,行星做的的確是慣性運動,只是不是標準的勻速圓周而已。

10 螞蟻與蜜蜂的幾何學
設想有一種生活在二維面上的扁平螞蟻,因為是二維生物,所以沒有第三維感覺。如果螞蟻生活在大平面上,就從實踐中創立歐氏幾何。如果它生活在一個球面上,就會創立一種三角和大於180度,圓周率小於3。14的球面幾何學。但是,如果螞蟻生活在一個很大的球面上,當它的"科學"還不夠發達,活動范圍還不夠大,它不足以發現球面的彎曲,它生活的小塊球面近似於平面,因此它將先創立歐氏幾何學。當它的"科學技術"發展起來時,它會發現三角和大於180度,圓周率小於3。14等"實驗事實"。如果螞蟻夠聰明,它會得到結論,它們的宇宙是一個彎曲的二維空間,當它把自己的"宇宙"測量遍了時,會得出結論,它們的宇宙是封閉的(繞一圈還會回到原地),有限的,而且由於"空間"(曲面)的彎曲程度(曲率)處處相同,它們會將宇宙與自己的宇宙中的圓類比起來,認為宇宙是"圓形的"。由於沒有第三維感覺,所以它無法想像,它們的宇宙是怎樣彎曲成一個球的,更無法想像它們這個"無邊無際"的宇宙是存在於一個三維平直空間中的有限面積的球面。它們很難回答"宇宙外面是什麼"這類問題。因為,它們的宇宙是有限無邊的封閉的二維空間,很難形成"外面"這一概念。
對於螞蟻必須藉助"發達的科技"才能發現的抽象的事實,一隻蜜蜂卻可以很容易憑直觀形象的描述出來。因為蜜蜂是三維空間的生物,對於嵌在三維空間的二維曲面是"一目瞭然"的,也很容易形成球面的概念。螞蟻憑借自己的"科學技術"得到了同樣的結論,卻很不形象,是嚴格數學化的。
由此可見,並不是只有高維空間的生物才能發現低維空間的情況,聰明的螞蟻一樣可以發現球面的彎曲,並最終建立起完善的球面幾何學,其認識深度並不比蜜蜂差多少。
黎曼幾何是一個龐大的幾何公理體系,專門用於研究彎曲空間的各種性質。球面幾何只是它極小的一個分支。它不僅可用於研究球面,橢圓面,雙曲面等二維曲面,還可用於高維彎曲空間的研究。它是廣義相對論最重要的數學工具。黎曼在建立黎曼幾何時曾預言,真實的宇宙可能是彎曲的,物質的存在就是空間彎曲的原因。這實際上就是廣義相對論的核心內容。只是當時黎曼沒有像愛因斯坦那樣豐富的物理學知識,因此無法建立廣義相對論。

11 廣義相對論的實驗驗證
愛因斯坦在建立廣義相對論時,就提出了三個實驗,並很快就得到了驗證:(1)引力紅移(2)光線偏折(3)水星近日點進動。直到最近才增加了第四個驗證:(4)雷達回波的時間延遲。
(1)引力紅移:廣義相對論證明,引力勢低的地方固有時間的流逝速度慢。也就是說離天體越近,時間越慢。這樣,天體表面原子發出的光周期變長,由於光速不變,相應的頻率變小,在光譜中向紅光方向移動,稱為引力紅移。宇宙中有很多緻密的天體,可以測量它們發出的光的頻率,並與地球的相應原子發出的光作比較,發現紅移量與相對論語言一致。60年代初,人們在地球引力場中利用伽瑪射線的無反沖共振吸收效應(穆斯堡爾效應)測量了光垂直傳播22。5M產生的紅移,結果與相對論預言一致。
(2)光線偏折:如果按光的波動說,光在引力場中不應該有任何偏折,按半經典式的"量子論加牛頓引力論"的混合產物,用普朗克公式E=hr和質能公式E=MC^2求出光子的質量,再用牛頓萬有引力定律得到的太陽附近的光的偏折角是0。87秒,按廣義相對論計算的偏折角是1。75秒,為上述角度的兩倍。1919年,一戰剛結束,英國科學家愛丁頓派出兩支考察隊,利用日食的機會觀測,觀測的結果約為1。7秒,剛好在相對論實驗誤差范圍之內。引起誤差的主要原因是太陽大氣對光線的偏折。最近依靠射電望遠鏡可以觀測類星體的電波在太陽引力場中的偏折,不必等待日食這種稀有機會。精密測量進一步證實了相對論的結論。
(3)水星近日點的進動:天文觀測記錄了水星近日點每百年移動5600秒,人們考慮了各種因素,根據牛頓理論只能解釋其中的5557秒,只剩43秒無法解釋。廣義相對論的計算結果與萬有引力定律(平方反比定律)有所偏差,這一偏差剛好使水星的近日點每百年移動43秒。
(4)雷達回波實驗:從地球向行星發射雷達信號,接收行星反射的信號,測量信號往返的時間,來檢驗空間是否彎曲(檢驗三角形內角和)60年代,美國物理學家克服重重困難做成了此實驗,結果與相對論預言相符。
僅僅依靠這些實驗不足以說明相對論的正確性,只能說明它是比牛頓引力理論更精確的理論,因為它既包含牛頓引力論,又可以解釋牛頓理論無法解釋的現象。但不能保證這就是最好的理論,也不能保證相對論在時空極度彎曲的區域(比如黑洞)是否成立。因此,廣義相對論仍面臨考驗。

12 黑洞漫談之常規黑洞簡介
沸騰的黑洞,你將把物理學引向何方?透過奇異的黑暗,輻射出新世紀的曙光。
19世紀末20世紀初,物理界出現了兩朵烏雲:黑體輻射與邁克爾遜實驗。一年後,第一朵烏雲降生了量子論,五年後,第二朵烏雲降生了相對論。經過一個世紀的發展,又在這世紀之交,物理界又降生了兩朵烏雲:奇點困難和引力場量子化困難。這兩個困難可能通過黑洞與大爆炸的研究而解決。
基本粒子,天體演化,和生命起源是當代自然科學的三大課題。黑洞與宇宙學的研究與基本粒子,天體演化有密切關系。特別是黑洞的研究涉及一些根本性的問題,有助於我們深入認識自然界,因此,黑洞是本連載的重中之重。
牛頓理論也曾預言過黑洞,將光作為粒子,當光被引力拉回時,就成為一個黑洞。它與現代理論預言的黑洞不同,牛頓黑洞是一顆死星,是天體演化的最終歸宿。而現代黑洞,卻只是天體演化的一個中間階段,黑洞也在變化,甚至有些變化異常激烈。黑洞可以發光,放熱,甚至爆炸。黑洞不是死亡之星,甚至充滿生機。黑洞是相對論的產物,卻超出了相對論的范圍,與量子論和熱力學之間存在深刻的聯系。由天體演化形成的黑洞稱為常規黑洞。
1972年,美國普林斯頓大學青年研究生貝肯斯坦提出黑洞"無毛定理":星體坍縮成黑洞後,只剩下質量,角動量,電荷三個基本守恆量繼續起作用。其他一切因素("毛發")都在進入黑洞後消失了。這一定理後來由霍金等四人嚴格證明。
由此定理可將黑洞分為四類。(1)不旋轉不帶電荷的黑洞。它的時空結構於1916年由施瓦西求出稱施瓦西黑洞。(2)不旋轉帶電黑洞,稱R-N黑洞。時空結構於1916-1918年由Reissner和Nordstrom求出。(3)旋轉不帶電黑洞,稱克爾黑洞。時空結構由克爾於1963年求出。(4)一般黑洞,稱克爾-紐曼黑洞。時空結構於1965年由紐曼求出。
其中最重要的是施瓦西黑洞和克爾黑洞。因為黑洞一般不帶電荷,卻大都高速旋轉,旋轉一周只需千分之幾秒甚至更小。一般來說,黑洞平均密度是非常大的,但黑洞質量越大密度越小。太陽質量的黑洞密度為100億噸/立方厘米,宇宙質量的黑洞密度卻只有10^(-23)克/立方米數量級與現在宇宙密度已相差不大,因此有人猜測宇宙可能是個黑洞也不無道理。
黑洞引出了奇點困難,體積為零,密度無窮大的數學奇點應該不會在物理界出現,但是自然界中實在找不到其它的力可以抵抗強大的引力,因此,在奇點附近有可能存在至今未被發現的相互作用或物理定律阻止奇點的形成,這也是研究黑洞的意義之一。

13 黑洞漫談之靜態中性黑洞
利用牛頓理論可知,當逃逸速度達到光速時,光也無法從星球表面射出,這就是牛頓黑洞。光的波動說戰勝微粒說後,牛頓黑洞被人們淡忘了,因為波是不受引力影響的。有趣的是,從廣義相對論計算出的黑洞條件與牛頓理論計算出的完全相同,從現代眼光看,牛頓理論的推導犯了兩個錯誤:(1)將光子動能MC^2寫成了(1/2)MC^2,(2)把時空彎曲當成了萬有引力。兩個錯誤相互抵消卻得到了正確的結論。因此靜態中性黑洞的視界半徑與牛頓黑洞的半徑完全相同。視界就是(在經典範圍內,相對論屬於經典物理)任何物質都無法逃離的邊界。
我們說的黑洞大小是指它的視界大小,黑洞內部其實基本空無一物,只有一個奇點。這個點的體積無窮小,密度無窮大,所有的物質都被壓縮到這個點里。先前我們說過,奇點可能不存在,我們把它當很小的點就可以了。我們來看黑洞吞噬物質的場面:假設兩艘飛船里分別有兩個人A和B,A遠離黑洞,B被黑洞吸引。在B看來,它不斷的接近黑洞,不斷的加速,以接近光速的速度穿過視界,又以極短的時間撞向中心奇點,被壓的粉身碎骨,連原子核都被壓碎。在A看來,他看不到B的真實過程,他看到B先加速後減速最後停在視界處,逐漸變暗,最終消失。A看到的只是B的飛船上外殼發出的光的行為,B的真實部分早在A不知不覺中撞向了中心奇點。之所以會有減速過程是因為接近黑洞處時間膨脹,使A看到的速度變慢甚至接近零了。A看到的光停在視界上並不與光速不變原理相矛盾,光速不變原理指的是在四維時空中,光走過的四維

Ⅱ 如何建立標准化管理長效機制

電話訂貨、電子結算、網上訂貨已經向網上訂貨、網上結算和網上配貨過渡,現代物流亦向專業化、智能化、可視化方向發展,物流管理的科技含量日益提升,方式、方法亦不斷升級。因此,建立卷煙物流長效管理機制,不僅是現代物流飛速發展的必然,更是優秀市公司創建的迫切需要。 一、建立物流管理長效機制的意義 建立物流管理長效機制,必須要加強和完善物流發展規劃,要在立足現有硬體和軟體的基礎上,針對區域實際情況,制定物流管理三年到五年發展規劃。合理布局卷煙配送網路,開展示範配送線路及示範分揀線和示範崗活動。 同時,要運用科學的方法,減少運輸環節,提高配送效率,壓縮物流成本,促進節能減排。目前,淮安煙草在全市范圍內實行的「縣區一日制送貨法」,不僅打破了卷煙配送的行政區劃,而且還優化了配送線路,人力、物力、財力的節省是有目共睹。因此,建立物流管理長效機制,不僅是淮安煙草現代物流管理的需要,更是創建優秀市級公司、實現淮安煙草健康有序發展的需要。 實現物流長效機制管理,有利於提升物流管理效率。讓物流管理和對標有機結合,實現物流高速高效運轉,成本不斷降低,促使物流管理能夠走上良性循環的快車道,為淮安煙草的發展和跨越奠定良好的基礎。 實現物流長效機制管理,有利於提升物流配送效率。讓物流配送在長效機制的引領下,讓配送車輛、配送人員、配送線路和配送效率在機制的引領下科學運作,達到資源最大化利用的目的,為物流管理工作提供必要的保障。 實現物流長效機制管理,有利於提升卷煙分揀效率。物流分揀人員基本上是以素質偏差、文化偏低的「兩偏」人員為主,沒有科學地管理機制,很難激發這類人員的工作激情和主動工作的積極性,通過建立長效管理機制體系,可以有效實現對分揀人員的規范,讓被動接受變為主動遵守。 實現物流長效機制管理,有利於提升卷煙倉儲管理水平。卷煙倉儲的安全管理,是企業生存和發展的命脈,一著不慎,就能造成滿盤皆輸的局面。倉儲管理的面非常廣,涉及到防盜、防霉、庫容、入庫、出庫和掃碼等眾多環節,一旦對該項工作有所疏忽,就會使整個工作處於被動。 同時,隨著淮安煙草物流飛速發展,市場不斷變化,零售需求逐漸遞增,物流機制如果因循守舊,一成不變,很難適應企業、市場和消費需求的變化。因此,不僅要建立物流長效機制,還要使機制隨著時間的變化而變化,這樣才能適應行業的變化、社會形勢的發展。 淮安煙草物流中心通過爭創優秀地市公司活動,運用科學的管理手段和有效載體,豐富創優內容,拓展創優形式,深化創優內涵,大大激發了全體物流員工的工作熱情、創優激情和隊伍活力,營造了良好的工作氛圍,提升了全員工作效率和工作能力;同時,通過創優活動,建立物流管理長效機制,促進了物流管理工作向規范物流、科技物流和智能物流方向邁進。為「物流管理上水平」,從而推動淮安煙草健康、持續、協調發展。 二、建立物流管理長效機制的作用 建立和完善物流管理長效機制,並且發揮好其重要的作用,才能使現代物流在機制的引領下揚帆遠航。近年來,淮安煙草物流配送中心對長效機制進行了有益的探索,並針對目前全系統上下開展的創優工作,進行進一步地完善和升華,使長效管理機制不僅能夠引領現代物流促規范、上台階,更能夠和創優進行有效融合,發揮了長效機制在創優中的重要作用。 一是可以規范員工行為。俗話說「沒有規矩,不成方圓」。有了規范,不去遵照執行,就會使機製成為釘在牆上,掛在嘴上的空頭理論。因此,建立機制,還要用機制去約束員工言行,做到行有規范,動有機制,並且要堅持機制管理的長效化,不能視作是企業的短期行為。才能使優秀市公司的創建工作,在機制的引領下得到提高、升華。 卷煙物流中心作業人員多,涉及的事務雜,加之送貨人員整天在送貨路與市場上往返,一旦管理工作不到位,很容易釀成大錯。所以,建立和完善物流長效管理機制可以有效解決物流作業人員怎麼做和做什麼的問題,達到有章可循,有據可依的目的。 二是可以提升工作效率。管理工作不到位,會造成物流作業人員等、靠、看的心理,這樣,就會出現作業效率不高、工作不到位、質量降低、管理真空的現象。而長效機制建設有效解決了部門之間、崗位之間推諉扯皮現象;有效解決了干與不幹一個樣、干多干少一個樣、干好乾壞一個樣的不良心態;有效解決了學與不學一個樣、學好學壞一個樣的工學矛盾。激發了全員爭先優創的熱情,大大提高了工作效率。 同時,通過物流管理長效機制建設,可以將物流中心的收貨驗貨、儲存保管、裝卸搬運、卷煙分揀、卷煙配送、電子結算、信息處理等作業有機地結合起來,形成多功能、集約化和全方位的進出貨與服務樞紐,大大減少了人員、部門和企業內外接的銜接問題,增加信息傳遞的便捷性,達到節約時間成本,提升工作效率的目的。 三是可以提升客戶滿意度。為客戶作想,讓客戶滿意這是煙草行業對員工最基本的要求。物流員工,特別是一線配送人員,整天和市場、和客戶打交道。一旦工作和服務不到位,很容易造成零售客戶不滿,甚至會引發客戶投訴。建設和完善長效機制,要把客戶滿意放在第一位。其滿意度不僅包含卷煙包裝質量、售後服務,還包含卷煙配送的時效性和客戶服務的有效性,不是把卷煙一送了之,而是要送去煙草公司的形象和溫暖。高效完善的配送服務包括配送人員的服務態度、是否送達客戶指定的位置、售後服務工作是否做得完美等等,通過機制的建設來規范這些服務流程,從而提升企業品牌形象以及強化零售客戶對行業的忠誠度。 四是可以降低物流運營成本。通過建立和完善物流管理長效機制,可以實現集約化管理,規模化經營,專業化配送,標准化服務的模式。通過建立和完善長效機制,可以科學合理地調配資源,達到資源最大化利用;可以提高卷煙配送服務質量,達到提升企業服務形象和社會形象的目的;可以最大限度地減少送貨環節,達到科學配置送貨線路,減少配送流程,提高配送效率;可以縮短卷煙配送時間,達到提高服務效率,提升客戶滿意度;可以最終達到降低物流成本,提高配送效率的目的。 五是可以提升核心競爭力。事實與實踐已經證明,由於建立和完善長效機制,卷煙物流能夠大幅度降低企業的總成本,加快企業資金周轉,減少庫存積壓,促進利潤率上升,從而給企業創造可觀的經濟效益。因此,把企業的物流管理當作一個戰略新視角,變為現代企業管理戰略中的一個新的著眼點,通過制定各種物流戰略,建立和完善長效機制,從卷煙物流這個企業最大的能耗部門來尋找通往節能降耗的最佳出路,以增強企業的競爭力。 三、建立物流管理長效機制的對策 長效機制不是萬能,不可能一勞永逸,一成不變的。要隨著時間和形勢的不斷變化而進行豐富、更新和完善。這就要求我們改變傳統思維、傳統工作模式,不斷進行制度創新,建立起管理和服務的長效機制,才能真正發揮好現代物流的重要作用,讓優秀物流管理為優秀市公司創建打好基礎。 一是要建立安全管理機制。企業運營,安全為先。要從講政治、保穩定、創和諧、促發展的高度,充分認識做好安全工作的重要性和緊迫性,牢固樹立安全發展理念,把安全工作始終擺在重中之重的位置,研究新時期安全工作的新特點,探索新規律,破解新課題,創造新水平。不斷加強新形勢安全工作研究,創新教育載體、創新監管機制,創新管理手段,努力實現由傳統的事後管理到現代的預防管理轉變。要立足「三個創新」,即教育創新、機制創新和手段創新;抓好「三項工作」,即加強物流建設標准化工作、抓好安全隱患排查工作、強化重點環節管理工作。 教育創新:安全教育是防範事故的治本之策。要針對不同崗位特點、不同個性需求,不同的安全重點,開展有針對性的培訓、教育、演練活動,提高幹部職工安全防範能力。 機制創新:建立以安全責任制和責任追究制為主體的安全責任機制;建立定性與定量相結合的安全績效考核機制;建立預防在前、防範在先的安全預警機制。 手段創新:堅持科技興安,不斷加大安全投入,運用先進的安全防範設施、設備,應用現代科技手段,提高對事故的預防控制能力,做到以信息化促進安全工作,以高科技保障安全工作。 物流建設標准化:以強化職業健康安全管理體系建設為抓手,完善危險源辨識、運行控制、檢查評價等基礎安全管理標准,健全各項規章制度,細化各項工作流程,做好制度管人,流程管事,規范運行等各項工作。 安全隱患排查:採取定期檢查與不定期檢查,集中檢查與個別檢查相結合的方法,全面排查事故隱患,落實整改措施。要建立台賬、跟蹤落實,實行「四定」整改制度,及時消除隱患,真正使安全工作不留死角、不出空檔。 重點環節管理:要切實加強對物流配送車輛、基建工程及中心安全的管理工作。實現人、機、物的有序管理,降低生產現場安全風險;繼續加強「四防、四制」工作,提升防盜、防搶、防火等防範能力;切實加強物流配送過程安全防範工作,努力保證人身、財產等安全。 二是要建立車輛管理機制。卷煙物流管理,最重要的就是和配送車輛打交道,車輛管理工作到位與否,是保障物流健康、暢順運轉的關鍵。 首先,突出一個「明」字。明確責任,解決配送員工的工作不規范的問題。其次,突出一個「宣」字。加大學習宣傳力度,增強員工的規范意識。要堅決消除「少數人貫,多數人看」的現象,動員配送員工從思想上投入到「貫標」工作中來,讓標准銘刻到每個配送員工的腦海中,落實在具體行動上。在推進過程中要讓配送員工進一步加深對7S現場管理貫標工作的了解,增強不斷學習標准體系的積極性和自覺性,解決配送員工思想意識問題。第三,突出一個「考」字。加大檢查考核力度,提高7S管理標准體系執行力。要建立健全考核激勵機制和獎懲措施,把執行標准體系作為對配送員工業績評定的重要內容,納入月度目標考核,並將考核結果與員工工資獎金掛鉤,調動配送員工開展貫標工作的積極性、主動性。第四,突出一個「改」字。加大持續改進力度,提升7S現場管理水平。要依據7S現場管理運行質量、效率、成熟程度進行客觀分析與判斷,識別差異、揭示弱項,進行縱向、橫向比較,不斷發現7S現場管理運行存在的問題並尋找改進辦法,促進配送基礎管理水平的提升。 搞好7S現場管理貫標工作,可以進一步根除配送員工的「懶、散、拖、拉、臟、亂」現象,規范了配送員工工作行為,增強了配送工作規范意識,提高了配送工作標准和工作效率,切實展示了配送整體隊伍的良好形象。 三是要建立現場管理機制。現場管理水平的高低是衡量一個企業整體管理水平的一把尺子,是領導者管理水平和能力的一面鏡子,是勞動效率和服務水平高低的真實體現,也是員工綜合素質的綜合反映。在勞動崗位上要實施「四定一考」標准化,即崗位職責標准、工作流程標准、現場管理標准、員工管理標准和考核激勵標准。在工作實踐中要下功夫抓好「三區」、定好「三位」、落實「三員」和實行「三考」。抓好「三區」,即商品入庫區、商品出庫區、商品分揀區。定好三位,即確定商品擺放位置、設備擺放位置、物料擺放位置。落實三員,即保管員、分揀員、搬運員。實行三考,即自考、互考、綜合考。並且強化六個標准:一是崗位職責標准。主要內容是崗位設置、崗位名稱、崗位人數和崗位的基本職責;二是崗位流程標准。對不同的崗位從定員方式、崗位名稱、員額管理等方面制定出規范的標准,明確每個崗位的定員和基本職責;三是商品管理標准。主要內容是入庫區、出庫區和分揀區商品擺放標准。即商品擺放在什麼位置、商品與商品擺放的距離精確到厘米,從點點滴滴體現「工作因細致而卓越」的工作作風;四是設備管理標准。把三個區域設備的位置進行具體規定。如叉車使用後停放時,車距要精確到厘米;五是物料管理標准。對每個托盤的擺放位置要精確到厘米。對托盤擺放數量精確到個。對周轉箱擺放開口朝向、層高和長度要有具體標准;六是安全管理標准。針對商品、設備和物料的安全,要制定不同的管理標准,用標准來檢驗日常管理工作的落實;七是員工管理標准。員工行為標准內容包括環境衛生、衣著氣質、工作態度和工作作風。 四是要建立破損管理機制。為避免卷煙配送中破損情況發生,要從各個環節產生破損卷煙的原因入手,強化卷煙在庫在途的管理,加大卷煙進貨、分揀、配送等各個環節的控制、監督力度,降低卷煙破損率。首先,要加強卷煙破損原因分析,統計過去一年卷煙破損的數量,分析破損的主要環節和原因;其次,加強對卷煙出入庫環節管理。實施入庫前卷煙物品外觀檢查,把好入口關。開展出庫配送卷煙完整性檢查,把好出口關,杜絕破損卷煙的流通;再次,要加強分揀操作環節管理。進一步加強分揀人員按規定操作執行力度,將輕拿輕放的要求貫穿於分揀各個環節,減少人為破損因素。最後,要加強設備故障環節管理。對因包裝機擠壓的卷煙問題進行及時升級改造,杜絕破損卷煙出庫。另外,要加強送貨裝車環節管理。

Ⅲ 仙劍3外傳怎樣進入火屬性地脈我聽說拿到三把尺子就可以進入可是我找到了三把尺子都是不行能不能幫幫忙

里蜀山內城對吧,找到了三把鎮尺就夠了。去內城燎日家,在劇情物品欄使用物品,將鎮尺放在桌子上,就可以打開里蜀山山體的門。

Ⅳ 怎樣製作計算尺

計算尺
算尺(slide rule),或計算尺,通常指對數計算尺是一個模擬計算機,通常由三個互相鎖定的有刻度的長條和一個滑動窗口(稱為游標)組成。在1970年代之前使用廣泛,之後被電子計算器所取代,成為過時技術。

基本概念

在其最基本的形式中,算尺用兩個對數標度來作乘法除法,這些在紙上進行時既費時又易出錯的常見運算。用戶通過估計決定小數點在結果中的位置。在包含加減乘除的計算中,加減在紙上進行,而非算尺上。

實際上,就是最基本的學生用算尺也遠遠不止兩個標度。多數算尺由三個直條組成,平行對齊,互相鎖定,使得中間的條能夠沿長度方向相對於其他兩條滑動。外側的兩條是固定的,使得它們的相對位置不變。有些算尺("雙面"型)在尺和滑桿的兩面都由刻度,有些在外條的單面和滑桿的兩面有刻度,其餘的只有一面有刻度("單面"型)。一個滑動標記有一個或多個豎直的對齊線用於在任何一個刻度上記錄中間結果,也可用來找出不相鄰的刻度上的對應點。

更復雜的算尺可以進行其他計算,例如平方根,指數,對數,和三角函數。

通常,數學計算通過把滑動桿上的記號和其他固定桿上的的記號對齊來進行,結果通過觀察桿子上的其他記號的相對位置來讀出。

運算

乘法

下圖顯示了一把有兩個對數刻度的簡化算尺。也就是說,一個數字x印在每把尺的離"索引"(用數字1標記)的距離和 log x成正比的地方。

對數把乘法和除法操作變為加法和減法,這要感謝 log(xy) = log(x) + log(y) 和 log(x/y) = log(x) - log(y)這兩個法則。 把頂部刻度向右滑動 log(x)的距離把每個數字y(位於頂部刻度 log(y)的位置)和底部刻度 log(x) + log(y)位置對齊了。因為 log(x) + log(y) = log(xy), 底部刻度的這個位置標記為xy,也就是x 和 y的積。

下面的圖示顯示了2乘其它任何數字。上面刻度的索引(1)和下面刻度的2對齊了。這把整個上刻度右移了 log(2)的距離。上刻度的數字(乘數)和下刻度上的乘積對應。例如,上刻度的3.5和下刻度的乘積7對齊,而4和8對齊,等等,如圖所示:

操作可能會"超出范圍"。例如上圖顯示上刻度的7沒有任何下刻度的數字對齊,所以它沒有給出2 ՠ 7的答案。在這種情況下,使用者可以把上刻度往左移一點,乘以0.2而不是2,如下圖所示:

這里,算尺的使用者必須記得相應的調整小數點以得到最後答案。我們要找到2 ՠ 7,但是我們實際上計算了0.2 ՠ 7 = 1.4。所以真正的答案是14而不是1.4...

除法

下圖顯示了5.5/2的計算。頂部刻度的2放在底部刻度5.5的上面。頂部的1就在商2.75的上面。..

其他運算

除了對數刻度,有些算尺還有其他數學函數刻錄在輔助刻度上。最常見的有三角函數,通常有正弦和正切,常用對數(log10) (用於取一個乘數刻度上的值的對數),自然對數(ln)和指數函數(ex)刻度。有些尺包含一個畢達格拉斯刻度,用來算三角形的邊,還有一個算圓的刻度。其它的有計算雙曲函數的刻度。在直尺上,刻度和它們的標示是高度標准化的,主要的變化在於哪些刻度被包括進來以及出現的次序。:

A, B 雙-十對數刻度

C, D 單-十對數刻度

K 三-十對數刻度

CF, DF 從π而不是1開始的C和D刻度

CI, DI, DIF 倒數刻度,從右到左

S 用於在D刻度上找正弦和餘弦

T 用於在D和DI刻度上找正切

ST 用於小角度的正弦和正切

L 線性刻度,和C及D刻度配合使用來找基數為10的對數和10的冪

LLn 一套對數的對數刻度,用於找自然對數和指數

一把K&E 4081-3算尺的正面和反面。

求根和冪

有單-十(C and D), 雙-十 (A and B), 和三-十 (K) 刻度。例如,要計算x 2 , 我們可以在D上找到x,從A上讀出它的平方。把這個過程反過來,我們可以計算平方根,同樣3, 1/3, 2/3, 和 3/2次冪都可以這樣算。在刻度上找底x的時候必須小心,有時候會有不只一個地方出現x。例如,A刻度上有兩個9,要找9的平方根,我們必須使用第一個9;用第二個9就會給出90的平方根。

三角函數

對於5.7到90度之間的角度,正弦可以通過比較S刻度和C或D找到。S刻度有第二套角度(有時會用不同的顏色),從反方向增大,這是用來算餘弦的。正切可以通過比較T刻度和C, D刻度,或者,對於大於45的角,可以比較CI刻度。小於5.7度的角的正弦和正切可以使用ST刻度找到。反三角函數可以用相反的過程找。

對數和指數

以10為底的對數和指數可以用L刻度找到,它是線性的。底是e的時候要用LL刻度。

物理設計

標準直算尺

算尺的長度以刻度的長度而論,不是一整個設備的長度而論。最常見的高端算尺是10英寸雙工尺,而學生尺經常是10英寸單工。袖珍尺通常是5英寸長。

通常分隔記號標到兩位有效數字的精度,然後用戶估算第三位數字。有些高端尺子有帶放大鏡的游標,能使精度加倍,使得10英寸尺和20英寸尺一樣好用。

有一些小技巧可以用來增加方便性。三角刻度有時候有兩個標記,一個黑一個紅,標著互補的角度,這就是所謂"Darmstadt"風格。雙工算尺經常在背面復制有些刻度。刻度經常被"分裂"以取得更高的精度。

特殊的算尺被設計用來適合不同的工程,商業和銀行的用途。這些經常把常用計算直接用特殊刻度表示,例如,貸款計算,最佳買入數量,或者特殊的工程方程。

圓算尺

圓算尺有兩種基本類型,一種有兩個游標,另外一種有一個活動圓盤和一個游標。圓算尺的基本優點在於最長的尺寸縮小到大約3倍(也就是π倍)。例如,一把10 cm 圓算尺和一把30 cm普通算尺的精度相當。圓算尺也消除了"越界"計算,因為刻度被設計為"環繞"的;它們從不需要在結果接近1.0的時候重定向-尺子總是在界內的。

圓算尺在機械方面更為強壯,活動更平滑而且比直算尺更精確,因為他們只依賴於一個中央軸承。中央支撐很少脫開。軸承也避免了劃傷表面和游標。只有最昂貴的直算尺才提供這些特性。

最高精度的刻度放在最外環。高端的圓算尺不用"割裂"式刻度,而是對比較困難的刻度(如雙對數刻度)採用螺線刻度。一個八英寸高級圓算尺可以有一個50英寸雙對數刻度!

技術上來講,圓算尺的真正缺點在於不那麼重要的刻度離中心比較近,所以精度較差。歷史上,圓算尺的主要缺點只是它們不是標準的。多數學生在直算尺上學習算尺使用方法,然後沒有發現有換到圓算尺的必要。

今天還在全球日常使用的算尺是E6B。這是1930年代第一次製造的一把圓算尺,用於幫助飛機飛行員進行航位推演算法計算。這在所有飛行商店依然可以買到,並仍被廣泛使用。當全球定位系統減少了航位推算在航空中的使用的同時,E6B仍然被用作首選或被用航位推算儀器並且大部分飛行學校將它的某種程度的掌握作為學習要求。

1952年, 瑞士表公司百年靈(Breitling)引入了一款飛行員腕錶,帶有集成圓算尺用於飛行時間計算:Breitling Navitimer(百年靈航時計算器)。Navitimer圓算尺,被百年靈稱為"航空計算機",其特色在於飛行速度,爬升速度,飛行時間,距離,和燃料消耗函數,以及公里-海里和加侖-升燃料容量轉換函數。

材料

傳統上,算尺由硬木製成,例如桃花心木或黃楊木,再加上玻璃或金屬滑槽。1895年,一個日本公司開始用竹子製作算尺,其優點是對溫度和濕度不那麼敏感。這些竹算尺於1933年秋引入瑞典[http://runeberg.org/tektid/1933a/0348.html],可能只比引入德國早一點點。

最好的早期算尺是竹子作的,它尺寸穩定,堅固並且自然的自潤滑。它們採用賽璐珞或塑料刻度。有些採用桃心木製作。由來的算尺由塑料製成,或者漆了塑料的鋁。

所有高級算尺都刻了數字和刻度,然後填上漆或其他樹脂。漆或烙的算尺質量差一點,因為刻度容易磨掉。

早期的游標是帶金屬框的玻璃。後來的游標是在特弗倫軸承上滑動的丙烯酸樹脂或聚碳酸酯。

帶放大鏡的游標可以幫助視力差的工程師,也可以把算尺的精度加倍。

高級的算尺帶有精巧的鉤子,使得尺子不會意外脫開,還有緩沖器,使得把尺子扔到桌子上時不會把刻度或游標滑傷。

推薦的雕刻刻度的清理方式是用鋼絲絨輕輕的擦洗。對於漆算尺,保險的方法是用商用窗戶清潔液和一塊軟布。

歷史

計算尺發明於大約1620-1630年,在John Napier對數概念發表後不久。牛津的埃德蒙·甘特(Edmund Gunter)發明了一種使用單個對數刻度的計算工具,當和另外的測量工具配合使用時,可以用來做乘除法。1630年,劍橋的William Oughtred發明了圓算尺,1632年,他組合兩把甘特式計算尺,用手合起來成為可以視為現代的計算尺的設備。和與他同時代的牛頓一樣,Oughtred將他的想法私下傳授給他的學生,卻延遲發表它們,也和牛頓一樣,他捲入了發明優先權的糾紛,是和他曾經的學生Richard Delamain。Oughtred的想法只在他學生William Forster在1632和年的出版物中公開過。

1722年,Warner引入了2-和3-十進刻度,1755年Everard導入倒數刻度;包含所有這些刻度的算尺通常稱為"多相"算尺。

更現代的形式是由法國炮兵中尉Amédée Mannheim於1859年引入, "他很幸運,因為他的算尺由全國聞名的公司製作並被法國炮兵採用。"大約也就是在那個時間,隨著工程成為受到承認的一種職業活動,算尺在歐洲開始廣泛使用。他們直到1881年沒有在美國變得普通,直到Edwin Thacher在那裡引入了圓算尺。雙工尺於1891年由William Cox發明,由紐約的Keuffel&Esser公司生產。..,..

第二次世界大戰中,需要進行快速計算的轟炸者和航行者經常使用專用算尺。美國海軍的一個辦公室實際上設計了一個通用算尺"底盤",它由一個鋁主體和塑料游標,可以把賽璐珞卡片(兩面印刷)插到裡面以進行特定的計算。這個過程被發明來用於計算射程,燃料使用和飛行器高度,然後適用到很多其他目的。

從1950年代到1960年代,計算尺是工程師身份的象徵,如同顯微鏡代表了醫學行業一樣。列舉一則軼事:德國火箭專家沃納·馮·布勞恩,在二戰後到美國從事航天計劃工作時隨身帶了兩把三十年代的老式Nestler算尺。終其一生,他沒有用過任何其他袖珍計算儀器;顯然計算尺在他進行火箭設計的參數估算和其他計算中完美的完成任務。

有些工程系的學生和工程師常把10-英寸算尺別在皮帶上,或者把一把10-或20-英寸算尺安放在家中或辦公室里做精確運算用(當然,再精確運算,計算尺就不行了,需要一本厚厚的八位對數表),而隨身攜帶一把5-英寸袖珍算尺。所有這一切在1970年代告終,因為微型計算器頓使算尺過時。袖珍科學計算器(即帶有三角和對數函數的計算器)的誕生為計算尺敲響了最後的喪鍾。1972年的惠普HP-35是最早的科學計算器。

2004年,教育研究者David B. Sher和Dean C. Nataro構想了基於積化和差(prosthaphaeresis)的新型算尺,一個比對數更老的快速計算乘積的演算法。但是除了最初的原型,並沒有人有製造該算尺的實際興趣。[http://www.findarticles.com/p/articles/mi_qa3950/is_200401/ai_n9372466]
費米特長計算尺

40年代李政道從費米研究理論物理學,為了計算太陽中心的溫度,費米幫李政道製造了一把2米長的專用算尺。

優缺點

算尺趨向於使"假精度"和有效數字的錯誤得到糾正。通常算尺使用者的精度是3位。這和多數工程公式所用的數據是相符合的(例如材料強度,精確到2到3位精度,有大量的安全系數-典型值為1.5倍以上-存在,作為對建築水平的誤差,變化和材料的變化的附加修正)。當使用現代的袖珍計算器時,精度顯示為7到10位,而實際上,結果不可能比輸入數字有更多的精度。

算尺需要一直估算結果的數量級。在算尺上,1.5 ՠ30 (等於45)和1,500,000 ՠ0.03 (等於45,000)結果相同。這取決於工程師來持續的估算結果的"有效性":這在計算機程序或計算器的使用中經常不存在,例如可能是一個沒有能力判斷數字的合理性的職員在操作計算器。

當計算一系列乘法或除法,而因子相同的話,答案可以直接從算尺上掃到,而不用任何操作。例如,在上圖的算尺上,你可以計算任何乘2的運算,只要看,不用手。這在計算百分比的時候很有用,例如考試成績。

算尺不用電池。

算尺,不象電子計算器,是高度標准化的,所以沒必要重新學習任何東西當換到另一把吃的時候。

在使用電子計算器之餘再使用算尺的好處是:一個重要的計算可以通過算兩遍來校對;因為兩個儀器區別太大,不大可能兩次犯同樣的錯誤。

缺點:計算尺最大的缺點是不能進行加法和減法運算,必須用算盤或其他輔助工具進行加減運算。

計算尺在中國

中國歷史上最早使用計算尺的是康熙皇帝,他使用的是一把象牙制的甘特式計算尺。

70年代以前中國的理工科學生,人手一把,是必不可少的計算工具。上海計算尺廠製造的「自然對計算尺」是仿Keuffel & Esser式的,另有一型短計算尺則是仿德國Faber-Castell,製造精確美觀。

KE型計算尺不帶厘米、毫米刻度;德國Faber-Castell計算尺的優點是帶厘米、毫米刻度尺, 既可用於計算,又可用於劃線制圖。

尋找和收藏算尺

由於上面給出的原因,有些人依然喜歡使用計算尺而不是電子計算器作為實用的計算工具。很多其他人則出於懷舊保留了他們的老算尺,或者作為愛好收集算尺,或作為別開生面的擺設品。

很流行的型號有Keuffel & Esser的 Deci-Lon,高級科學和工程計算尺,分為10-英寸"普通"型(Deci-Lon 10)和5-英寸"袖珍"型(Deci-Lon 5)。 另一個流行的美國型號是8-英寸科學儀器圓算尺。歐洲的型號中,Faber-Castell的高端型號在收藏者中最為流行。

雖然有大量算尺在市場上流通,保存良好的標本經常令人吃驚的昂貴。很多在在線拍賣網站上賣的算尺由破損或缺零件。替換部件很稀缺,所以很貴,通常只在個人收藏者的網站上有零星出售。Keuffel&Esser1950年以前的型號特別有問題,因為游標的末端隨著時間會被化學反應損毀。很多情況下,最經濟的獲得可以用的算尺的辦法是購買多把同一型號的算尺,再把他們的部件組裝起來。

獵尋計算尺的最佳去處是「跳蚤市場」,常可不期而遇地花2美元買到保存良好的KE或Faber-Castell計算尺。

附註

.. 重置刻度不是處理像2 ՠ7這樣的超范圍乘法的唯一辦法;其他方法有: (1) 使用雙-十刻度。(2)使用折疊刻度。在這個例子中,把C刻度的1對准D刻度的2就可以了。把游標移動到CF的7,再從DF讀取結果。(3)使用CI刻度。把CI上的7放到D刻度的2上面,然後從D刻度的對准CI刻度的1的地方讀取結果。因為1在CI上出現兩次,總有一個在范圍內。方法1很容易理解,但會帶來精度的損失。方法3的優點在於它只用兩個刻度。

.. 有幾種作除法的辦法。這里給出的方法的優點在於最後結果不會越界,因為可以選擇在兩頭的1的其中一個。

Ⅳ 關於一個相對論的問題!

相對論簡史http://www.newmind40.com/01_09/swh.htm
相對論http://post..com/f?kz=11197627
相對論是物理的精華 http://www.qglt.com/bbs/ReadFile?whichfile=304738&typeid=18
愛因斯坦與相對論http://www.oursci.org/ency/physics/001.htm

狹義相對論是建立在四維時空觀上的一個理論,因此要弄清相對論的內容,要先對相對論的時空觀有個大體了解。在數學上有各種多維空間,但目前為止,我們認識的物理世界只是四維,即三維空間加一維時間。現代微觀物理學提到的高維空間是另一層意思,只有數學意義,在此不做討論。
四維時空是構成真實世界的最低維度,我們的世界恰好是四維,至於高維真實空間,至少現在我們還無法感知。我在一個帖子上說過一個例子,一把尺子在三維空間里(不含時間)轉動,其長度不變,但旋轉它時,它的各坐標值均發生了變化,且坐標之間是有聯系的。四維時空的意義就是時間是第四維坐標,它與空間坐標是有聯系的,也就是說時空是統一的,不可分割的整體,它們是一種」此消彼長」的關系。
四維時空不僅限於此,由質能關系知,質量和能量實際是一回事,質量(或能量)並不是獨立的,而是與運動狀態相關的,比如速度越大,質量越大。在四維時空里,質量(或能量)實際是四維動量的第四維分量,動量是描述物質運動的量,因此質量與運動狀態有關就是理所當然的了。在四維時空里,動量和能量實現了統一,稱為能量動量四矢。另外在四維時空里還定義了四維速度,四維加速度,四維力,電磁場方程組的四維形式等。值得一提的是,電磁場方程組的四維形式更加完美,完全統一了電和磁,電場和磁場用一個統一的電磁場張量來描述。四維時空的物理定律比三維定律要完美的多,這說明我們的世界的確是四維的。可以說至少它比牛頓力學要完美的多。至少由它的完美性,我們不能對它妄加懷疑。
相對論中,時間與空間構成了一個不可分割的整體——四維時空,能量與動量也構成了一個不可分割的整體——四維動量。這說明自然界一些看似毫不相乾的量之間可能存在深刻的聯系。在今後論及廣義相對論時我們還會看到,時空與能量動量四矢之間也存在著深刻的聯系。

3 狹義相對論基本原理
物質在相互作用中作永恆的運動,沒有不運動的物質,也沒有無物質的運動,由於物質是在相互聯系,相互作用中運動的,因此,必須在物質的相互關系中描述運動,而不可能孤立的描述運動。也就是說,運動必須有一個參考物,這個參考物就是參考系。
伽利略曾經指出,運動的船與靜止的船上的運動不可區分,也就是說,當你在封閉的船艙里,與外界完全隔絕,那麼即使你擁有最發達的頭腦,最先進的儀器,也無從感知你的船是勻速運動,還是靜止。更無從感知速度的大小,因為沒有參考。比如,我們不知道我們整個宇宙的整體運動狀態,因為宇宙是封閉的。愛因斯坦將其引用,作為狹義相對論的第一個基本原理:狹義相對性原理。其內容是:慣性系之間完全等價,不可區分。
著名的麥克爾遜--莫雷實驗徹底否定了光的以太學說,得出了光與參考系無關的結論。也就是說,無論你站在地上,還是站在飛奔的火車上,測得的光速都是一樣的。這就是狹義相對論的第二個基本原理,光速不變原理。
由這兩條基本原理可以直接推導出相對論的坐標變換式,速度變換式等所有的狹義相對論內容。比如速度變幻,與傳統的法則相矛盾,但實踐證明是正確的,比如一輛火車速度是10m/s,一個人在車上相對車的速度也是10m/s,地面上的人看到車上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情況下,這種相對論效應完全可以忽略,但在接近光速時,這種效應明顯增大,比如,火車速度是0。99倍光速,人的速度也是0。99倍光速,那麼地面觀測者的結論不是1。98倍光速,而是0。999949倍光速。車上的人看到後面的射來的光也沒有變慢,對他來說也是光速。因此,從這個意義上說,光速是不可超越的,因為無論在那個參考系,光速都是不變的。速度變換已經被粒子物理學的無數實驗證明,是無可挑剔的。正因為光的這一獨特性質,因此被選為四維時空的唯一標尺。

4 狹義相對論效應
根據狹義相對性原理,慣性系是完全等價的,因此,在同一個慣性系中,存在統一的時間,稱為同時性,而相對論證明,在不同的慣性系中,卻沒有統一的同時性,也就是兩個事件(時空點)在一個關性系內同時,在另一個慣性系內就可能不同時,這就是同時的相對性,在慣性系中,同一物理過程的時間進程是完全相同的,如果用同一物理過程來度量時間,就可在整個慣性系中得到統一的時間。在今後的廣義相對論中可以知道,非慣性系中,時空是不均勻的,也就是說,在同一非慣性系中,沒有統一的時間,因此不能建立統一的同時性。
相對論導出了不同慣性系之間時間進度的關系,發現運動的慣性系時間進度慢,這就是所謂的鍾慢效應。可以通俗的理解為,運動的鍾比靜止的鍾走得慢,而且,運動速度越快,鍾走的越慢,接近光速時,鍾就幾乎停止了。
尺子的長度就是在一慣性系中"同時"得到的兩個端點的坐標值的差。由於"同時"的相對性,不同慣性系中測量的長度也不同。相對論證明,在尺子長度方向上運動的尺子比靜止的尺子短,這就是所謂的尺縮效應,當速度接近光速時,尺子縮成一個點。

5 狹義相對論效應2
由以上陳述可知,鍾慢和尺縮的原理就是時間進度有相對性。也就是說,時間進度與參考系有關。這就從根本上否定了牛頓的絕對時空觀,相對論認為,絕對時間是不存在的,然而時間仍是個客觀量。比如在下期將討論的雙生子理想實驗中,哥哥乘飛船回來後是15歲,弟弟可能已經是45歲了,說明時間是相對的,但哥哥的確是活了15年,弟弟也的確認為自己活了45年,這是與參考系無關的,時間又是"絕對的"。這說明,不論物體運動狀態如何,它本身所經歷的時間是一個客觀量,是絕對的,這稱為固有時。也就是說,無論你以什麼形式運動,你都認為你喝咖啡的速度很正常,你的生活規律都沒有被打亂,但別人可能看到你喝咖啡用了100年,而從放下杯子到壽終正寢只用了一秒鍾。

6 時鍾佯謬或雙生子佯謬
相對論誕生後,曾經有一個令人極感興趣的疑難問題---雙生子佯謬。一對雙生子A和B,A在地球上,B乘火箭去做星際旅行,經過漫長歲月返回地球。愛因斯坦由相對論斷言,二人經歷的時間不同,重逢時B將比A年輕。許多人有疑問,認為A看B在運動,B看A也在運動,為什麼不能是A比B年輕呢?由於地球可近似為慣性系,B要經歷加速與減速過程,是變加速運動參考系,真正討論起來非常復雜,因此這個愛因斯坦早已討論清楚的問題被許多人誤認為相對論是自相矛盾的理論。如果用時空圖和世界線的概念討論此問題就簡便多了,只是要用到許多數學知識和公式。在此只是用語言來描述一種最簡單的情形。不過只用語言無法更詳細說明細節,有興趣的請參考一些相對論書籍。我們的結論是,無論在那個參考系中,B都比A年輕。
為使問題簡化,只討論這種情形,火箭經過極短時間加速到亞光速,飛行一段時間後,用極短時間掉頭,又飛行一段時間,用極短時間減速與地球相遇。這樣處理的目的是略去加速和減速造成的影響。在地球參考系中很好討論,火箭始終是動鍾,重逢時B比A年輕。在火箭參考系內,地球在勻速過程中是動鍾,時間進程比火箭內慢,但最關鍵的地方是火箭掉頭的過程。在掉頭過程中,地球由火箭後方很遠的地方經過極短的時間劃過半個圓周,到達火箭的前方很遠的地方。這是一個"超光速"過程。只是這種超光速與相對論並不矛盾,這種"超光速"並不能傳遞任何信息,不是真正意義上的超光速。如果沒有這個掉頭過程,火箭與地球就不能相遇,由於不同的參考系沒有統一的時間,因此無法比較他們的年齡,只有在他們相遇時才可以比較。火箭掉頭後,B不能直接接受A的信息,因為信息傳遞需要時間。B看到的實際過程是在掉頭過程中,地球的時間進度猛地加快了。在B看來,A現實比B年輕,接著在掉頭時迅速衰老,返航時,A又比自己衰老的慢了。重逢時,自己仍比A年輕。也就是說,相對論不存在邏輯上的矛盾。

7 狹義相對論小結
相對論要求物理定律要在坐標變換(洛倫茲變化)下保持不變。經典電磁理論可以不加修改而納入相對論框架,而牛頓力學只在伽利略變換中形勢不變,在洛倫茲變換下原本簡潔的形式變得極為復雜。因此經典力學與要進行修改,修改後的力學體系在洛倫茲變換下形勢不變,稱為相對論力學。
狹義相對論建立以後,對物理學起到了巨大的推動作用。並且深入到量子力學的范圍,成為研究高速粒子不可缺少的理論,而且取得了豐碩的成果。然而在成功的背後,卻有兩個遺留下的原則性問題沒有解決。第一個是慣性系所引起的困難。拋棄了絕對時空後,慣性系成了無法定義的概念。我們可以說慣性系是慣性定律在其中成立的參考系。慣性定律實質一個不受外力的物體保持靜止或勻速直線運動的狀態。然而"不受外力"是什麼意思?只能說,不受外力是指一個物體能在慣性系中靜止或勻速直線運動。這樣,慣性系的定義就陷入了邏輯循環,這樣的定義是無用的。我們總能找到非常近似的慣性系,但宇宙中卻不存在真正的慣性系,整個理論如同建築在沙灘上一般。第二個是萬有引力引起的困難。萬有引力定律與絕對時空緊密相連,必須修正,但將其修改為洛倫茲變換下形勢不變的任何企圖都失敗了,萬有引力無法納入狹義相對論的框架。當時物理界只發現了萬有引力和電磁力兩種力,其中一種就冒出來搗亂,情況當然不會令人滿意。
愛因斯坦只用了幾個星期就建立起了狹義相對論,然而為解決這兩個困難,建立起廣義相對論卻用了整整十年時間。為解決第一個問題,愛因斯坦乾脆取消了慣性系在理論中的特殊地位,把相對性原理推廣到非慣性系。因此第一個問題轉化為非慣性系的時空結構問題。在非慣性系中遇到的第一隻攔路虎就是慣性力。在深入研究了慣性力後,提出了著名的等性原理,發現參考系問題有可能和引力問題一並解決。幾經曲折,愛因斯坦終於建立了完整的廣義相對論。廣義相對論讓所有物理學家大吃一驚,引力遠比想像中的復雜的多。至今為止愛因斯坦的場方程也只得到了為數不多的幾個確定解。它那優美的數學形式至今令物理學家們嘆為觀止。就在廣義相對論取得巨大成就的同時,由哥本哈根學派創立並發展的量子力學也取得了重大突破。然而物理學家們很快發現,兩大理論並不相容,至少有一個需要修改。於是引發了那場著名的論戰:愛因斯坦VS哥本哈根學派。直到現在爭論還沒有停止,只是越來越多的物理學家更傾向量子理論。愛因斯坦為解決這一問題耗費了後半生三十年光陰卻一無所獲。不過他的工作為物理學家們指明了方向:建立包含四種作用力的超統一理論。目前學術界公認的最有希望的候選者是超弦理論與超膜理論。

8 廣義相對論概述
相對論問世,人們看到的結論就是:四維彎曲時空,有限無邊宇宙,引力波,引力透鏡,大爆炸宇宙學說,以及二十一世紀的主旋律--黑洞等等。這一切來的都太突然,讓人們覺得相對論神秘莫測,因此在相對論問世頭幾年,一些人揚言"全世界只有十二個人懂相對論"。甚至有人說"全世界只有兩個半人懂相對論"。更有甚者將相對論與"通靈術","招魂術"之類相提並論。其實相對論並不神秘,它是最腳踏實地的理論,是經歷了千百次實踐檢驗的真理,更不是高不可攀的。
相對論應用的幾何學並不是普通的歐幾里得幾何,而是黎曼幾何。相信很多人都知道非歐幾何,它分為羅氏幾何與黎氏幾何兩種。黎曼從更高的角度統一了三種幾何,稱為黎曼幾何。在非歐幾何里,有很多奇怪的結論。三角形內角和不是180度,圓周率也不是3。14等等。因此在剛出台時,倍受嘲諷,被認為是最無用的理論。直到在球面幾何中發現了它的應用才受到重視。
空間如果不存在物質,時空是平直的,用歐氏幾何就足夠了。比如在狹義相對論中應用的,就是四維偽歐幾里得空間。加一個偽字是因為時間坐標前面還有個虛數單位i。當空間存在物質時,物質與時空相互作用,使時空發生了彎曲,這是就要用非歐幾何。
相對論預言了引力波的存在,發現了引力場與引力波都是以光速傳播的,否定了萬有引力定律的超距作用。當光線由恆星發出,遇到大質量天體,光線會重新匯聚,也就是說,我們可以觀測到被天體擋住的恆星。一般情況下,看到的是個環,被稱為愛因斯坦環。愛因斯坦將場方程應用到宇宙時,發現宇宙不是穩定的,它要麼膨脹要麼收縮。當時宇宙學認為,宇宙是無限的,靜止的,恆星也是無限的。於是他不惜修改場方程,加入了一個宇宙項,得到一個穩定解,提出有限無邊宇宙模型。不久哈勃發現著名的哈勃定律,提出了宇宙膨脹學說。愛因斯坦為此後悔不已,放棄了宇宙項,稱這是他一生最大的錯誤。在以後的研究中,物理學家們驚奇的發現,宇宙何止是在膨脹,簡直是在爆炸。極早期的宇宙分布在極小的尺度內,宇宙學家們需要研究粒子物理的內容來提出更全面的宇宙演化模型,而粒子物理學家需要宇宙學家們的觀測結果和理論來豐富和發展粒子物理。這樣,物理學中研究最大和最小的兩個目前最活躍的分支:粒子物理學和宇宙學竟這樣相互結合起來。就像高中物理序言中說的那樣,如同一頭怪蟒咬住了自己的尾巴。值得一提的是,雖然愛因斯坦的靜態宇宙被拋棄了,但它的有限無邊宇宙模型卻是宇宙未來三種可能的命運之一,而且是最有希望的。近年來宇宙項又被重新重視起來了。黑洞問題將在今後的文章中討論。黑洞與大爆炸雖然是相對論的預言,它們的內容卻已經超出了相對論的限制,與量子力學,熱力學結合的相當緊密。今後的理論有希望在這里找到突破口。

9 廣義相對論基本原理
由於慣性系無法定義,愛因斯坦將相對性原理推廣到非慣性系,提出了廣義相對論的第一個原理:廣義相對性原理。其內容是,所有參考系在描述自然定律時都是等效的。這與狹義相對性原理有很大區別。在不同參考系中,一切物理定律完全等價,沒有任何描述上的區別。但在一切參考系中,這是不可能的,只能說不同參考系可以同樣有效的描述自然律。這就需要我們尋找一種更好的描述方法來適應這種要求。通過狹義相對論,很容易證明旋轉圓盤的圓周率大於3。14。因此,普通參考系應該用黎曼幾何來描述。第二個原理是光速不變原理:光速在任意參考系內都是不變的。它等效於在四維時空中光的時空點是不動的。當時空是平直的,在三維空間中光以光速直線運動,當時空彎曲時,在三維空間中光沿著彎曲的空間運動。可以說引力可使光線偏折,但不可加速光子。第三個原理是最著名的等效原理。質量有兩種,慣性質量是用來度量物體慣性大小的,起初由牛頓第二定律定義。引力質量度量物體引力荷的大小,起初由牛頓的萬有引力定律定義。它們是互不相乾的兩個定律。慣性質量不等於電荷,甚至目前為止沒有任何關系。那麼慣性質量與引力質量(引力荷)在牛頓力學中不應該有任何關系。然而通過當代最精密的試驗也無法發現它們之間的區別,慣性質量與引力質量嚴格成比例(選擇適當系數可使它們嚴格相等)。廣義相對論將慣性質量與引力質量完全相等作為等效原理的內容。慣性質量聯系著慣性力,引力質量與引力相聯系。這樣,非慣性系與引力之間也建立了聯系。那麼在引力場中的任意一點都可以引入一個很小的自由降落參考系。由於慣性質量與引力質量相等,在此參考系內既不受慣性力也不受引力,可以使用狹義相對論的一切理論。初始條件相同時,等質量不等電荷的質點在同一電場中有不同的軌道,但是所有質點在同一引力場中只有唯一的軌道。等效原理使愛因斯坦認識到,引力場很可能不是時空中的外來場,而是一種幾何場,是時空本身的一種性質。由於物質的存在,原本平直的時空變成了彎曲的黎曼時空。在廣義相對論建立之初,曾有第四條原理,慣性定律:不受力(除去引力,因為引力不是真正的力)的物體做慣性運動。在黎曼時空中,就是沿著測地線運動。測地線是直線的推廣,是兩點間最短(或最長)的線,是唯一的。比如,球面的測地線是過球心的平面與球面截得的大圓的弧。但廣義相對論的場方程建立後,這一定律可由場方程導出,於是慣性定律變成了慣性定理。值得一提的是,伽利略曾認為勻速圓周運動才是慣性運動,勻速直線運動總會閉合為一個圓。這樣提出是為了解釋行星運動。他自然被牛頓力學批的體無完膚,然而相對論又將它復活了,行星做的的確是慣性運動,只是不是標準的勻速圓周而已。

10 螞蟻與蜜蜂的幾何學
設想有一種生活在二維面上的扁平螞蟻,因為是二維生物,所以沒有第三維感覺。如果螞蟻生活在大平面上,就從實踐中創立歐氏幾何。如果它生活在一個球面上,就會創立一種三角和大於180度,圓周率小於3。14的球面幾何學。但是,如果螞蟻生活在一個很大的球面上,當它的"科學"還不夠發達,活動范圍還不夠大,它不足以發現球面的彎曲,它生活的小塊球面近似於平面,因此它將先創立歐氏幾何學。當它的"科學技術"發展起來時,它會發現三角和大於180度,圓周率小於3。14等"實驗事實"。如果螞蟻夠聰明,它會得到結論,它們的宇宙是一個彎曲的二維空間,當它把自己的"宇宙"測量遍了時,會得出結論,它們的宇宙是封閉的(繞一圈還會回到原地),有限的,而且由於"空間"(曲面)的彎曲程度(曲率)處處相同,它們會將宇宙與自己的宇宙中的圓類比起來,認為宇宙是"圓形的"。由於沒有第三維感覺,所以它無法想像,它們的宇宙是怎樣彎曲成一個球的,更無法想像它們這個"無邊無際"的宇宙是存在於一個三維平直空間中的有限面積的球面。它們很難回答"宇宙外面是什麼"這類問題。因為,它們的宇宙是有限無邊的封閉的二維空間,很難形成"外面"這一概念。
對於螞蟻必須藉助"發達的科技"才能發現的抽象的事實,一隻蜜蜂卻可以很容易憑直觀形象的描述出來。因為蜜蜂是三維空間的生物,對於嵌在三維空間的二維曲面是"一目瞭然"的,也很容易形成球面的概念。螞蟻憑借自己的"科學技術"得到了同樣的結論,卻很不形象,是嚴格數學化的。
由此可見,並不是只有高維空間的生物才能發現低維空間的情況,聰明的螞蟻一樣可以發現球面的彎曲,並最終建立起完善的球面幾何學,其認識深度並不比蜜蜂差多少。
黎曼幾何是一個龐大的幾何公理體系,專門用於研究彎曲空間的各種性質。球面幾何只是它極小的一個分支。它不僅可用於研究球面,橢圓面,雙曲面等二維曲面,還可用於高維彎曲空間的研究。它是廣義相對論最重要的數學工具。黎曼在建立黎曼幾何時曾預言,真實的宇宙可能是彎曲的,物質的存在就是空間彎曲的原因。這實際上就是廣義相對論的核心內容。只是當時黎曼沒有像愛因斯坦那樣豐富的物理學知識,因此無法建立廣義相對論。

11 廣義相對論的實驗驗證
愛因斯坦在建立廣義相對論時,就提出了三個實驗,並很快就得到了驗證:(1)引力紅移(2)光線偏折(3)水星近日點進動。直到最近才增加了第四個驗證:(4)雷達回波的時間延遲。
(1)引力紅移:廣義相對論證明,引力勢低的地方固有時間的流逝速度慢。也就是說離天體越近,時間越慢。這樣,天體表面原子發出的光周期變長,由於光速不變,相應的頻率變小,在光譜中向紅光方向移動,稱為引力紅移。宇宙中有很多緻密的天體,可以測量它們發出的光的頻率,並與地球的相應原子發出的光作比較,發現紅移量與相對論語言一致。60年代初,人們在地球引力場中利用伽瑪射線的無反沖共振吸收效應(穆斯堡爾效應)測量了光垂直傳播22。5M產生的紅移,結果與相對論預言一致。
(2)光線偏折:如果按光的波動說,光在引力場中不應該有任何偏折,按半經典式的"量子論加牛頓引力論"的混合產物,用普朗克公式E=hr和質能公式E=MC^2求出光子的質量,再用牛頓萬有引力定律得到的太陽附近的光的偏折角是0。87秒,按廣義相對論計算的偏折角是1。75秒,為上述角度的兩倍。1919年,一戰剛結束,英國科學家愛丁頓派出兩支考察隊,利用日食的機會觀測,觀測的結果約為1。7秒,剛好在相對論實驗誤差范圍之內。引起誤差的主要原因是太陽大氣對光線的偏折。最近依靠射電望遠鏡可以觀測類星體的電波在太陽引力場中的偏折,不必等待日食這種稀有機會。精密測量進一步證實了相對論的結論。
(3)水星近日點的進動:天文觀測記錄了水星近日點每百年移動5600秒,人們考慮了各種因素,根據牛頓理論只能解釋其中的5557秒,只剩43秒無法解釋。廣義相對論的計算結果與萬有引力定律(平方反比定律)有所偏差,這一偏差剛好使水星的近日點每百年移動43秒。
(4)雷達回波實驗:從地球向行星發射雷達信號,接收行星反射的信號,測量信號往返的時間,來檢驗空間是否彎曲(檢驗三角形內角和)60年代,美國物理學家克服重重困難做成了此實驗,結果與相對論預言相符。
僅僅依靠這些實驗不足以說明相對論的正確性,只能說明它是比牛頓引力理論更精確的理論,因為它既包含牛頓引力論,又可以解釋牛頓理論無法解釋的現象。但不能保證這就是最好的理論,也不能保證相對論在時空極度彎曲的區域(比如黑洞)是否成立。因此,廣義相對論仍面臨考驗。

12 黑洞漫談之常規黑洞簡介
沸騰的黑洞,你將把物理學引向何方?透過奇異的黑暗,輻射出新世紀的曙光。
19世紀末20世紀初,物理界出現了兩朵烏雲:黑體輻射與邁克爾遜實驗。一年後,第一朵烏雲降生了量子論,五年後,第二朵烏雲降生了相對論。經過一個世紀的發展,又在這世紀之交,物理界又降生了兩朵烏雲:奇點困難和引力場量子化困難。這兩個困難可能通過黑洞與大爆炸的研究而解決。
基本粒子,天體演化,和生命起源是當代自然科學的三大課題。黑洞與宇宙學的研究與基本粒子,天體演化有密切關系。特別是黑洞的研究涉及一些根本性的問題,有助於我們深入認識自然界,因此,黑洞是本連載的重中之重。
牛頓理論也曾預言過黑洞,將光作為粒子,當光被引力拉回時,就成為一個黑洞。它與現代理論預言的黑洞不同,牛頓黑洞是一顆死星,是天體演化的最終歸宿。而現代黑洞,卻只是天體演化的一個中間階段,黑洞也在變化,甚至有些變化異常激烈。黑洞可以發光,放熱,甚至爆炸。黑洞不是死亡之星,甚至充滿生機。黑洞是相對論的產物,卻超出了相對論的范圍,與量子論和熱力學之間存在深刻的聯系。由天體演化形成的黑洞稱為常規黑洞。
1972年,美國普林斯頓大學青年研究生貝肯斯坦提出黑洞"無毛定理":星體坍縮成黑洞後,只剩下質量,角動量,電荷三個基本守恆量繼續起作用。其他一切因素("毛發")都在進入黑洞後消失了。這一定理後來由霍金等四人嚴格證明。
由此定理可將黑洞分為四類。(1)不旋轉不帶電荷的黑洞。它的時空結構於1916年由施瓦西求出稱施瓦西黑洞。(2)不旋轉帶電黑洞,稱R-N黑洞。時空結構於1916-1918年由Reissner和Nordstrom求出。(3)旋轉不帶電黑洞,稱克爾黑洞。時空結構由克爾於1963年求出。(4)一般黑洞,稱克爾-紐曼黑洞。時空結構於1965年由紐曼求出。
其中最重要的是施瓦西黑洞和克爾黑洞。因為黑洞一般不帶電荷,卻大都高速旋轉,旋轉一周只需千分之幾秒甚至更小。一般來說,黑洞平均密度是非常大的,但黑洞質量越大密度越小。太陽質量的黑洞密度為100億噸/立方厘米,宇宙質量的黑洞密度卻只有10^(-23)克/立方米數量級與現在宇宙密度已相差不大,因此有人猜測宇宙可能是個黑洞也不無道理。
黑洞引出了奇點困難,體積為零,密度無窮大的數學奇點應該不會在物理界出現,但是自然界中實在找不到其它的力可以抵抗強大的引力,因此,在奇點附近有可能存在至今未被發現的相互作用或物理定律阻止奇點的形成,這也是研究黑洞的意義之一。

13 黑洞漫談之靜態中性黑洞
利用牛頓理論可知,當逃逸速度達到光速時,光也無法從星球表面射出,這就是牛頓黑洞。光的波動說戰勝微粒說後,牛頓黑洞被人們淡忘了,因為波是不受引力影響的。有趣的是,從廣義相對論計算出的黑洞條件與牛頓理論計算出的完全相同,從現代眼光看,牛頓理論的推導犯了兩個錯誤:(1)將光子動能MC^2寫成了(1/2)MC^2,(2)把時空彎曲當成了萬有引力。兩個錯誤相互抵消卻得到了正確的結論。因此靜態中性黑洞的視界半徑與牛頓黑洞的半徑完全相同。視界就是(在經典範圍內,相對論屬於經典物理)任何物質都無法逃離的邊界。
我們說的黑洞大小是指它的視界大小,黑洞內部其實基本空無一物,只有一個奇點。這個點的體積無窮小,密度無窮大,所有的物質都被壓縮到這個點里。先前我們說過,奇點可能不存在,我們把它當很小的點就可以了。我們來看黑洞吞噬物質的場面:假設兩艘飛船里分別有兩個人A和B,A遠離黑洞,B被黑洞吸引。在B看來,它不斷的接近黑洞,不斷的加速,以接近光速的速度穿過視界,又以極短的時間撞向中心奇點,被壓的粉身碎骨,連原子核都被壓碎。在A看來,他看不到B的真實過程,他看到B先加速後減速最後停在視界處,逐漸變暗,最終消失。A看到的只是B的飛船上外殼發出的光的行為,B的真實部分早在A不知不覺中撞向了中心奇點。之所以會有減速過程是因為接近黑洞處時間膨脹,使A看到的速度變慢甚至接近零了。A看到的光停在視界上並不與光速不變原理相矛盾,光速不變原理指的是在四維時空中,光走過的四維
參考資料:http://www..com/s?wd=%CF%E0%B6%D4%C2%DB&cl=3

Ⅵ 為什麼不能用圓規和直尺3等分一個任意角

有些角是可以三等分得 有些角是不可以的 例如 90度 45度 都可以三等分 但是60度就三等分不了 也就是說尺規只能做出一些特定角度 以下內容摘自互聯網 三等分任意角的題也許比另外兩個幾何問題出現更早,早到歷史上找不出有關的記載來。但無疑地它的出現是很自然的,就是我們自己在現在也可以想得到的。紀元前五、六百年間希臘的數學家們就已經想到了二等分任意角的方法,正像我們在幾何課本或幾何畫中所學的:以已知角的頂點為圓心,用適當的半徑作弧交角兩的兩邊得兩個交點,再分別以這兩點為圓心,用一個適當的長作半徑畫弧,這兩弧的交點與角頂相連就把已知角分為二等分。二等分一個已知角既是這么容易,很自然地會把問題略變一下:三等分怎麼樣呢?這樣,這一個問題就這么非常自然地出現了。 現已證明,在尺規作圖的前提下,此題無解。 三等分角的歷史: 公元前4世紀,托勒密一世定都亞歷山大城。他憑借優越的地理環境,發展海上貿易和手工藝,獎勵學術。他建造了規模宏大的「藝神之宮」,作為學術研究和教學中心;他又建造了著名的亞歷山大圖書館,藏書75萬卷。托勒密一世深深懂得發展科學文化的重要意義,他邀請著名學者到亞歷山大城,當時許多著名的希臘數學家都來到了這個城市。 亞歷山大城郊有一座圓形的別墅,裡面住著一位公主。圓形別墅中間有一條河,公主的居室正好建立在圓心處。別墅南北圍牆各開了一個門,河上建了一座橋,橋的位置和南北門位置恰好在一條直線上。國王每天賞賜的物品,從北門運進,先放到南門處的倉庫,然後公主再派人從南門取回居室。 一天,公主問侍從:「從北門到我的卧室,和從北門到橋,哪一段路更遠?」侍從不知道,趕緊去測量,結果是兩段路一樣遠的。 過了幾年,公主的妹妹小公主長大了,國王也要為她修建一座別墅。小公主提出她的別墅要修的像姐姐的別墅那樣,有河,有橋,有南北門。國王滿口答應,小公主的別墅很快就動工了,當把南門建立好,要確定橋和北門的位置時,卻出現了一個問題:怎樣才能使得北門到卧室和北門到橋的距離一樣遠呢? 設,北門的位置為Q,南門的位置為P,卧室(圓心)為O,橋為K, 要確定北門的和橋的位置,關鍵是做出∠OPQ,設PO和河流的夾角是α 由QK=QO, 得∠QKO=∠QOK 但是∠QKO=α+∠KPO, 又∠OQK=∠OPK 所以在△QKO中, ∠QKO+∠QOK+∠OQK =(α+∠KPO)+(α+∠KPO)+∠KPO =3∠KPO+2α=π 即∠KPO=(π-2α)/3 只要能把180-2α這個角三等分,就能夠確定出橋和北門的位置了。解決問題的關鍵是如何三等分一個角。 工匠們試圖用尺規作圖法確定出橋的位置,可是他們用了很長的時間也沒有解決。於是他們去請教阿基米德。 阿基米德用在直尺上做固定標記的方法,解決了三等分一角的問題,從而確定了北門的位置。正當大家稱贊阿基米德了不起時,阿基米德卻說:「這個確定北門位置的方法固然可行,但只是權宜之計,它是有破綻的。」阿基米德所謂的破綻就是在尺上做了標記,等於是做了刻度,這在尺規做圖法則中是不允許的。 這個故事提出了一個數學問題:如何尺規三等分任意已知角,這個問題連阿基米德都沒有解答出來。

熱點內容
ltc配置 發布:2025-07-26 09:27:53 瀏覽:477
元宇宙產業股 發布:2025-07-26 08:57:31 瀏覽:119
比特幣及虛擬貨幣金融 發布:2025-07-26 08:55:19 瀏覽:754
dcep幣圈會漲嗎 發布:2025-07-26 08:29:28 瀏覽:77
太一雲區塊鏈上市公司股票代碼查詢 發布:2025-07-26 08:17:34 瀏覽:44
俄羅斯的數字貨幣有幾種 發布:2025-07-26 08:16:02 瀏覽:530
btc交易有記錄嗎 發布:2025-07-26 08:03:29 瀏覽:318
二次元小宇宙圖片 發布:2025-07-26 07:30:30 瀏覽:943
ltc決策機制 發布:2025-07-26 07:29:09 瀏覽:57
幣圈都用什麼app聊天 發布:2025-07-26 07:15:22 瀏覽:290