区块链共识算法分析角度
① 深入了解区块链的共识机制及算法原理
所谓“共识机制”,是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;对一笔交易,如果利益不相干的若干个节点能够达成共识,我们就可以认为全网对此也能够达成共识。再通俗一点来讲,如果中国一名微博大V、美国一名虚拟币玩家、一名非洲留学生和一名欧洲旅行者互不相识,但他们都一致认为你是个好人,那么基本上就可以断定你这人还不坏。
要想整个区块链网络节点维持一份相同的数据,同时保证每个参与者的公平性,整个体系的所有参与者必须要有统一的协议,也就是我们这里要将的共识算法。比特币所有的节点都遵循统一的协议规范。协议规范(共识算法)由相关的共识规则组成,这些规则可以分为两个大的核心:工作量证明与最长链机制。所有规则(共识)的最终体现就是比特币的最长链。共识算法的目的就是保证比特币不停地在最长链条上运转,从而保证整个记账系统的一致性和可靠性。
区块链中的用户进行交易时不需要考虑对方的信用、不需要信任对方,也无需一个可信的中介机构或中央机构,只需要依据区块链协议即可实现交易。这种不需要可信第三方中介就可以顺利交易的前提是区块链的共识机制,即在互不了解、信任的市场环境中,参与交易的各节点出于对自身利益考虑,没有任何违规作弊的动机、行为,因此各节点会主动自觉遵守预先设定的规则,来判断每一笔交易的真实性和可靠性,并将检验通过的记录写入到区块链中。各节点的利益各不相同,逻辑上将它们没有合谋欺骗作弊的动机产生,而当网络中有的节点拥有公共信誉时,这一点尤为明显。区块链技术运用基于数学原理的共识算法,在节点之间建立“信任”网络,利用技术手段从而实现一种创新式的信用网络。
目前区款连行业内主流的共识算法机制包含:工作量证明机制、权益证明机制、股份授权证明机制和Pool验证池这四大类。
工作量证明机制即对于工作量的证明,是生成要加入到区块链中的一笔新的交易信息(即新区块)时必须满足的要求。在基于工作量证明机制构建的区块链网络中,节点通过计算随机哈希散列的数值解争夺记账权,求得正确的数值解以生成区块的能力是节点算力的具体表现。工作量证明机制具有完全去中心化的优点,在以工作量证明机制为共识的区块链中,节点可以自由进出。大家所熟知的比特币网络就应用工作量证明机制来生产新的货币。然而,由于工作量证明机制在比特币网络中的应用已经吸引了全球计算机大部分的算力,其他想尝试使用该机制的区块链应用很难获得同样规模的算力来维持自身的安全。同时,基于工作量证明机制的挖矿行为还造成了大量的资源浪费,达成共识所需要的周期也较长,因此该机制并不适合商业应用。
2012年,化名Sunny King的网友推出了Peercoin,该加密电子货币采用工作量证明机制发行新币,采用权益证明机制维护网络安全,这是权益证明机制在加密电子货币中的首次应用。与要求证明人执行一定量的计算工作不同,权益证明要求证明人提供一定数量加密货币的所有权即可。权益证明机制的运作方式是,当创造一个新区块时,矿工需要创建一个“币权”交易,交易会按照预先设定的比例把一些币发送给矿工本身。权益证明机制根据每个节点拥有代币的比例和时间,依据算法等比例地降低节点的挖矿难度,从而加快了寻找随机数的速度。这种共识机制可以缩短达成共识所需的时间,但本质上仍然需要网络中的节点进行挖矿运算。因此,PoS机制并没有从根本上解决PoW机制难以应用于商业领域的问题。
股份授权证明机制是一种新的保障网络安全的共识机制。它在尝试解决传统的PoW机制和PoS机制问题的同时,还能通过实施科技式的民主抵消中心化所带来的负面效应。
股份授权证明机制与董事会投票类似,该机制拥有一个内置的实时股权人投票系统,就像系统随时都在召开一个永不散场的股东大会,所有股东都在这里投票决定公司决策。基于DPoS机制建立的区块链的去中心化依赖于一定数量的代表,而非全体用户。在这样的区块链中,全体节点投票选举出一定数量的节点代表,由他们来代理全体节点确认区块、维持系统有序运行。同时,区块链中的全体节点具有随时罢免和任命代表的权力。如果必要,全体节点可以通过投票让现任节点代表失去代表资格,重新选举新的代表,实现实时的民主。
股份授权证明机制可以大大缩小参与验证和记账节点的数量,从而达到秒级的共识验证。然而,该共识机制仍然不能完美解决区块链在商业中的应用问题,因为该共识机制无法摆脱对于代币的依赖,而在很多商业应用中并不需要代币的存在。
Pool验证池基于传统的分布式一致性技术建立,并辅之以数据验证机制,是目前区块链中广泛使用的一种共识机制。
Pool验证池不需要依赖代币就可以工作,在成熟的分布式一致性算法(Pasox、Raft)基础之上,可以实现秒级共识验证,更适合有多方参与的多中心商业模式。不过,Pool验证池也存在一些不足,例如该共识机制能够实现的分布式程度不如PoW机制等
这里主要讲解区块链工作量证明机制的一些算法原理以及比特币网络是如何证明自己的工作量的,希望大家能够对共识算法有一个基本的认识。
工作量证明系统的主要特征是客户端要做一定难度的工作来得到一个结果,验证方则很容易通过结果来检查客户端是不是做了相应的工作。这种方案的一个核心特征是不对称性:工作对于请求方是适中中的,对于验证方是易于验证的。它与验证码不同,验证码是易于被人类解决而不是易于被计算机解决。
下图所示的为工作量证明流程。
举个例子,给个一个基本的字符创“hello,world!”,我们给出的工作量要求是,可以在这个字符创后面添加一个叫做nonce(随机数)的整数值,对变更后(添加nonce)的字符创进行SHA-256运算,如果得到的结果(一十六进制的形式表示)以“0000”开头的,则验证通过。为了达到这个工作量证明的目标,需要不停地递增nonce值,对得到的字符创进行SHA-256哈希运算。按照这个规则,需要经过4251次运算,才能找到前导为4个0的哈希散列。
通过这个示例我们对工作量证明机制有了一个初步的理解。有人或许认为如果工作量证明只是这样一个过程,那是不是只要记住nonce为4521使计算能通过验证就行了,当然不是了,这只是一个例子。
下面我们将输入简单的变更为”Hello,World!+整数值”,整数值取1~1000,也就是说将输入变成一个1~1000的数组:Hello,World!1;Hello,World!2;...;Hello,World!1000。然后对数组中的每一个输入依次进行上面的工作量证明—找到前导为4个0的哈希散列。
由于哈希值伪随机的特性,根据概率论的相关知识容易计算出,预计要进行2的16次方次数的尝试,才能得到前导为4个0的哈希散列。而统计一下刚刚进行的1000次计算的实际结果会发现,进行计算的平均次数为66958次,十分接近2的16次方(65536)。在这个例子中,数学期望的计算次数实际就是要求的“工作量”,重复进行多次的工作量证明会是一个符合统计学规律的概率事件。
统计输入的字符创与得到对应目标结果实际使用的计算次数如下:
对于比特币网络中的任何节点,如果想生成一个新的区块加入到区块链中,则必须解决出比特币网络出的这道谜题。这道题的关键要素是工作量证明函数、区块及难度值。工作量证明函数是这道题的计算方法,区块是这道题的输入数据,难度值决定了解这道题的所需要的计算量。
比特币网络中使用的工作量证明函数正是上文提及的SHA-256。区块其实就是在工作量证明环节产生的。旷工通过不停地构造区块数据,检验每次计算出的结果是否满足要求的工作量,从而判断该区块是不是符合网络难度。区块头即比特币工作量证明函数的输入数据。
难度值是矿工们挖掘的重要参考指标,它决定了旷工需要经过多少次哈希运算才能产生一个合法的区块。比特币网络大约每10分钟生成一个区块,如果在不同的全网算力条件下,新区块的产生基本都保持这个速度,难度值必须根据全网算力的变化进行调整。总的原则即为无论挖矿能力如何,使得网络始终保持10分钟产生一个新区块。
难度值的调整是在每个完整节点中独立自动发生的。每隔2016个区块,所有节点都会按照统一的格式自动调整难度值,这个公式是由最新产生的2016个区块的花费时长与期望时长(按每10分钟产生一个取款,则期望时长为20160分钟)比较得出来的,根据实际时长一期望时长的比值进行调整。也就是说,如果区块产生的速度比10分钟快,则增加难度值;反正,则降低难度值。用公式来表达如下:
新难度值=旧难度值*(20160分钟/过去2016个区块花费时长)。
工作量证明需要有一个目标值。比特币工作量证明的目标值(Target)的计算公式如下:
目标值=最大目标值/难度值,其中最大目标值为一个恒定值
目标值的大小与难度值成反比,比特币工作量证明的达成就是矿中计算出来的区块哈希值必须小于目标值。
我们也可以将比特币工作量的过程简单的理解成,通过不停变更区块头(即尝试不同nonce值)并将其作为输入,进行SHA-256哈希运算,找出一个有特定格式哈希值的过程(即要求有一定数量的前导0),而要求的前导0个数越多,难度越大。
可以把比特币将这道工作量证明谜题的步骤大致归纳如下:
该过程可以用下图表示:
比特币的工作量证明,就是我们俗称“挖矿”所做的主要工作。理解工作量证明机制,将为我们进一步理解比特币区块链的共识机制奠定基础。
② 区块链 --- 共识算法
PoW算法是一种防止分布式服务资源被滥用、拒绝服务攻击的机制。它要求节点进行适量消耗时间和资源的复杂运算,并且其运算结果能被其他节点快速验算,以耗用时间、能源做担保,以确保服务与资源被真正的需求所使用。
PoW算法中最基本的技术原理是使用哈希算法。假设求哈希值Hash(r),若原始数据为r(raw),则运算结果为R(Result)。
R = Hash(r)
哈希函数Hash()的特性是,对于任意输入值r,得出结果R,并且无法从R反推回r。当输入的原始数据r变动1比特时,其结果R值完全改变。在比特币的PoW算法中,引入算法难度d和随机值n,得到以下公式:
Rd = Hash(r+n)
该公式要求在填入随机值n的情况下,计算结果Rd的前d字节必须为0。由于哈希函数结果的未知性,每个矿工都要做大量运算之后,才能得出正确结果,而算出结果广播给全网之后,其他节点只需要进行一次哈希运算即可校验。PoW算法就是采用这种方式让计算消耗资源,而校验仅需一次。
PoS算法要求节点验证者必须质押一定的资金才有挖矿打包资格,并且区域链系统在选定打包节点时使用随机的方式,当节点质押的资金越多时,其被选定打包区块的概率越大。
POS模式下,每个币每天产生1币龄,比如你持有100个币,总共持有了30天,那么,此时你的币龄就为3000。这个时候,如果你验证了一个POS区块,你的币龄就会被清空为0,同时从区块中获得相对应的数字货币利息。
节点通过PoS算法出块的过程如下:普通的节点要成为出块节点,首先要进行资产的质押,当轮到自己出块时,打包区块,然后向全网广播,其他验证节点将会校验区块的合法性。
DPoS算法和PoS算法相似,也采用股份和权益质押。
但不同的是,DPoS算法采用委托质押的方式,类似于用全民选举代表的方式选出N个超级节点记账出块。
选民把自己的选票投给某个节点,如果某个节点当选记账节点,那么该记账节点往往在获取出块奖励后,可以采用任意方式来回报自己的选民。
这N个记账节点将轮流出块,并且节点之间相互监督,如果其作恶,那么会被扣除质押金。
通过信任少量的诚信节点,可以去除区块签名过程中不必要的步骤,提高了交易的速度。
拜占庭问题:
拜占庭是古代东罗马帝国的首都,为了防御在每块封地都驻扎一支由单个将军带领的军队,将军之间只能靠信差传递消息。在战争时,所有将军必须达成共识,决定是否共同开战。
但是,在军队内可能有叛徒,这些人将影响将军们达成共识。拜占庭将军问题是指在已知有将军是叛徒的情况下,剩余的将军如何达成一致决策的问题。
BFT:
BFT即拜占庭容错,拜占庭容错技术是一类分布式计算领域的容错技术。拜占庭假设是对现实世界的模型化,由于硬件错误、网络拥塞或中断以及遭到恶意攻击等原因,计算机和网络可能出现不可预料的行为。拜占庭容错技术被设计用来处理这些异常行为,并满足所要解决的问题的规范要求。
拜占庭容错系统 :
发生故障的节点被称为 拜占庭节点 ,而正常的节点即为 非拜占庭节点 。
假设分布式系统拥有n台节点,并假设整个系统拜占庭节点不超过m台(n ≥ 3m + 1),拜占庭容错系统需要满足如下两个条件:
另外,拜占庭容错系统需要达成如下两个指标:
PBFT即实用拜占庭容错算法,解决了原始拜占庭容错算法效率不高的问题,算法的时间复杂度是O(n^2),使得在实际系统应用中可以解决拜占庭容错问题
PBFT是一种状态机副本复制算法,所有的副本在一个视图(view)轮换的过程中操作,主节点通过视图编号以及节点数集合来确定,即:主节点 p = v mod |R|。v:视图编号,|R|节点个数,p:主节点编号。
PBFT算法的共识过程如下:客户端(Client)发起消息请求(request),并广播转发至每一个副本节点(Replica),由其中一个主节点(Leader)发起提案消息pre-prepare,并广播。其他节点获取原始消息,在校验完成后发送prepare消息。每个节点收到2f+1个prepare消息,即认为已经准备完毕,并发送commit消息。当节点收到2f+1个commit消息,客户端收到f+1个相同的reply消息时,说明客户端发起的请求已经达成全网共识。
具体流程如下 :
客户端c向主节点p发送<REQUEST, o, t, c>请求。o: 请求的具体操作,t: 请求时客户端追加的时间戳,c:客户端标识。REQUEST: 包含消息内容m,以及消息摘要d(m)。客户端对请求进行签名。
主节点收到客户端的请求,需要进行以下交验:
a. 客户端请求消息签名是否正确。
非法请求丢弃。正确请求,分配一个编号n,编号n主要用于对客户端的请求进行排序。然后广播一条<<PRE-PREPARE, v, n, d>, m>消息给其他副本节点。v:视图编号,d客户端消息摘要,m消息内容。<PRE-PREPARE, v, n, d>进行主节点签名。n是要在某一个范围区间内的[h, H],具体原因参见 垃圾回收 章节。
副本节点i收到主节点的PRE-PREPARE消息,需要进行以下交验:
a. 主节点PRE-PREPARE消息签名是否正确。
b. 当前副本节点是否已经收到了一条在同一v下并且编号也是n,但是签名不同的PRE-PREPARE信息。
c. d与m的摘要是否一致。
d. n是否在区间[h, H]内。
非法请求丢弃。正确请求,副本节点i向其他节点包括主节点发送一条<PREPARE, v, n, d, i>消息, v, n, d, m与上述PRE-PREPARE消息内容相同,i是当前副本节点编号。<PREPARE, v, n, d, i>进行副本节点i的签名。记录PRE-PREPARE和PREPARE消息到log中,用于View Change过程中恢复未完成的请求操作。
主节点和副本节点收到PREPARE消息,需要进行以下交验:
a. 副本节点PREPARE消息签名是否正确。
b. 当前副本节点是否已经收到了同一视图v下的n。
c. n是否在区间[h, H]内。
d. d是否和当前已收到PRE-PPREPARE中的d相同
非法请求丢弃。如果副本节点i收到了2f+1个验证通过的PREPARE消息,则向其他节点包括主节点发送一条<COMMIT, v, n, d, i>消息,v, n, d, i与上述PREPARE消息内容相同。<COMMIT, v, n, d, i>进行副本节点i的签名。记录COMMIT消息到日志中,用于View Change过程中恢复未完成的请求操作。记录其他副本节点发送的PREPARE消息到log中。
主节点和副本节点收到COMMIT消息,需要进行以下交验:
a. 副本节点COMMIT消息签名是否正确。
b. 当前副本节点是否已经收到了同一视图v下的n。
c. d与m的摘要是否一致。
d. n是否在区间[h, H]内。
非法请求丢弃。如果副本节点i收到了2f+1个验证通过的COMMIT消息,说明当前网络中的大部分节点已经达成共识,运行客户端的请求操作o,并返回<REPLY, v, t, c, i, r>给客户端,r:是请求操作结果,客户端如果收到f+1个相同的REPLY消息,说明客户端发起的请求已经达成全网共识,否则客户端需要判断是否重新发送请求给主节点。记录其他副本节点发送的COMMIT消息到log中。
如果主节点作恶,它可能会给不同的请求编上相同的序号,或者不去分配序号,或者让相邻的序号不连续。备份节点应当有职责来主动检查这些序号的合法性。
如果主节点掉线或者作恶不广播客户端的请求,客户端设置超时机制,超时的话,向所有副本节点广播请求消息。副本节点检测出主节点作恶或者下线,发起View Change协议。
View Change协议 :
副本节点向其他节点广播<VIEW-CHANGE, v+1, n, C , P , i>消息。n是最新的stable checkpoint的编号, C 是 2f+1验证过的CheckPoint消息集合, P 是当前副本节点未完成的请求的PRE-PREPARE和PREPARE消息集合。
当主节点p = v + 1 mod |R|收到 2f 个有效的VIEW-CHANGE消息后,向其他节点广播<NEW-VIEW, v+1, V , O >消息。 V 是有效的VIEW-CHANGE消息集合。 O 是主节点重新发起的未经完成的PRE-PREPARE消息集合。PRE-PREPARE消息集合的选取规则:
副本节点收到主节点的NEW-VIEW消息,验证有效性,有效的话,进入v+1状态,并且开始 O 中的PRE-PREPARE消息处理流程。
在上述算法流程中,为了确保在View Change的过程中,能够恢复先前的请求,每一个副本节点都记录一些消息到本地的log中,当执行请求后副本节点需要把之前该请求的记录消息清除掉。
最简单的做法是在Reply消息后,再执行一次当前状态的共识同步,这样做的成本比较高,因此可以在执行完多条请求K(例如:100条)后执行一次状态同步。这个状态同步消息就是CheckPoint消息。
副本节点i发送<CheckPoint, n, d, i>给其他节点,n是当前节点所保留的最后一个视图请求编号,d是对当前状态的一个摘要,该CheckPoint消息记录到log中。如果副本节点i收到了2f+1个验证过的CheckPoint消息,则清除先前日志中的消息,并以n作为当前一个stable checkpoint。
这是理想情况,实际上当副本节点i向其他节点发出CheckPoint消息后,其他节点还没有完成K条请求,所以不会立即对i的请求作出响应,它还会按照自己的节奏,向前行进,但此时发出的CheckPoint并未形成stable。
为了防止i的处理请求过快,设置一个上文提到的 高低水位区间[h, H] 来解决这个问题。低水位h等于上一个stable checkpoint的编号,高水位H = h + L,其中L是我们指定的数值,等于checkpoint周期处理请求数K的整数倍,可以设置为L = 2K。当副本节点i处理请求超过高水位H时,此时就会停止脚步,等待stable checkpoint发生变化,再继续前进。
在区块链场景中,一般适合于对强一致性有要求的私有链和联盟链场景。例如,在IBM主导的区块链超级账本项目中,PBFT是一个可选的共识协议。在Hyperledger的Fabric项目中,共识模块被设计成可插拔的模块,支持像PBFT、Raft等共识算法。
Raft基于领导者驱动的共识模型,其中将选举一位杰出的领导者(Leader),而该Leader将完全负责管理集群,Leader负责管理Raft集群的所有节点之间的复制日志。
下图中,将在启动过程中选择集群的Leader(S1),并为来自客户端的所有命令/请求提供服务。 Raft集群中的所有节点都维护一个分布式日志(复制日志)以存储和提交由客户端发出的命令(日志条目)。 Leader接受来自客户端的日志条目,并在Raft集群中的所有关注者(S2,S3,S4,S5)之间复制它们。
在Raft集群中,需要满足最少数量的节点才能提供预期的级别共识保证, 这也称为法定人数。 在Raft集群中执行操作所需的最少投票数为 (N / 2 +1) ,其中N是组中成员总数,即 投票至少超过一半 ,这也就是为什么集群节点通常为奇数的原因。 因此,在上面的示例中,我们至少需要3个节点才能具有共识保证。
如果法定仲裁节点由于任何原因不可用,也就是投票没有超过半数,则此次协商没有达成一致,并且无法提交新日志。
数据存储:Tidb/TiKV
日志:阿里巴巴的 DLedger
服务发现:Consul& etcd
集群调度:HashiCorp Nomad
只能容纳故障节点(CFT),不容纳作恶节点
顺序投票,只能串行apply,因此高并发场景下性能差
Raft通过解决围绕Leader选举的三个主要子问题,管理分布式日志和算法的安全性功能来解决分布式共识问题。
当我们启动一个新的Raft集群或某个领导者不可用时,将通过集群中所有成员节点之间协商来选举一个新的领导者。 因此,在给定的实例中,Raft集群的节点可以处于以下任何状态: 追随者(Follower),候选人(Candidate)或领导者(Leader)。
系统刚开始启动的时候,所有节点都是follower,在一段时间内如果它们没有收到Leader的心跳信号,follower就会转化为Candidate;
如果某个Candidate节点收到大多数节点的票,则这个Candidate就可以转化为Leader,其余的Candidate节点都会回到Follower状态;
一旦一个Leader发现系统中存在一个Leader节点比自己拥有更高的任期(Term),它就会转换为Follower。
Raft使用基于心跳的RPC机制来检测何时开始新的选举。 在正常期间, Leader 会定期向所有可用的 Follower 发送心跳消息(实际中可能把日志和心跳一起发过去)。 因此,其他节点以 Follower 状态启动,只要它从当前 Leader 那里收到周期性的心跳,就一直保持在 Follower 状态。
当 Follower 达到其超时时间时,它将通过以下方式启动选举程序:
根据 Candidate 从集群中其他节点收到的响应,可以得出选举的三个结果。
共识算法的实现一般是基于复制状态机(Replicated state machines),何为 复制状态机 :
简单来说: 相同的初识状态 + 相同的输入 = 相同的结束状态 。不同节点要以相同且确定性的函数来处理输入,而不要引入一下不确定的值,比如本地时间等。使用replicated log是一个很不错的注意,log具有持久化、保序的特点,是大多数分布式系统的基石。
有了Leader之后,客户端所有并发的请求可以在Leader这边形成一个有序的日志(状态)序列,以此来表示这些请求的先后处理顺序。Leader然后将自己的日志序列发送Follower,保持整个系统的全局一致性。注意并不是强一致性,而是 最终一致性 。
日志由有序编号(log index)的日志条目组成。每个日志条目包含它被创建时的任期号(term),和日志中包含的数据组成,日志包含的数据可以为任何类型,从简单类型到区块链的区块。每个日志条目可以用[ term, index, data]序列对表示,其中term表示任期, index表示索引号,data表示日志数据。
Leader 尝试在集群中的大多数节点上执行复制命令。 如果复制成功,则将命令提交给集群,并将响应发送回客户端。类似两阶段提交(2PC),不过与2PC的区别在于,leader只需要超过一半节点同意(处于工作状态)即可。
leader 、 follower 都可能crash,那么 follower 维护的日志与 leader 相比可能出现以下情况
当出现了leader与follower不一致的情况,leader强制follower复制自己的log, Leader会从后往前试 ,每次AppendEntries失败后尝试前一个日志条目(递减nextIndex值), 直到成功找到每个Follower的日志一致位置点(基于上述的两条保证),然后向后逐条覆盖Followers在该位置之后的条目 。所以丢失的或者多出来的条目可能会持续多个任期。
要求候选人的日志至少与其他节点一样最新。如果不是,则跟随者节点将不投票给候选者。
意味着每个提交的条目都必须存在于这些服务器中的至少一个中。如果候选人的日志至少与该多数日志中的其他日志一样最新,则它将保存所有已提交的条目,避免了日志回滚事件的发生。
即任一任期内最多一个leader被选出。这一点非常重要,在一个复制集中任何时刻只能有一个leader。系统中同时有多余一个leader,被称之为脑裂(brain split),这是非常严重的问题,会导致数据的覆盖丢失。在raft中,两点保证了这个属性:
因此, 某一任期内一定只有一个leader 。
当集群中节点的状态发生变化(集群配置发生变化)时,系统容易受到系统故障。 因此,为防止这种情况,Raft使用了一种称为两阶段的方法来更改集群成员身份。 因此,在这种方法中,集群在实现新的成员身份配置之前首先更改为中间状态(称为联合共识)。 联合共识使系统即使在配置之间进行转换时也可用于响应客户端请求,它的主要目的是提升分布式系统的可用性。
③ 分布式与区块链之间的关系分析
关于区块链技术的探讨我们在前几期的文章中已经说过很多次了,而且也给大家介绍了使用哪些编程开发语言来实现对区块告洞悉链技术的具现化,今天我们就一起来了解一下,如何从分布式的角度来分析理解区块链的构造。
区块链是源于比特币中的底层技术,用于实现一个无中心的点对点现金系统,因为没有中心机构的参与,比特币以区块链的形式来组织交易数据,防止“双花”,达成交易共识。
传统意义上的数字资产,比如游戏币,是以集中式的方式管理的,仅能在单个系统中流转,由某个中心化机构负责协调,通常以数据库的方式来存储。宏观上看,区块链和数据库一样,都是用来保存数据,只是数据存取袜乎的形式有所不同。
区块链本质上是一个异地多活的分布式数据库。异地多活的提出,原本是为了在解决系统的容灾问题,多年来也一直是分布式数据库领域在探索的方向,但鲜有成效,因为异地多活需要解决数据冲突的问题,这个问题其实不好解决。然而诞生于比特币的区块链以一种全新的方式实现了全球大的异地多活数据库,它完全开放,没有边界,支持上万节点并可随机的加入和退出。
在区块链中数据冲突问题就更加突出了,区块链里每个节点是完全对等的多活架构,上万个节点要达成一致,数据以谁为准呢?比特币采用的方式是POW,大家来算一个谜题,谁先算出来,就拥有记账权,在这个周期,就以他所记的账为准,下一个周期大家重新计算。争夺记账权的节点决定将哪些颤陆交易打包进区块,并将区块同步给其他节点,其他节点仍然需要基于本地数据对区块中的交易做验证,并不像数据库的主从节点间那样无条件接受,这就是区块链里的共识算法。POW虽然消耗大量算力,好处是在争夺记账权的过程中POW只要在自身节点中计算hash,不需要经过网络投票来选举,网络通信的代价小,适合大规模节点之间共识。沙河电脑培训认为POW是目前公有链里完备简单粗暴做法,经得起考验,但问题是效率太低。
所以后面发展出了PoS、DPoS,谁拥有资产多,谁就拥有记账权,或者大家投票,但这样又引入了经济学方面的问题,比如所谓的贿选的问题,这就不太好控制了。在传统分布式数据库里,不叫共识算法,而叫一致性算法,本质上也是一回事。但分布式数据库里一般节点数都很少,而且网络是可信的,通常节点都是安全可靠的,我们基本上可以相信每一个节点,即使它出现故障,不给应答,但绝对不会给出假应答。所以在传统公司分布式数据里,都用Raft或Paxos协议去做这种一致性算法。
④ 金窝窝区块链技术中 共识算法的作用是什么
金窝窝分析区块链技术中的共识机制如下:
区块链是一种去中心化的分布式账本系统,由于点对点网络下存在较高的网络延迟,各个节点所观察到的交易事务先后顺序不可能完全一致。
因此区块链系统需要设计一种机制对在一定的时间内发生的事务的先后顺序进行共识。这种对一个时间窗口内的事务的先后顺序达成共识的算法被称为“共识机制”。
⑤ 区块链的共识机制
1. 网络上的交易信息如何确认并达成共识?
虽然经常提到共识机制,但是对于共识机制的含义和理解却并清楚。因此需要就共识机制的相关概念原理和实现方法有所理解。
区块链的交易信息是通过网络广播传输到网络中各个节点的,在整个网络节点中如何对广播的信息进行确认并达成共识 最终写入区块呢? 如果没有相应的可靠安全的实现机制,那么就难以实现其基本的功能,因此共识机制是整个网络运行下去的一个关键。
共识机制解决了区块链如何在分布式场景下达成一致性的问题。区块链能在众多节点达到一种较为平衡的状态也是因为共识机制。那么共识机制是如何在在去中心化的思想上解决了节点间互相信任的问题呢?
当分布式的思想被提出来时,人们就开始根据FLP定理和CAP定理设计共识算法。 规范的说,理想的分布式系统的一致性应该满足以下三点:
1.可终止性(Termination):一致性的结果可在有限时间内完成。
2.共识性(Consensus):不同节点最终完成决策的结果应该相同。
3.合法性(Validity):决策的结果必须是其他进程提出的提案。
但是在实际的计算机集群中,可能会存在以下问题:
1.节点处理事务的能力不同,网络节点数据的吞吐量有差异
2.节点间通讯的信道可能不安全
3.可能会有作恶节点出现
4.当异步处理能力达到高度一致时,系统的可扩展性就会变差(容不下新节点的加入)。
科学家认为,在分布式场景下达成 完全一致性 是不可能的。但是工程学家可以牺牲一部分代价来换取分布式场景的一致性,上述的两大定理也是这种思想,所以基于区块链设计的各种公式机制都可以看作牺牲那一部分代价来换取多适合的一致性,我的想法是可以在这种思想上进行一个灵活的变换,即在适当的时间空间牺牲一部分代价换取适应于当时场景的一致性,可以实现灵活的区块链系统,即可插拔式的区块链系统。今天就介绍一下我对各种共识机制的看法和分析,分布式系统中有无作恶节点分为拜占庭容错和非拜占庭容错机制。
FLP定理即FLP不可能性,它证明了在分布式情景下,无论任何算法,即使是只有一个进程挂掉,对于其他非失败进程,都存在着无法达成一致的可能。
FLP基于如下几点假设:
仅可修改一次 : 每个进程初始时都记录一个值(0或1)。进程可以接收消息、改动该值、并发送消息,当进程进入decide state时,其值就不再变化。所有非失败进程都进入decided state时,协议成功结束。这里放宽到有一部分进程进入decided state就算协议成功。
异步通信 : 与同步通信的最大区别是没有时钟、不能时间同步、不能使用超时、不能探测失败、消息可任意延迟、消息可乱序。
通信健壮: 只要进程非失败,消息虽会被无限延迟,但最终会被送达;并且消息仅会被送达一次(无重复)。
Fail-Stop 模型: 进程失败如同宕机,不再处理任何消息。
失败进程数量 : 最多一个进程失败。
CAP是分布式系统、特别是分布式存储领域中被讨论最多的理论。CAP由Eric Brewer在2000年PODC会议上提出,是Eric Brewer在Inktomi期间研发搜索引擎、分布式web缓存时得出的关于数据一致性(consistency)、服务可用性(availability)、分区容错性(partition-tolerance)的猜想:
数据一致性 (consistency):如果系统对一个写操作返回成功,那么之后的读请求都必须读到这个新数据;如果返回失败,那么所有读操作都不能读到这个数据,对调用者而言数据具有强一致性(strong consistency) (又叫原子性 atomic、线性一致性 linearizable consistency)[5]
服务可用性 (availability):所有读写请求在一定时间内得到响应,可终止、不会一直等待
分区容错性 (partition-tolerance):在网络分区的情况下,被分隔的节点仍能正常对外服务
在某时刻如果满足AP,分隔的节点同时对外服务但不能相互通信,将导致状态不一致,即不能满足C;如果满足CP,网络分区的情况下为达成C,请求只能一直等待,即不满足A;如果要满足CA,在一定时间内要达到节点状态一致,要求不能出现网络分区,则不能满足P。
C、A、P三者最多只能满足其中两个,和FLP定理一样,CAP定理也指示了一个不可达的结果(impossibility result)。
⑥ 区块链技术从狭义与广义的角度分析是怎样的
金窝窝网络科技分析从狭义与广义的角度分析如下:
狭义来讲,区块链是一种按照时间顺序将数据区块以顺序相连的方式组合成的一 种链式数据结构, 并以密码学方式保证的不可篡改和不可伪造的分布式账本。
广义来讲,区块链技术是利用块链式数据结构来验证与存储数据、利用分布式节点共识算法来生成和更新数据、利用密码学的方式保证数据传输和访问的安全、利用由自动化脚本代码组成的智能合约来编程和操作数 据的一种全新的分布式基础架构与计算范式。
⑦ POA(Proof of Activity)区块链共识算法
POA(Proof of Activity)算法是一个区块链的共识算法,基本原理是结合POW(Proof of work)和POS(Proof of stake)算法的特点进行工作,POW算法和POS算法的具体内容可以参考:
POW算法 : https://www.jianshu.com/p/b23cbafbbad2
POS算法 : https://blog.csdn.net/wgwgnihao/article/details/80635162
POA算法相比于其他算法可以改进网络拓扑,维持在线节点比例,需求更少的交易费同时减少共识算法过程中的能量损耗。
POA算法需求的网络中同样包含两类节点,矿工和普通参与者,其中普通参与者不一定一直保持在线。POA算法首先由矿工构造区块头,由块头选出N个币,这N个币的所有者参与后续的校验和生成块的过程。
从这里可以看到POA算法不仅与算力有关,后续的N个参与者的选举则完全由参与者在网络中所拥有的币的总数量决定。拥有越多币的参与者越有机会被选为N个后续的参与者。而后续N个参与者参与的必要条件是这N个参与者必须在线,这也是POA命名的由来,POA算法的维护取决于网络中的活跃节点(Active)。
POA算法的一个理想的基本流程是,类似于POW协议,矿工构造出一个符合难度要求的块头,通过矿工得到的块头计算衍生出N个币的编号,从区块链中追溯可以得到这几个币目前所述的参与者。矿工将这个块头发送给这N个参与者,其中前N-1个参与者对这个块进行校验和签名,最后第N个参与者校验并将交易加入到该块中,将这个区块发布出去,即完成一个区块的出块。
一个理想过程如下图所示:
在实际运行中,无法保证网络上所有参与者都在线,而不在线的参与者则无法进行校验和签名,这个无法被校验和签名的块头则会被废弃。
即在实际运行中,应该是一个矿工构造出块头后广播给各个参与者签名,同时继续重新构造新的块头,以免上一个块头衍生的N个参与者存在有某一个没有在线,而导致块头被废弃。
因此,在这种情况下,一个块是否被确认不仅与矿工的计算能力有关同时也与网络上的在线比例有关。
与纯POW相比,在与比特币(POW)同样10分钟出一个块的情况下,POA由于会有参与者不在线而产生的损耗,因此,10分钟内矿工可以构造的块的数量会更多,即块头的难度限制会降低,那么矿工在挖矿过程中会造成的能量损耗也会降低。
与纯POS相比,可以看到POA的出块流程并不会将构造区块过程中的相关信息上链,可以明显减少区块链上用于维护协议产生的冗余信息的量。
本节对上诉协议中一些参数设置进行分析
在矿工构造出块头后对块头进行校验和区块构造的N个参与者的数量选定比较类似于比特币中每一个块的出块时间的选取。比特币中选择了10分钟作为每一个块的期望出块时间并通过动态调节难度来适应。
这里N的取值同样可以选择选定值或者动态调节。动态调节需要更加复杂的协议内容,同时可能会带来区块链的数据膨胀,而复杂的协议也增加了攻击者攻击的可能性。另外暂时没有办法证明动态调节可以带来什么好处。静态调节在后续的分析(4 安全分析)中可以得到N=3的取值是比较合适的。
从上面的描述可以看到,构造新的区块的除了矿工还有从块头中衍生出来的N个币所有者。在构造出一个新的区块后,这些参与者同样应该收到一定的激励,以维持参与者保持在线状态。
矿工与参与者之间的非配比例与参与者的在线状态相关。给予参与者的激励与参与者保持在线状态的热情密切相关,越多参与者保持在线状态,能更好地维持网络的稳定。因此,可以在网络上在线参与者不够多的时候,提高参与者得到的激励分成比例,从而激发更多的参与者上线。
如何确定当前参与者的在线情况呢?可以最后第N个参与者构造区块时,将构造出来但是被废弃的块头加入到区块中,如果被丢弃的块头数量过多,说明在线人数过低,应当调节分成比例。
同时最后第N个参与者与其他参与者的分成同样需要考虑,第N个参与者需要将交易加入区块中,即需要维护UTXO池,同时第N个参与者还需要将被丢弃的块头加入新构建的区块中。
为了激励其将废弃区块头加入新构建的区块中,可以按照加入的区块头,适当增加一点小的激励。虽然加入更多的区块头,可以在下一轮的时候增加分成的比例,应当足够激励参与者往区块中加入未使用的块头了(这里参与者不可能为了增加分成而更多地加入区块头,每一个区块头都意味着一位矿工的工作量)。
一个参与者如果没有维护UTXO池则无法构造区块,但是可以参与前N-1个的签名,因此为了激励参与者维护UTXO池,作为最后一个构造区块的参与者,必须给予更多的激励,比如是其他参与者的两倍。
从3.2的描述中可以知道一个用户必须在线且维护UTXO池才可能尽可能地获得利益。这种机制势必会导致一些用户将自己的账户托管给一个中心化的机构。这个机构一直保持在线,并为用户维护其账户,在被选为构造区块的参与者时参与区块的构建并获取利益。最后该机构将收益按照某种形式进行分成。
上面说到参与者必须用自己的密钥进行签名,而托管给某个机构后,这个机构在可以用这个密钥签名构造区块的同时,也有可能使用这个密钥消费用户的财产。这里可以采用一种有限花销的密钥,这个密钥有两个功能,一个是将账户中的部分财产消费出去,另一个是将所有财产转移到一个指定账户。在托管的时候可以使用这个密钥,在被通知部分财产被花费后可以立即将所有财产转移到自己的另一个账户下,以保证财产的安全。
从上面的分析可以看到,POA的安全性与攻击者所拥有的算力和攻击者所拥有的股权有关。假设攻击者拥有的在线股权占比为 ,则攻击者的算力需要达到其他所有算力的 倍才能达成分叉。假设攻击者股权总占比为 ,网络中诚实用户的在线比例为 ,则攻击者的算力需要达到其他所有算力的 倍才能达成攻击。
攻击的分析表格如下:
从上文的分析可以看到,POA算法相比于其他算法可以改进网络拓扑,维持在线节点比例,需求更少的交易费同时减少共识算法过程中的能量损耗。同时,PoA协议的攻击成本要高于比特币的纯PoW协议。
参考文献:Proof of Activity: Extending Bitcoin’s Proof of Work via Proof of Stake
⑧ 区块链技术的六大核心算法
区块链技术的六大核心算法
区块链核心算法一:拜占庭协定
拜占庭的故事大概是这么说的:拜占庭帝国拥有巨大的财富,周围10个邻邦垂诞已久,但拜占庭高墙耸立,固若金汤,没有一个单独的邻邦能够成功入侵。任何单个邻邦入侵的都会失败,同时也有可能自身被其他9个邻邦入侵。拜占庭帝国防御能力如此之强,至少要有十个邻邦中的一半以上同时进攻,才有可能攻破。然而,如果其中的一个或者几个邻邦本身答应好一起进攻,但实际过程出现背叛,那么入侵者可能都会被歼灭。于是每一方都小心行事,不敢轻易相信邻国。这就是拜占庭将军问题。
在这个分布式网络里:每个将军都有一份实时与其他将军同步的消息账本。账本里有每个将军的签名都是可以验证身份的。如果有哪些消息不一致,可以知道消息不一致的是哪些将军。尽管有消息不一致的,只要超过半数同意进攻,少数服从多数,共识达成。
由此,在一个分布式的系统中,尽管有坏人,坏人可以做任意事情(不受protocol限制),比如不响应、发送错误信息、对不同节点发送不同决定、不同错误节点联合起来干坏事等等。但是,只要大多数人是好人,就完全有可能去中心化地实现共识
区块链核心算法二:非对称加密技术
在上述拜占庭协定中,如果10个将军中的几个同时发起消息,势必会造成系统的混乱,造成各说各的攻击时间方案,行动难以一致。谁都可以发起进攻的信息,但由谁来发出呢?其实这只要加入一个成本就可以了,即:一段时间内只有一个节点可以传播信息。当某个节点发出统一进攻的消息后,各个节点收到发起者的消息必须签名盖章,确认各自的身份。
在如今看来,非对称加密技术完全可以解决这个签名问题。非对称加密算法的加密和解密使用不同的两个密钥.这两个密钥就是我们经常听到的”公钥”和”私钥”。公钥和私钥一般成对出现, 如果消息使用公钥加密,那么需要该公钥对应的私钥才能解密; 同样,如果消息使用私钥加密,那么需要该私钥对应的公钥才能解密。
区块链核心算法三:容错问题
我们假设在此网络中,消息可能会丢失、损坏、延迟、重复发送,并且接受的顺序与发送的顺序不一致。此外,节点的行为可以是任意的:可以随时加入、退出网络,可以丢弃消息、伪造消息、停止工作等,还可能发生各种人为或非人为的故障。我们的算法对由共识节点组成的共识系统,提供的容错能力,这种容错能力同时包含安全性和可用性,并适用于任何网络环境。
区块链核心算法四:Paxos 算法(一致性算法)
Paxos算法解决的问题是一个分布式系统如何就某个值(决议)达成一致。一个典型的场景是,在一个分布式数据库系统中,如果各节点的初始状态一致,每个节点都执行相同的操作序列,那么他们最后能得到一个一致的状态。为保证每个节点执行相同的命令序列,需要在每一条指令上执行一个“一致性算法”以保证每个节点看到的指令一致。一个通用的一致性算法可以应用在许多场景中,是分布式计算中的重要问题。节点通信存在两种模型:共享内存和消息传递。Paxos算法就是一种基于消息传递模型的一致性算法。
区块链核心算法五:共识机制
区块链共识算法主要是工作量证明和权益证明。拿比特币来说,其实从技术角度来看可以把PoW看做重复使用的Hashcash,生成工作量证明在概率上来说是一个随机的过程。开采新的机密货币,生成区块时,必须得到所有参与者的同意,那矿工必须得到区块中所有数据的PoW工作证明。与此同时矿工还要时时观察调整这项工作的难度,因为对网络要求是平均每10分钟生成一个区块。
区块链核心算法六:分布式存储
分布式存储是一种数据存储技术,通过网络使用每台机器上的磁盘空间,并将这些分散的存储资源构成一个虚拟的存储设备,数据分散的存储在网络中的各个角落。所以,分布式存储技术并不是每台电脑都存放完整的数据,而是把数据切割后存放在不同的电脑里。就像存放100个鸡蛋,不是放在同一个篮子里,而是分开放在不同的地方,加起来的总和是100个。