当前位置:首页 » 区块链知识 » 别人发的区块链密码我怎么用

别人发的区块链密码我怎么用

发布时间: 2025-06-29 05:08:10

① 如何找到区块链的密码,区块链的密钥是什么

【深度知识】区块链之加密原理图示(加密,签名)

先放一张以太坊的架构图:

在学习的过程中主要是采用单个模块了学习了解的,包括P2P,密码学,网络,协议等。直接开始总结:

秘钥分配问题也就是秘钥的传输问题,如果对称秘钥,那么只能在线下进行秘钥的交换。如果在线上传输秘钥,那就有可能被拦截。所以采用非对称加密,两把钥匙,一把私钥自留,一把公钥公开。公钥可以在网上传输。不用线下交易。保证数据的安全性。

如上图,A节点发送数据到B节点,此时采用公钥加密。A节点从自己的公钥中获取到B节点的公钥对明文数据加密,得到密文发送给B节点。而B节点采用自己的私钥解密。

2、无法解决消息篡改。

如上图,A节点采用B的公钥进行加密,然后将密文传输给B节点。B节点拿A节点的公钥将密文解密。

1、由于A的公钥是公开的,一旦网上黑客拦截消息,密文形同虚设。说白了,这种加密方式,只要拦截消息,就都能解开。

2、同样存在无法确定消息来源的问题,和消息篡改的问题。

如上图,A节点在发送数据前,先用B的公钥加密,得到密文1,再用A的私钥对密文1加密得到密文2。而B节点得到密文后,先用A的公钥解密,得到密文1,之后用B的私钥解密得到明文。

1、当网络上拦截到数据密文2时,由于A的公钥是公开的,故可以用A的公钥对密文2解密,就得到了密文1。所以这样看起来是双重加密,其实最后一层的私钥签名是无效的。一般来讲,我们都希望签名是签在最原始的数据上。如果签名放在后面,由于公钥是公开的,签名就缺乏安全性。

2、存在性能问题,非对称加密本身效率就很低下,还进行了两次加密过程。

如上图,A节点先用A的私钥加密,之后用B的公钥加密。B节点收到消息后,先采用B的私钥解密,然后再利用A的公钥解密。

1、当密文数据2被黑客拦截后,由于密文2只能采用B的私钥解密,而B的私钥只有B节点有,其他人无法机密。故安全性最高。

2、当B节点解密得到密文1后,只能采用A的公钥来解密。而只有经过A的私钥加密的数据才能用A的公钥解密成功,A的私钥只有A节点有,所以可以确定数据是由A节点传输过来的。

经两次非对称加密,性能问题比较严重。

基于以上篡改数据的问题,我们引入了消息认证。经过消息认证后的加密流程如下:

当A节点发送消息前,先对明文数据做一次散列计算。得到一个摘要,之后将照耀与原始数据同时发送给B节点。当B节点接收到消息后,对消息解密。解析出其中的散列摘要和原始数据,然后再对原始数据进行一次同样的散列计算得到摘要1,比较摘要与摘要1。如果相同则未被篡改,如果不同则表示已经被篡改。

在传输过程中,密文2只要被篡改,最后导致的hash与hash1就会产生不同。

无法解决签名问题,也就是双方相互攻击。A对于自己发送的消息始终不承认。比如A对B发送了一条错误消息,导致B有损失。但A抵赖不是自己发送的。

在(三)的过程中,没有办法解决交互双方相互攻击。什么意思呢?有可能是因为A发送的消息,对A节点不利,后来A就抵赖这消息不是它发送的。

为了解决这个问题,故引入了签名。这里我们将(二)-4中的加密方式,与消息签名合并设计在一起。

在上图中,我们利用A节点的私钥对其发送的摘要信息进行签名,然后将签名+原文,再利用B的公钥进行加密。而B得到密文后,先用B的私钥解密,然后对摘要再用A的公钥解密,只有比较两次摘要的内容是否相同。这既避免了防篡改问题,有规避了双方攻击问题。因为A对信息进行了签名,故是无法抵赖的。

为了解决非对称加密数据时的性能问题,故往往采用混合加密。这里就需要引入对称加密,如下图:

在对数据加密时,我们采用了双方共享的对称秘钥来加密。而对称秘钥尽量不要在网络上传输,以免丢失。这里的共享对称秘钥是根据自己的私钥和对方的公钥计算出的,然后适用对称秘钥对数据加密。而对方接收到数据时,也计算出对称秘钥然后对密文解密。

以上这种对称秘钥是不安全的,因为A的私钥和B的公钥一般短期内固定,所以共享对称秘钥也是固定不变的。为了增强安全性,最好的方式是每次交互都生成一个临时的共享对称秘钥。那么如何才能在每次交互过程中生成一个随机的对称秘钥,且不需要传输呢?

那么如何生成随机的共享秘钥进行加密呢?

对于发送方A节点,在每次发送时,都生成一个临时非对称秘钥对,然后根据B节点的公钥和临时的非对称私钥可以计算出一个对称秘钥(KA算法-KeyAgreement)。然后利用该对称秘钥对数据进行加密,针对共享秘钥这里的流程如下:

对于B节点,当接收到传输过来的数据时,解析出其中A节点的随机公钥,之后利用A节点的随机公钥与B节点自身的私钥计算出对称秘钥(KA算法)。之后利用对称秘钥机密数据。

对于以上加密方式,其实仍然存在很多问题,比如如何避免重放攻击(在消息中加入Nonce),再比如彩虹表(参考KDF机制解决)之类的问题。由于时间及能力有限,故暂时忽略。

那么究竟应该采用何种加密呢?

主要还是基于要传输的数据的安全等级来考量。不重要的数据其实做好认证和签名就可以,但是很重要的数据就需要采用安全等级比较高的加密方案了。

密码套件是一个网络协议的概念。其中主要包括身份认证、加密、消息认证(MAC)、秘钥交换的算法组成。

在整个网络的传输过程中,根据密码套件主要分如下几大类算法:

秘钥交换算法:比如ECDHE、RSA。主要用于客户端和服务端握手时如何进行身份验证。

消息认证算法:比如SHA1、SHA2、SHA3。主要用于消息摘要。

批量加密算法:比如AES,主要用于加密信息流。

伪随机数算法:例如TLS1.2的伪随机函数使用MAC算法的散列函数来创建一个主密钥——连接双方共享的一个48字节的私钥。主密钥在创建会话密钥(例如创建MAC)时作为一个熵来源。

在网络中,一次消息的传输一般需要在如下4个阶段分别进行加密,才能保证消息安全、可靠的传输。

握手/网络协商阶段:

在双方进行握手阶段,需要进行链接的协商。主要的加密算法包括RSA、DH、ECDH等

身份认证阶段:

身份认证阶段,需要确定发送的消息的来源来源。主要采用的加密方式包括RSA、DSA、ECDSA(ECC加密,DSA签名)等。

消息加密阶段:

消息加密指对发送的信息流进行加密。主要采用的加密方式包括DES、RC4、AES等。

消息身份认证阶段/防篡改阶段:

主要是保证消息在传输过程中确保没有被篡改过。主要的加密方式包括MD5、SHA1、SHA2、SHA3等。

ECC:EllipticCurvesCryptography,椭圆曲线密码编码学。是一种根据椭圆上点倍积生成公钥、私钥的算法。用于生成公私秘钥。

ECDSA:用于数字签名,是一种数字签名算法。一种有效的数字签名使接收者有理由相信消息是由已知的发送者创建的,从而发送者不能否认已经发送了消息(身份验证和不可否认),并且消息在运输过程中没有改变。ECDSA签名算法是ECC与DSA的结合,整个签名过程与DSA类似,所不一样的是签名中采取的算法为ECC,最后签名出来的值也是分为r,s。主要用于身份认证阶段。

ECDH:也是基于ECC算法的霍夫曼树秘钥,通过ECDH,双方可以在不共享任何秘密的前提下协商出一个共享秘密,并且是这种共享秘钥是为当前的通信暂时性的随机生成的,通信一旦中断秘钥就消失。主要用于握手磋商阶段。

ECIES:是一种集成加密方案,也可称为一种混合加密方案,它提供了对所选择的明文和选择的密码文本攻击的语义安全性。ECIES可以使用不同类型的函数:秘钥协商函数(KA),秘钥推导函数(KDF),对称加密方案(ENC),哈希函数(HASH),H-MAC函数(MAC)。

ECC是椭圆加密算法,主要讲述了按照公私钥怎么在椭圆上产生,并且不可逆。ECDSA则主要是采用ECC算法怎么来做签名,ECDH则是采用ECC算法怎么生成对称秘钥。以上三者都是对ECC加密算法的应用。而现实场景中,我们往往会采用混合加密(对称加密,非对称加密结合使用,签名技术等一起使用)。ECIES就是底层利用ECC算法提供的一套集成(混合)加密方案。其中包括了非对称加密,对称加密和签名的功能。

metacharset="utf-8"

这个先订条件是为了保证曲线不包含奇点。

所以,随着曲线参数a和b的不断变化,曲线也呈现出了不同的形状。比如:

所有的非对称加密的基本原理基本都是基于一个公式K=kG。其中K代表公钥,k代表私钥,G代表某一个选取的基点。非对称加密的算法就是要保证该公式不可进行逆运算(也就是说G/K是无法计算的)。*

ECC是如何计算出公私钥呢?这里我按照我自己的理解来描述。

我理解,ECC的核心思想就是:选择曲线上的一个基点G,之后随机在ECC曲线上取一个点k(作为私钥),然后根据kG计算出我们的公钥K。并且保证公钥K也要在曲线上。*

那么kG怎么计算呢?如何计算kG才能保证最后的结果不可逆呢?这就是ECC算法要解决的。

首先,我们先随便选择一条ECC曲线,a=-3,b=7得到如下曲线:

在这个曲线上,我随机选取两个点,这两个点的乘法怎么算呢?我们可以简化下问题,乘法是都可以用加法表示的,比如22=2+2,35=5+5+5。那么我们只要能在曲线上计算出加法,理论上就能算乘法。所以,只要能在这个曲线上进行加法计算,理论上就可以来计算乘法,理论上也就可以计算k*G这种表达式的值。

曲线上两点的加法又怎么算呢?这里ECC为了保证不可逆性,在曲线上自定义了加法体系。

现实中,1+1=2,2+2=4,但在ECC算法里,我们理解的这种加法体系是不可能。故需要自定义一套适用于该曲线的加法体系。

ECC定义,在图形中随机找一条直线,与ECC曲线相交于三个点(也有可能是两个点),这三点分别是P、Q、R。

那么P+Q+R=0。其中0不是坐标轴上的0点,而是ECC中的无穷远点。也就是说定义了无穷远点为0点。

同样,我们就能得出P+Q=-R。由于R与-R是关于X轴对称的,所以我们就能在曲线上找到其坐标。

P+R+Q=0,故P+R=-Q,如上图。

以上就描述了ECC曲线的世界里是如何进行加法运算的。

从上图可看出,直线与曲线只有两个交点,也就是说直线是曲线的切线。此时P,R重合了。

也就是P=R,根据上述ECC的加法体系,P+R+Q=0,就可以得出P+R+Q=2P+Q=2R+Q=0

于是乎得到2P=-Q(是不是与我们非对称算法的公式K=kG越来越近了)。

于是我们得出一个结论,可以算乘法,不过只有在切点的时候才能算乘法,而且只能算2的乘法。

假若2可以变成任意个数进行想乘,那么就能代表在ECC曲线里可以进行乘法运算,那么ECC算法就能满足非对称加密算法的要求了。

那么我们是不是可以随机任何一个数的乘法都可以算呢?答案是肯定的。也就是点倍积计算方式。

选一个随机数k,那么k*P等于多少呢?

我们知道在计算机的世界里,所有的都是二进制的,ECC既然能算2的乘法,那么我们可以将随机数k描述成二进制然后计算。假若k=151=10010111

由于2P=-Q所以这样就计算出了kP。这就是点倍积算法。所以在ECC的曲线体系下是可以来计算乘法,那么以为这非对称加密的方式是可行的。

至于为什么这样计算是不可逆的。这需要大量的推演,我也不了解。但是我觉得可以这样理解:

我们的手表上,一般都有时间刻度。现在如果把1990年01月01日0点0分0秒作为起始点,如果告诉你至起始点为止时间流逝了整1年,那么我们是可以计算出现在的时间的,也就是能在手表上将时分秒指针应该指向00:00:00。但是反过来,我说现在手表上的时分秒指针指向了00:00:00,你能告诉我至起始点算过了有几年了么?

ECDSA签名算法和其他DSA、RSA基本相似,都是采用私钥签名,公钥验证。只不过算法体系采用的是ECC的算法。交互的双方要采用同一套参数体系。签名原理如下:

在曲线上选取一个无穷远点为基点G=(x,y)。随机在曲线上取一点k作为私钥,K=k*G计算出公钥。

签名过程:

生成随机数R,计算出RG.

根据随机数R,消息M的HASH值H,以及私钥k,计算出签名S=(H+kx)/R.

将消息M,RG,S发送给接收方。

签名验证过程:

接收到消息M,RG,S

根据消息计算出HASH值H

根据发送方的公钥K,计算HG/S+xK/S,将计算的结果与RG比较。如果相等则验证成功。

公式推论:

HG/S+xK/S=HG/S+x(kG)/S=(H+xk)/GS=RG

在介绍原理前,说明一下ECC是满足结合律和交换律的,也就是说A+B+C=A+C+B=(A+C)+B。

这里举一个WIKI上的例子说明如何生成共享秘钥,也可以参考AliceAndBob的例子。

Alice与Bob要进行通信,双方前提都是基于同一参数体系的ECC生成的公钥和私钥。所以有ECC有共同的基点G。

生成秘钥阶段:

Alice采用公钥算法KA=ka*G,生成了公钥KA和私钥ka,并公开公钥KA。

Bob采用公钥算法KB=kb*G,生成了公钥KB和私钥kb,并公开公钥KB。

计算ECDH阶段:

Alice利用计算公式Q=ka*KB计算出一个秘钥Q。

Bob利用计算公式Q'=kb*KA计算出一个秘钥Q'。

共享秘钥验证:

Q=kaKB=ka*kb*G=ka*G*kb=KA*kb=kb*KA=Q'

故双方分别计算出的共享秘钥不需要进行公开就可采用Q进行加密。我们将Q称为共享秘钥。

在以太坊中,采用的ECIEC的加密套件中的其他内容:

1、其中HASH算法采用的是最安全的SHA3算法Keccak。

2、签名算法采用的是ECDSA

3、认证方式采用的是H-MAC

4、ECC的参数体系采用了secp256k1,其他参数体系参考这里

H-MAC全程叫做Hash-.其模型如下:

在以太坊的UDP通信时(RPC通信加密方式不同),则采用了以上的实现方式,并扩展化了。

首先,以太坊的UDP通信的结构如下:

其中,sig是经过私钥加密的签名信息。mac是可以理解为整个消息的摘要,ptype是消息的事件类型,data则是经过RLP编码后的传输数据。

其UDP的整个的加密,认证,签名模型如下:

区块链密码算法是怎样的?

区块链作为新兴技术受到越来越广泛的关注,是一种传统技术在互联网时代下的新的应用,这其中包括分布式数据存储技术、共识机制和密码学等。随着各种区块链研究联盟的创建,相关研究得到了越来越多的资金和人员支持。区块链使用的Hash算法、零知识证明、环签名等密码算法:

Hash算法

哈希算法作为区块链基础技术,Hash函数的本质是将任意长度(有限)的一组数据映射到一组已定义长度的数据流中。若此函数同时满足:

(1)对任意输入的一组数据Hash值的计算都特别简单;

(2)想要找到2个不同的拥有相同Hash值的数据是计算困难的。

满足上述两条性质的Hash函数也被称为加密Hash函数,不引起矛盾的情况下,Hash函数通常指的是加密Hash函数。对于Hash函数,找到使得被称为一次碰撞。当前流行的Hash函数有MD5,SHA1,SHA2,SHA3。

比特币使用的是SHA256,大多区块链系统使用的都是SHA256算法。所以这里先介绍一下SHA256。

1、SHA256算法步骤

STEP1:附加填充比特。对报文进行填充使报文长度与448模512同余(长度=448mod512),填充的比特数范围是1到512,填充比特串的最高位为1,其余位为0。

STEP2:附加长度值。将用64-bit表示的初始报文(填充前)的位长度附加在步骤1的结果后(低位字节优先)。

STEP3:初始化缓存。使用一个256-bit的缓存来存放该散列函数的中间及最终结果。

STEP4:处理512-bit(16个字)报文分组序列。该算法使用了六种基本逻辑函数,由64步迭代运算组成。每步都以256-bit缓存值为输入,然后更新缓存内容。每步使用一个32-bit常数值Kt和一个32-bitWt。其中Wt是分组之后的报文,t=1,2,...,16。

STEP5:所有的512-bit分组处理完毕后,对于SHA256算法最后一个分组产生的输出便是256-bit的报文。

作为加密及签名体系的核心算法,哈希函数的安全性事关整个区块链体系的底层安全性。所以关注哈希函数的研究现状是很有必要的。

2、Hash函的研究现状

2004年我国密码学家王小云在国际密码讨论年会(CRYPTO)上展示了MD5算法的碰撞并给出了第一个实例(CollisionsforhashfunctionsMD4,MD5,HAVAL-128andRIPEMD,rumpsessionofCRYPTO2004,,EuroCrypt2005)。该攻击复杂度很低,在普通计算机上只需要几秒钟的时间。2005年王小云教授与其同事又提出了对SHA-1算法的碰撞算法,不过计算复杂度为2的63次方,在实际情况下难以实现。

2017年2月23日谷歌安全博客上发布了世界上第一例公开的SHA-1哈希碰撞实例,在经过两年的联合研究和花费了巨大的计算机时间之后,研究人员在他们的研究网站SHAttered上给出了两个内容不同,但是具有相同SHA-1消息摘要的PDF文件,这就意味着在理论研究长期以来警示SHA-1算法存在风险之后,SHA-1算法的实际攻击案例也浮出水面,同时也标志着SHA-1算法终于走向了生命的末期。

NIST于2007年正式宣布在全球范围内征集新的下一代密码Hash算法,举行SHA-3竞赛。新的Hash算法将被称为SHA-3,并且作为新的安全Hash标准,增强现有的FIPS180-2标准。算法提交已于2008年10月结束,NIST分别于2009年和2010年举行2轮会议,通过2轮的筛选选出进入最终轮的算法,最后将在2012年公布获胜算法。公开竞赛的整个进程仿照高级加密标准AES的征集过程。2012年10月2日,Keccak被选为NIST竞赛的胜利者,成为SHA-3。

Keccak算法是SHA-3的候选人在2008年10月提交。Keccak采用了创新的的“海绵引擎”散列消息文本。它设计简单,方便硬件实现。Keccak已可以抵御最小的复杂度为2n的攻击,其中N为散列的大小。它具有广泛的安全边际。目前为止,第三方密码分析已经显示出Keccak没有严重的弱点。

KangarooTwelve算法是最近提出的Keccak变种,其计算轮次已经减少到了12,但与原算法比起来,其功能没有调整。

零知识证明

在密码学中零知识证明(zero-knowledgeproof,ZKP)是一种一方用于向另一方证明自己知晓某个消息x,而不透露其他任何和x有关的内容的策略,其中前者称为证明者(Prover),后者称为验证者(Verifier)。设想一种场景,在一个系统中,所有用户都拥有各自全部文件的备份,并利用各自的私钥进行加密后在系统内公开。假设在某个时刻,用户Alice希望提供给用户Bob她的一部分文件,这时候出现的问题是Alice如何让Bob相信她确实发送了正确的文件。一个简单地处理办法是Alice将自己的私钥发给Bob,而这正是Alice不希望选择的策略,因为这样Bob可以轻易地获取到Alice的全部文件内容。零知识证明便是可以用于解决上述问题的一种方案。零知识证明主要基于复杂度理论,并且在密码学中有广泛的理论延伸。在复杂度理论中,我们主要讨论哪些语言可以进行零知识证明应用,而在密码学中,我们主要讨论如何构造各种类型的零知识证明方案,并使得其足够优秀和高效。

环签名群签名

1、群签名

在一个群签名方案中,一个群体中的任意一个成员可以以匿名的方式代表整个群体对消息进行签名。与其他数字签名一样,群签名是可以公开验证的,且可以只用单个群公钥来验证。群签名一般流程:

(1)初始化,群管理者建立群资源,生成对应的群公钥(GroupPublicKey)和群私钥(GroupPrivateKey)群公钥对整个系统中的所有用户公开,比如群成员、验证者等。

(2)成员加入,在用户加入群的时候,群管理者颁发群证书(GroupCertificate)给群成员。

(3)签名,群成员利用获得的群证书签署文件,生成群签名。

(4)验证,同时验证者利用群公钥仅可以验证所得群签名的正确性,但不能确定群中的正式签署者。

(5)公开,群管理者利用群私钥可以对群用户生成的群签名进行追踪,并暴露签署者身份。

2、环签名

2001年,Rivest,shamir和Tauman三位密码学家首次提出了环签名。是一种简化的群签名,只有环成员没有管理者,不需要环成员间的合作。环签名方案中签名者首先选定一个临时的签名者集合,集合中包括签名者。然后签名者利用自己的私钥和签名集合中其他人的公钥就可以独立的产生签名,而无需他人的帮助。签名者集合中的成员可能并不知道自己被包含在其中。

环签名方案由以下几部分构成:

(1)密钥生成。为环中每个成员产生一个密钥对(公钥PKi,私钥SKi)。

(2)签名。签名者用自己的私钥和任意n个环成员(包括自己)的公钥为消息m生成签名a。

(3)签名验证。验证者根据环签名和消息m,验证签名是否为环中成员所签,如果有效就接收,否则丢弃。

环签名满足的性质:

(1)无条件匿名性:攻击者无法确定签名是由环中哪个成员生成,即使在获得环成员私钥的情况下,概率也不超过1/n。

(2)正确性:签名必需能被所有其他人验证。

(3)不可伪造性:环中其他成员不能伪造真实签名者签名,外部攻击者即使在获得某个有效环签名的基础上,也不能为消息m伪造一个签名。

3、环签名和群签名的比较

(1)匿名性。都是一种个体代表群体签名的体制,验证者能验证签名为群体中某个成员所签,但并不能知道为哪个成员,以达到签名者匿名的作用。

(2)可追踪性。群签名中,群管理员的存在保证了签名的可追

② 区块链账户怎么转账(区块链账户怎么转账到微信)

imToken钱包怎么转账

1、在钱包界面,首先添加我们需要的币种(以ETH为例),如红色箭头所示。之后就可以看到钱包里ETH的数额和估值。如需转账的话,点击币种即可进入界面。

2、进入界面后,下方有“转账”“收款”2个选项,上方图标为走势图。如下图所示。

3、点击“转账”后,出现选项如下图所示。输入转账金额,备注,然后旷工费,点击下一步,输入钱包密码再确认即可。

(2)别人发的区块链密码我怎么用扩展阅读:

软件钱包的英文名为SoftwareWallet。软件钱包是一个计算机程序设计的设备,具备排他性用以保护加密货币。钱包是与记录网络(区块链)交互的软件,可以让用户接收、存储和发送加密货币。

软件或移动钱包分为轻钱包和全节点钱包,轻钱包依赖第三方进行存储,而全节点钱包则不依赖第三方。

经常使用的钱包中大多是轻钱包,包括BitcoinElectrum,以太的MyEtherWallet,imtoken和Jaxx。这类钱包的私钥在用户自己手中,安全性更高,而且非常简单易用。

③ 钱包如何与区块链连接(钱包如何与区块链连接在一起)

区块链数字钱包如何开发?

开发钱包之前,我们需要有以下的预备知识。

第一,什么是钱包,以及相关的分类,xrv522可以开发区块链钱包。

本文站在开发者的角度,给读者讲解下怎么样和钱包进行交互,以及如何开发一个钱包。

我们怎么样理解钱包呢?简单讲它是连接区块链的一个入口。目前比较成熟的公链,如比特币、以太坊都有很多钱包可以选择。一般钱包需要完全访问你的用户资产,也就是会要求你输入私钥。钱包的作恶成本极低,这也是笔者建议选择开源钱包的原因之一。

币安链上怎么发币

1、进入区块链浏览器:

2、输入合约地址,搜索目标合约

该tab页下的Code、ReadContract都不需要连接钱包,只有WriteContract需要连接钱包。

3、选项WriteContract页签,连接metamask钱包

metamask钱包连接成功后:

点击Write按钮后会弹出metamask钱包,提示需要消耗BNB,授权确认消耗BNB即可。

执行完成后,区块链浏览器上可以查询到执行结果。

发币完成后必须开源合约,并且验证合约代码完全匹配ABI和bytecode。因此需要上传代币的相关信息到BSC区块链浏览器上,包括:合约名称、编译器版本、license、构造函数参数等。

以下为开源合约代码的操作步骤:

1、发币完成后记录合约的transactionhash:

在BSC区块链浏览器上查询该hash详情:

代码的合约地址为:

2、BSC区块链浏览器上查看合约详情

进入合约详情页面,选择contractTAB页签

3、点击“VerifyandPublish”上传代币信息到BSC区块链浏览器

4、选择合约创建时相关的信息,填写如下表单

I、合约地址是自动带出来的

II、编译器类型选择:如果合约代码是由多个文件组成的就选择:Solidity(Multi-Partfiles),如果是单个文件的合约就选择:Solidity(Singlefile)

III、编译器版本:要根据合约代码中的编译器版本确定,必须和合约代码编译时的版本保持一致。本示例合约编译时版本为:pragmasolidity^0.6.12,因此此处选择V0.6.12+commit.27d51765

IIIV、license授权类型:合约代码中是MIT授权,此处选择MIT即可,这个地方实际上可以随便选择。

5、以上信息配置完成后,上传合约代码文件

选择组成合约代码的所有文件,点击“ClicktoUploadselectedfiles”

点击“ClicktoUploadselectedfiles”上传合约代码文件到区块链浏览器,上传完成后截图如下:

6、继续选择后面的配置信息,完成合约代码开源

构造函数传入参数是合约部署时输入的,确认没有问题即可。

本示例没有调用合约类库,因此合约类库地址可以不填。

钱包之于区块链的价值

对于创业者而言,钱包的开发在区块链产业生态地图中处于基础设施的层面,属于数字资产存储的细分领域,技术门槛较高。

很多没有用过数字钱包的用户几乎对它没概念,甚至认为数字钱包就是“存放”数字货币的。本文给钱包做一个粗略的定义,钱包应用有一系列秘钥对,每个钱包地址对应一个秘钥对——私钥和公钥。

私钥是不可测的和不可重复的,因此具有唯一性。并且私钥拥有钱包的所有权和控制权,用于签名验证每一笔交易。为了降低用户的使用门槛,私钥还拥有另一种表现形式——助记词,帮助用户去记忆复杂的私钥。

私钥怎么和公钥产生联系呢?其通过一定的加密算法生成公钥,从而私钥与公钥一一对应。加密算法具有单向性,即私钥可导出公钥,但是公钥无法导出私钥。所以可以理解为,掌握了私钥就相当于掌握了其终极支配权。

数字钱包的安全问题

首先大家要知道数字钱包是去中心化的,大部分的热钱包继承了这一属性。由于私钥都是用户自己管理的,丢失后也无法找回,交易无法回滚,因此甚至让许多用户觉得不安全。

这里有一份业内达人给出的十条钱包使用建议:

[if!supportLists]1.????[endif]使用有备份的钱包;

[if!supportLists]2.????[endif]不随意传输私钥给他人;

[if!supportLists]3.????[endif]不使用微信收藏或云备份存储私钥;

[if!supportLists]4.????[endif]不能截屏或拍照保存私钥;

[if!supportLists]5.????[endif]不能使用微信或者QQ传输私钥;

[if!supportLists]6.????[endif]不要选择邮件或者云存储私钥;

[if!supportLists]7.????[endif]不要使用第三方提供的未知来源钱包应用;

[if!supportLists]8.????[endif]避免他人提供的AppleID;

[if!supportLists]9.????[endif]私钥不要发送到群里;

[if!supportLists]10.?[endif]不要将私钥导入未知的第三方网站。

安全是数字钱包的根基,也是加密货币乃至整个区块链行业的根基,钱包开发商除了保证钱包完备的功能以外,安全性应该也要引起重视。

如何管理好数字钱包

关于钱包我们要注意几个问题:

[if!supportLists]第一,?[endif]私钥决定了你所拥有数字货币的产权,必须自行管理妥当。

[if!supportLists]第二,?[endif]公钥是公开的,地址也是公开的。任何人把币转入到你的地址里,只有掌控私钥才算是真正拥有了币。

[if!supportLists]第三,?[endif]交易流水是存在区块链上的,和私钥地址无关。交易账目公开,只要知道地址,就可以查询对应的数字资产有多少。

[if!supportLists]第四,?[endif]如果安装钱包手机或电脑等设备、备份的秘钥或助记词损坏、丢失、被盗等情况出现,应立刻通过重装或将资产转移到其他钱包。

[if!supportLists]第五,?[endif]不管是哪种钱包,都是相对的安全,没有绝对的安全,必须对私钥或助记词加以备份保管,另外便携和安全是很难二者兼得的。

数字钱包在商业银行中怎样运行的

???之前有消息称,中国人民银行对于数字货币,已经有了双层架构设计,并且央行也准备发行数字货币。

商业银行的银行账户和数字钱包,在管理上都有共性,在这种情况下,银行账户和数字钱包是不同定位的。那么根据央行设计的钱包标准,钱包就是一个保管箱。银行会根据客户的要求,管理好客户的保管箱,可以说是加密货币的所有属性。那么在这个框架里,银行账户中是添加了数字货币钱包的ID字段的。这样的话,数字货币钱包既有保管箱的作用,还不参与业务,避免影响了银行的核心业务。

数字货币转账,可直接在商业银行系统转账,或是通过发钞行利用客户端数字钱包,直接点对点交易,这样的话,不用依赖账户行间的跨行支付。

当前的数字钱包竞争态势

第一种是流量的竞争,主要是拉新、促活,为了拥有庞大用户群。

第二种是玩法的竞争,主要体现在社群奖励上,为了增强用户粘性。

还有一种是扩展更加外延的服务,比如CTGPay,能实现与不同国家发币的兑换、理财等功能。省去了用户换汇和管理多种法币的麻烦,也极大扩充了数字货币的应用场景。理财也能保证每个月5%左右的收入,因此大受用户追捧。

钱包之于区块链的价值

钱包的目的就是来保存私钥的,像开篇提到的,并非存放加密货币的。可以说,只要有私钥,就代表你拥有了对应的token。

但是目前数字货币市场上存在着数字管理不便、交易和兑换门槛高、区块链性能不足以及设计不合理、区块链开发成本高、连接现实难、缺乏场景应用等问题。说得简单点,就是基于不同公链开发的token都需要各自的钱包。

总结

???如果还停留在基础功能的竞争中,无疑会被甩在后面。现在的数字钱包,应该注意搭建生态,涵盖用户社区、交易、互动、理财等多重功能才能一来拥有庞大用户群,二来保证极高的日活。

【区块链】什么是区块链钱包?

提起区块链钱包我们就不得不谈到比特币钱包(Bitcoincore),其他区块链钱包大多都是仿照比特币钱包做的,比特币钱包是我们管理比特币的工具。

比特币钱包里存储着我们的比特币信息,包括比特币地址(类似于你的银行卡账号)、私钥(类似于你的银行卡密码),比特币钱包可以存储多个比特币地址以及每个比特币地址所对应的独立私钥。

比特币钱包的核心功能就是保护你的私钥,如果钱包丢失你将可能永远失去你的比特币。

区块链钱包有很多种形态。

根据用户是否掌握私钥可将钱包分为:链上钱包(onchainwallet)和托管钱包(offchainwallet)。他们之间有如下两点区别:

关于链上钱包(onchainwallet)我们又可根据私钥存储是否联网划分为冷钱包和热钱包;冷钱包和热钱包我们也称之为离线钱包和在线钱包。

通常所说的硬件钱包就属于冷钱包(一般准备长期持有的大额数字货币建议使用冷钱包存放),除了这种专业的设备我们还可以使用离线的电脑、手机、纸钱包、脑钱包等作为冷钱包存储我们的数字资产。

冷钱包最大优点就是安全,因为它不触网的属性可以大大降低黑客攻击的可能性;唯一需要担心就是不要把自己的冷钱包弄丢即可。

与冷钱包相对应的就是热钱包,热钱包是需要联网的;热钱包又可分为桌面钱包、手机钱包和网页钱包。

热钱包往往是在线钱包的形式,因此在使用热钱包时最好在不同平台设置不同密码,且开启二次认证确保自己的资产安全。

根据区块链数据的维护方式和钱包的去中心化程度又可将钱包分为全节点钱包、轻节点钱包、中心化钱包。

全节点钱包大部分都属于桌面钱包,其中的代表有Bitcoin-Core核心钱包、Geth、Parity等等,此类钱包需要同步所有区块链数据,占用很大的内存,但可以实现完全去中心化。

而手机钱包和网页钱包大部分属于轻节点钱包,轻钱包依赖区块链网络中的其他全节点,仅同步与自己相关的交易数据,基本可以实现去中心化。

中心化钱包不依赖区块链网络,所有的数据均从自己的中心化服务器中获取;但是交易效率很高,可以实时到账,你在交易平台中注册的账号就是中心化钱包。

记住在区块链的世界里谁掌握私钥谁才是数字资产真正的主人。

tp钱包怎么连接aircash

首先,创建一个用于交易的钱包。接下来,将钱包连接到AirCash。

创建一个可连接的钱包,把钱包通过网络或者蓝牙对aircash进行连接。

为了让AirCash维持人性化的平台,作为DAO驱动的方法,AirCash具有以下好处:1.AirCash易于使用:正因为简单且易于使用,在AirCash上,您可以使用钱包中的法定货币买卖加密货币AirCash还否决了交易所的存在。你不再需要任何交易所就可进行交易。向前推进,除了创建帐户外,不需要身份验证,没有KYC的要求。此外不再需要个人信息。在AirCash上,您可以匿名买卖。2.安全和隐私:为了让客户和交易者处于安全的环境中,AirCash使用点对点加密聊天的机制让交易者和客户通过点对点沟通取得联系。除了你自己,没有人知道你交易的细节。3.去中心化和DAO:为AirCash的运营寻找更好的环境,所有交易都在区块链上进行,通过这样的处理,AirCash为实现去中心化管理而创建了去中心化自治组织。由于AirCash计划以震撼世界的协议走在最前沿,AirCash计划将其机制分为三个阶段,如AirCash.finance文件所述,其中包括:1.商家。商家是AirCash系统的流动性制造商。只有AirCash商家有权发布他们的买卖广告。做商家是有利可图的。您将从每笔买卖交易中赚取巨额利润。当抵押超过100亿AIR后,您将自动成为商家。2.见证人。见证人是AirCash系统的裁判。当有上诉时,见证人会处理它。他们将保护值得信赖的交易者并惩罚骗子,见证人是系统的信任基础。如果见证人公正且值得信赖,就会有越来越多的用户加入我们。做一个公正的见证人是有利可图的,一个公正的见证人处理一次上诉就可以赚1000万AIR。当抵押超过1000亿AIR后,您将自动成为见证人。3议员。议员是AirCash系统的最终裁决者。如果有人对见证人不满意,议员将加入作出最终判决。议员将保护值得信赖的交易者和公正的见证人,并惩罚诈骗者。议员是系统的最终信任机制。信任议员意味着信任AirCash产品,越来越多的用户会加入我们。不信任议员就意味着不信任AirCash产品,越来越多的用户会抛弃我们。作为一个没有偏见的议员是有利可图的。一名无偏见的议员在一次上诉后将获得1亿AIR。AirCash的系统中不会超过5名议员,每个国会议员都需要抵押超过1万亿的AIR。当DAO系统完成后,我们将开始议员选举。每六个月举行一次选举,将选出五名新的议员。正如我们之前所说,使用Aircash就像喝水一样简单。简单三步便可使用:首先,创建一个用于交易的钱包。接下来,将钱包连接到AirCash。最后,用你钱包里的法币买卖你选择的任何加密货币。现在让我们通过AirCash链接世界。

现金怎么转到区块链钱包

现金是不可以直接转到区块链钱包的。

区块链钱包是一种数字钱包,允许用户存储和管理比特币和以太坊等加密数字货币;区块链钱包由区块链提供,是一种允许个人存储和转移加密货币的电子钱包;区块链钱包收取动态费用,这意味着交易费用可以根据交易规模等因素而有所不同。

每一个区块链钱包都会有一个钱包地址,这个地址相当于银行卡的账号,你要转币给对方,只要选择发送,然后黏贴对方的钱包地址,输入转账数量和自己的易密码就行转账成功。

反之,如果对方要转币给你,你只需要把自己的钱包地址给他。

④ 区块链的钱怎么转出去(区块链里的钱怎么提现)

钱包地址的钱怎么转出来

首先需要跟大家来科普一下,这里的钱包其实并不是广义上的钱包,而是属于区块链当中的一个定义,它并不是用来放钱的,而是用来装秘钥的。在区块链上,只有你有了密钥,然后再配合全包的地址,就可以将里边的虚拟货币给提取出来,然后进行使用。所以钱包地址以及密钥是非常重要的,而他们两个往往是打包在一块儿了。

第一、钱包概念首先,我们来理解钱包,需要澄清的是,钱包其实并不是装钱的,而是装密钥(私钥和公钥)的工具,有了密钥就可以拥有相应地址上的数字货币的支配权。私钥:用户使用私钥进行签名交易,从而证明拥有该交易的输出权,其交易信息并不是存储在该钱包内,而是存储在区块链中。公钥:用来生成地址,储存交易,信息由私钥通过非对称加密算法生成。钱包地址:是一个以双字母开头(代表币种)的42位16进制哈希值字符串。ETH的地址是以0x开头的42位16进制哈希值字符串。如果将钱包比作银行卡,那么钱包地址就是银行卡号。

第二、怎么使用钱包目前市场上的数字钱包有很多,

像imToken、myetherwallet、Kcash、parity、Metamask、Jaxx等,选择一个你喜欢的钱包。建议选择imToken这里也是用imToken举例,:在应用市场下载一个imToken的APP点击“创建钱包”,给钱包取名字和密码。千万千万注意:自己记住密码,imtoken不会记住你的密码,忘记密码不能被找回!!所以忘记密码就等于丢失了钱包里的所有货币!!最好手抄下来并妥善保存,以防止网络传输及黑客攻击等造成丢失。这个非常非常重要,切记点击创建钱包后,钱包创建完成接下来我们要备份钱包,钱包备份是为了在程序被删除或手机被盗等等情况下恢复钱包设置用的。

有两种方式:备份助记词或备份keystore。助记词是随机生成的12个单词,你把这个拷贝出来放到安全的地方,再按顺序抄写一份放在安全的地方,你可以把这助记词理解为私钥的另一种形式,依据这个可以恢复钱包。比如你不小心把imtoken应用删除了,或者手机不见了,可以用这个助记词把钱包恢复。而keystore是类似上图的一串。大家可以备份这个keystore,删除钱包后,用这个keystore将钱包恢复。几次练习,就可以把钱包玩熟了。至此,钱包完成创建,在自己的钱包页,点击地址栏右侧会得到自己钱包的地址。(三)从交易所提币到钱包我们以交易所gate.io为例,演示下怎么把ETH提币到钱包里面。登录gate.io,点击ETH,提现出来这个界面,里面的红框位置就是要转的钱包地址。(四)、钱包之间转账进入钱包后选择金额区域:会显示转账页面:可以自己输入账号,也可以用右上角的扫一扫:按下一步后输入密码即可转账

浅谈区块链:如何利用区块链进行转账交易?

生活中我们都有自己的银行账户,而转账是在银行账户之间进行的。同样,数字货币转账就是把比特币从一个比特币地址转移到另一个比特币地址上的过程。那如果你想转账给别人,你需要在比特币交易平台,比特币钱包或者比特币客户端中输入你的比特币地址、接受方地址、转账金额和手续费金额。确定支付后,交易信息会在比特币网络进行全网广播,矿工每隔10分钟会将比特币网络中未被记账的交易打包进一个区块,这就完成了一次确认,此时比特币已转到接收方账户,一般情况需要经过6次确认,确保交易记录不能被任何人篡改,转账才算能真正完成。

上面我们有说到转账手续费的问题,那转账一次需要多少手续费呢?

比特币转账手续费是交易者付给矿工的一笔费用,用于激励矿工竞争记账,为比特币提供足够的算力从而确保比特币网络的安全,有的时候我们也管这笔费用叫矿工费。用户在比特币网络发起一笔转账时,手续费是不可避免的,一般情况为0.001-0.0015个比特币,由于区块能容纳的交易记录的容量有限,矿工会优先打包手续费高的交易记录,所以多一点手续费可以更快被记账。

本文由汇新云我整理发布,我将持续更新《浅谈区块链》系列,该系列会介绍一些区块链以及数字货币的基础知识,敬请关注!

(汇新云——IT协同产业生态链平台,平台上有钻研区块链技术应用的产品经理和区块链技术应用的成熟产品解决方案,期待光临!)

现金怎么转到区块链钱包

现金是不可以直接转到区块链钱包的。

区块链钱包是一种数字钱包,允许用户存储和管理比特币和以太坊等加密数字货币;区块链钱包由区块链提供,是一种允许个人存储和转移加密货币的电子钱包;区块链钱包收取动态费用,这意味着交易费用可以根据交易规模等因素而有所不同。

每一个区块链钱包都会有一个钱包地址,这个地址相当于银行卡的账号,你要转币给对方,只要选择发送,然后黏贴对方的钱包地址,输入转账数量和自己的易密码就行转账成功。

反之,如果对方要转币给你,你只需要把自己的钱包地址给他。

tp钱包里怎么跨链转币

1、ETH链上只有ETH和ERC20两个链,但是BSC链上只能收到BSC链上的,不能直接转怎么操作,可以直接在钱包里闪兑,手续费比较高;还可以从钱包转到平台然后再转到钱包,多倒腾一次。TP钱包转eth用ERC20通道转到交易所,然后再从交易所的BSC链转eth到TP钱包的BSC链上,虽然增加了步骤和手续费,得比起闪兑还是便宜一些的。

2、新人第一次操作,确实搞不清钱包里不同的链,不同平台的链,为什么不能直接转来转去,就是因为区块链是去中心化的,每一次交易发生之前没有人工审核,程序只是按照交易发起进行相关步骤。所以即使弄错地址了,币弄丢了,矿工费也一样要支付,在链上的任何活动都是需用矿工费。

3、数字钱包虽然门道多,但只要搞清楚转账之间要走对应的链,基本上都没有问题的。不同链之间没有相同的链,就要找第三方跳板,确保链路清晰。

1、区块链以及区块链钱包发展至今已超10年历程,期间大致经历了三个时期,区块链1.0时期大家对钱包的需求更多的是全节点钱包挖矿和管理BTC等资产。到了ETH区块链2.0时期,区块链钱包需要管理多种类型的代币以及与智能合约的交互,此时无需同步全节点的轻钱包成为了大家的首选,例如MetaMask。到了区块链3.0,随着公链的发展,钱包的功能和复杂程度也逐渐增加,不在仅限于资产的储存和管理,更多是充当整个公链最重要的生态服务平台,同时大家对于随时随地与区块链交互的场景也越来越多,移动钱包成为大家的首选。至此越来越多的公链钱包由此诞生,其中就包括波场钱包。

2、波场(TRON)一直是国产公链热门项目,随着波场主网的不断优化和改进,波场公链每秒交易速度(TPS)已提升至万级,公链性能不断提升,更大限度地调动了生态参与者的积极性。波场(TRON)近两年的发展可以说非常迅速,凭借其开发和使用成本低、交易性能优越的优势,波场吸引了众多用户和开发者,波场DApp用户数量和交易笔数一直稳居公链前三。

操作环境:tp钱包appv1.3.7华为nove610.0.8

热点内容
我有一万个以太坊 发布:2025-06-29 07:04:26 浏览:995
共享云矿机交易群 发布:2025-06-29 06:43:11 浏览:776
129冰淇淋套餐合约怎么解除 发布:2025-06-29 06:34:18 浏览:413
区块链全是诈骗包括国家 发布:2025-06-29 06:30:03 浏览:23
印度军队数字货币 发布:2025-06-29 06:09:03 浏览:627
比特币使用领域 发布:2025-06-29 06:02:29 浏览:582
usdt提现平台 发布:2025-06-29 05:46:02 浏览:790
usdt未来价值 发布:2025-06-29 05:21:47 浏览:269
物联链送以太坊 发布:2025-06-29 05:21:39 浏览:932
移动手机卡合约提前注销会怎么样 发布:2025-06-29 05:20:19 浏览:50