当前位置:首页 » 区块链知识 » 美国莫比乌斯区块链

美国莫比乌斯区块链

发布时间: 2021-05-09 17:47:07

Ⅰ 莫比乌斯圈的用途有哪些

1、用皮带传送的动力机械的皮带就可以做成“莫比乌斯带”状,这样皮带可以磨损的面积就变大。

2、如果把录音机的磁带做成“莫比乌斯带”状,就不存在正反两面的问题了,磁带就只有一个面了。

3、还能平坦的嵌入三维空间。简易的“莫比乌斯圈”可通过一张长方形纸任何一面反转粘贴。

4、用皮带传送的动力机械的皮带就可以做成莫比乌斯带状,这样皮带可以磨损的面积就变大了。如果把录音机的磁带做成莫比乌斯带状,就不存在正反两面的问题了,磁带就只有一个面了,还能平坦的嵌入三维空间。

(1)美国莫比乌斯区块链扩展阅读:

莫比乌斯圈的来历:

1979年美国著名轮胎公司百路驰创造性地把传送带制成麦比乌斯圈形状,这样一来整条传送带环面各处均匀地承受磨损,避免了普通传送带单面受损的情况,使得其寿命延长了整整一倍。

针式打印机靠打印针击打色带在纸上留下一个一个的墨点,为充分利用色带的全部表面,色带也常被设计成麦比乌斯圈。

麦比乌斯圈循环往复的几何特征,蕴含着永恒、无限的意义,因此常被用于各类标志设计,微处理器厂商Power Architecture的商标就是一条麦比乌斯圈,甚至垃圾回收标志也是由麦比乌斯圈变化而来。

Ⅱ 莫比乌斯带怎么用,有什么用

数学中有一个重要分支叫拓扑学,主要是研究几何图形连续改变形状时的一些特征和规律的,麦比乌斯圈变成了拓扑学中最有趣的单侧面问题之一。
一、1979年,美国著名轮胎公司百路驰创造性地把传送带制成麦比乌斯圈形状,这样一来,整条传送带环面各处均匀地承受磨损,避免了普通传送带单面受损的情况,使得其寿命延长了整整一倍。
二、针式打印机靠打印针击打色带在纸上留下一个一个的墨点,为充分利用色带的全部表面,色带也常被设计成麦比乌斯圈。
三、在美国匹兹堡著名肯尼森林游乐园里,就有一部“加强版”的云霄飞车——它的轨道是一个麦比乌斯圈。乘客在轨道的两面上飞驰。
四、麦比乌斯圈循环往复的几何特征,蕴含着永恒、无限的意义,因此常被用于各类标志设计。微处理器厂商Power Architecture的商标就是一条麦比乌斯圈,甚至垃圾回收标志也是由麦比乌斯圈变化而来。

Ⅲ 莫比乌斯带的特点是什么 为什么会有这样的特点

1、无限循环;

2、是一个二维的紧致流形,即一个有边界的面;

3、没有固定点。

莫比乌斯带是一种拓展图形,它们在图形被弯曲、拉大、缩小或任意的变形下保持不变,变换的条件是:在原来图形的点与变换了图形的点之间存在着一一对应的关系,并且邻近的点还是邻近的点。



(3)美国莫比乌斯区块链扩展阅读

公元1858年,德国数学家莫比乌斯和约翰·李斯丁发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。

应用

1、莫比乌斯带为很多艺术家提供了灵感,比如美术家莫里茨·科内利斯·埃舍尔就是一个利用这个结构在他木刻画作品里面的人,最著名的就是莫比乌斯二代,图画中表现一些蚂蚁在莫比乌斯带上面前行。

2、也被用于工业制造,一种从莫比乌斯带得到灵感的传送带能使用更长的时间,因为可以更好的利用整个带子,或者用于制造磁带,可以承载双倍的信息量。

3、有一座钢制的莫比乌斯带雕塑位于美国华盛顿的史密斯森林历史和技术博物馆。

4、荷兰建筑师Ben Van Berkel以莫比乌斯带为创作模型设计了著名的莫比乌斯住宅。

Ⅳ 莫比乌斯

应该是莫比乌斯带吧
公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)发现:把一个扭转180°后再两头粘接起来的纸条,具有魔术般的性质。

因为,普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘!

我们把这种由莫比乌斯发现的神奇的单面纸带,称为“莫比乌斯带”。

拿一张白的长纸条,把一面涂成黑色,然后把其中一端翻一个身,如同上页图那样粘成一个莫比乌斯带。现在像图中那样用剪刀沿纸带的中央把它剪开。你就会惊奇地发现,纸带不仅没有一分为二,反而像图中那样剪出一个两倍长的纸圈!

有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起!为了让读者直观地看到这一不太容易想象出来的事实,我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。

莫比乌斯带还有更为奇异的特性。一些在平面上无法解决的问题,却不可思议地在莫比乌斯带上获得了解决!

比如在普通空间无法实现的“手套易位问题:人左右两手的手套虽然极为相像,但却有着本质的不同。我们不可能把左手的手套贴切地戴到右手上去;也不能把右手的手套贴切地戴到左手上来。无论你怎么扭来转去,左手套永远是左手套,右手套也永远是右手套!不过,倘若自你把它搬到莫比乌斯带上来,那么解决起来就易如反掌了。

在自然界有许多物体也类似于手套那样,它们本身具备完全相像的对称部分,但一个是左手系的,另一个是右手系的,它们之间有着极大的不同。

下图画的是一只“扁平的猫”,规定这只猫只能在纸面上紧贴着纸行走。现在这只猫的头朝右。读者不难想象,只要这只猫紧贴着纸面,那么无论它怎么走动,它的头只能朝右。所以我们可以把这只猫称为“右侧扁平猫”。

“右侧扁平猫”之所以头始终朝右,是因为它不能离开纸面。

现在让我们再看一看,在单侧的莫比乌斯带上,扁平猫的遭遇究竟如何呢?右图画了一只“左侧扁平猫”,它紧贴着莫比乌斯带,走呀走,走呀走,最后竟走成一只“右侧扁平猫”!

扁平猫的故事告诉我们:堵塞在一个扭曲了的面上,左、右手系的物体是可以通过扭曲时实现转换的!让我们展开想象的翅膀,设想我们的空间在宇宙的某个边缘,呈现出莫比乌斯带式的弯曲。那么,有朝一日,我们的星际宇航员会带着左胸腔的心脏出发,却带着右胸腔的心脏返回地球呢!瞧,莫比乌斯带是多么的神奇!想必读者已经注意到,莫比乌斯带具有一条非常明显的边界。这似乎是一种美中不足。公元1882年,另一位德国数学家克莱茵(Klein,1849~1925),终于找到了一种自我封闭而没有明显边界的模型,称为“克莱茵瓶”(左图)。这种怪瓶实际上可以看作是由一对莫比乌斯带,沿边界粘合而成。因而克莱茵瓶比莫比乌斯带更具一般性。

Ⅳ 莫比乌斯带在生活中有哪些应用

“莫比乌斯带”在生活和生产中已经有了一些用途。

1、用皮带传送的动力机械的皮带就可以做成“莫比乌斯带”状,这样皮带可以磨损的面积就变大了。

2、如果把录音机的磁带做成“莫比乌斯带”状,就不存在正反两面的问题了,磁带就只有一个面了。

3、它还能平坦的嵌入三维空间。简易的“莫比乌斯圈”可通过一张长方形纸任何一面反转粘贴。

拓展资料:

公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)和约翰·李斯丁发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为“莫比乌斯带”。(也就是说,它的曲面只有一个)

Ⅵ 什么是莫比乌斯圈

麦比乌斯圈(Möbius strip, Möbius band)是一种单侧、不可定向的曲面。因A.F.麦比乌斯(August Ferdinand Möbius, 1790-1868)发现而得名。
具体做法就是将一个长方形纸条ABCD的一端AB固定,另一端DC扭转半周后,把AB和CD粘合在一起 ,得到的曲面就是麦比乌斯圈,也称麦比乌斯带。

数学上流传着这样一个故事:有人曾提出,先用一张长方形的纸条,首尾相粘,做成一个纸圈,然后只允许用一种颜色,在纸圈上的一面涂抹,最后把整个纸圈全部抹成一种颜色,不留下任何空白。你想想,应该怎样粘这个纸圈?如果是纸条的首尾相粘做成的纸圈有两个面,势必要涂完一个面再重新涂另一个面,不符合涂抹的要求,能不能做成只有一个面、一条封闭曲线做边界的纸圈儿呢?
对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国数学家麦比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验,也毫无结果。
有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未找到的圈儿。
一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。
叶子弯取着耸拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿色的圆圈儿”就是他梦寐以求的那种圈圈!
麦比乌斯回到办公室,裁出纸条,把纸的一端扭转180。,再将两端粘在一起,这样就做成了只有一个面的纸圈儿。
圆圈做成后,麦比乌斯捉了一只小甲虫,放在上面让它爬。结果,小甲虫不翻越任何边界就爬遍了圆圈儿的所有部分。麦比乌斯圈激动地说:“公正的小甲虫,你无可辩驳地证明了这个圈儿只有一个面。”

麦比乌斯圈的概念被广泛地应用到了建筑,艺术,工业生产中。运用麦比乌斯圈原理我们可以建造立交桥和道路,避免车辆行人的拥堵。

一、1979年,美国著名轮胎公司百路驰创造性地把传送带制成麦比乌斯圈形状,这样一来,整条传送带环面各处均匀地承受磨损,避免了普通传送带单面受损的情况,使得其寿命延长了整整一倍。
二、针式打印机靠打印针击打色带在纸上留下一个一个的墨点,为充分利用色带的全部表面,色带也常被设计成麦比乌斯圈。
三、在美国匹兹堡著名肯尼森林游乐园里,就有一部“加强版”的云霄飞车——它的轨道是一个麦比乌斯圈。乘客在轨道的两面上飞驰。
四、麦比乌斯圈循环往复的几何特征,蕴含着永恒、无限的意义,因此常被用于各类标志设计。微处理器厂商Power Architecture的商标就是一条麦比乌斯圈,甚至垃圾回收标志也是由麦比乌斯圈变化而来。

Ⅶ 莫比乌斯指环的相关理论

这是数学家发现的第一个单侧曲面。在积分理论发展的过程中,由于曲面通常有两侧,所以人们要给曲面定个方向才能进行积分。但是,当时还没有人知道是否存在这样的曲面,它只有一侧从而无法在它上面确定一个积分的方向。而莫比乌斯带正是这样的一个单侧曲面,它只有一个侧面从而无法定向。所以这类曲面又有一个名字叫“不可定向曲面”。由于莫比乌斯带只有一个面,这个面的长度自然就是普通纸环一面长度的两倍了。有人想到将这个特性用到传送皮带上,这样的话就可以把磨损分摊到更多的地方,从而提高皮带的寿命。这个想法还获得了美国的专利。如果我们把纸带想像成金属带,让电流由其中一个夹子流入而从另一个夹子流出的话,在纸带表面的电流有两个可能的流动方向,而这两个方向的电流产生的磁场恰好互相抵消。也就是说,电流在这个装置流动的时候不会产生磁场,所以也不会有电池感应的现象发生。这就是一个无电感电阻。这种电阻就叫默比乌斯电阻。莫比乌斯带在艺术和文化作品中也经常被引用,作为“无限循环”的一个象征。国际通用的循环再造标志就是一个绿色的、摆放成三角形的莫比乌斯带。在《哆啦A梦》(小叮当)漫画中,就有一个形状是莫比乌斯带的道具,只要把它放在门把手上,里边的人开门就会回到同一个房间里去。如果我们看科学馆门前的环状雕塑,多半也利用了类似莫比乌斯带的性质,有空的话经过这些雕塑可以数一下这些环有多少个面多少条边沿,我估计绝大部分结果都是1。而至于埃舍尔的例子就更是众人皆知,也不用我饶舌了。实验室中也有可能产生莫比乌斯带形状的粒子。前不久,一群科学家在Journal of Chemical Physics上发表了一篇论文,其中预言了一种莫比乌斯带形状的碳单质(准确来说应该是石墨烯)。它能抵抗摄氏200度左右的温度,算是相当稳定。由于它莫比乌斯带的结构,它应该是一个偶极子,从而可以形成稳定的晶体。现在就等科学家们把它实际做出来了。这一切,都是由数学家看到一个粘错的纸环开始的。

Ⅷ 有什么莫比乌斯环一般的故事

《恐怖游轮》这部电影绝了,女主和朋友乘游艇出海游玩,结果遭遇风暴船翻了,然后登上一艘游轮。船上空无一人,但是随处可见鲜血和神秘的指示,还听到他们之外的人弄出的响声,最后女主身边的朋友被一个个杀死,女主也把凶手杀死却发现凶手和她有一样的脸。然后女主看到了又一波她和朋友们登上游轮,新的那个“女主”经历了和她一样的事。又一波她和朋友们登上游轮,女主意识到只有把他们都杀死自己才可能活下去,她成功杀死了朋友们但是被“自己”推下船。她再有意识的时候发现自己躺在沙滩上,于是她回到家中,看到有个和自己一样脸的人在虐待自己的儿子就杀了她,于是有了开篇正剧之前她把一个黑麻袋(装着shi 体)放到车后备箱的那一幕。她开车送儿子上学,发生事故,儿子死了。她被一个出租车司机载去了港口,她和司机说还会回来,然后接受了朋友们的邀请和他们一起出海开始了循环。
其实在车祸里死去的不只是儿子,女主也死了。结尾的司机是死神,中间讲过故事一个神欺骗了死神,所以遭受了滚石惩罚,石头推到山顶上又会下来,无限循环。结尾时女主告诉司机自己会回来,但实际上她不愿接受儿子死亡的事件,于是回到人间,没有回去。她被迫一次次经历儿子的死亡,朋友的死亡作为欺骗死神的代价。

Ⅸ 求一个关于莫比乌斯带的说明文阅读题

数学家们吐露,
麦比乌斯带只有单面,
如果你要将它分成两半,
你将会感到十分可笑,
因为分开后还是一条带。

莫比乌斯环的奇妙之处有三:

一、莫比乌斯环只存在一个面。

二、如果沿着莫比乌斯环的中间剪开,将会形成一个比原来的莫比乌斯环空间大一倍的、具有正反两个面的环(环0),而不是形成两个莫比乌斯环或两个其它形式的环。

三、如果再沿着环0的中间剪开,将会形成两个与环0空间一样的、具有正反两个面的环,且这两个环是相互套在一起的(环1和环2),从此以后再沿着环1和环2以及因沿着环1和环2中间剪开所生成的所有环的中间剪开,都将会形成两个与环0空间一样的、具有正反两个面的环,永无止境……且所生成的所有的环都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。

数学不仅可以在最宏大的规模上帮助进行形状设计,如3层半楼层高的复活节彩蛋,而且还可以在微小的范围内帮助设计。本章将叙述美国博尔德市科罗拉多大学的戴维•沃尔巴及其同事们如何在奇特的麦比乌斯带中合成分子的故事。

神秘的麦比乌斯带是数学家们的宠物。你可以用一条窄纸条制作麦比乌斯带,例如取一条加法器用纸带,半扭转,再把纸带两端连接,形成一闭合环,就成为麦比乌斯带。

麦比乌斯带只有单边,也只有单面。如果你用一把漆刷沿着纸带方向刷漆,那么你将发现,当漆刷回到起点时,它已漆满整个纸带的表面。如果你沿着纸带的一面做一种魔术记号,那么你也会立即相信,纸带只有一个边。

如果你沿着纸带方向把麦比乌斯带剪成两半,果然,就像五打行油诗所说的,它仍然还是一条带子。

1858年,法国巴黎的一家科学协会为数学方面的一篇最优秀论文颁了奖。在这次竞赛提交的论文中,德国莱比锡市的数学家奥古斯特•费迪南德•麦比乌斯“发现了”这种曲面,就是现在以他的名字命名的曲面。麦比乌斯仅用纯数学观点论述了他的发现,例如,没有讨论自然界中存在着麦比乌斯带分子的可能性。

的确麦比乌斯不会想到诸如麦比乌斯带分子存在的可能性,这是因为当时的有机化学科学还处于萌芽阶段,人们即使对最简单的分子形状也一无所知,更不用说对数学有意义的复杂分子了。在麦比乌斯发现的同时,德国波恩大学的奥古斯特•凯库勒宣布他的发现:碳原子可以连接形成长链,它将成为有机化学的基础。

4年前,凯库勒在伦敦的公共马车上,首次在幻想中思考了碳链的问题。他回忆说:“那是一个晴朗的夏夜,我乘坐末班公共马车回家,和往常一样坐在‘车顶的’座位上,通过大城市中没有行人的街道,在平时,那是个充满活力的城市。我陷入幻想,并且好像看见许多原子在我眼前欢跳……我常常看到两个较小的原子如何联合形成偶原子,1个较大的原子如何环抱着两个较小的原子;还有更大的原子如何抓住3个甚至4个较小的原子不放,同时,它们整体如何跳着眼晕的舞蹈快速旋转着。我也看到较大的原子如何形成链子……无论如何,我也要花些夜里的时间,把这些幻想中形成的形态轮廓写进论文中。”

11年以后,1865年,凯库勒认识到碳链子可以环绕着旋转,形成环。而梦幻又一次给他以灵感。“我坐着编写教科书,然而工作毫无进展,我的思维开了小差。我把椅子转向取暖壁炉,并打起盹来。原子再次在我眼前欢跳。这时较小的原子谨慎地呆在基底上。我的心灵眼睛通过这种重复景象而更加敏锐,现在可以辨别出多种形体中较大的结构,长长地排列成行,有时还更紧密地拼接在一起;整行迂回曲折像蛇一样运动。瞧!那是什么?有一条蛇咬住了它自己的尾巴,嘲弄般地在我眼前快速旋转,仿佛一道闪电,把我惊醒了……当天晚上,我就推断出假设的结论。”

首先,凯库勒推导出苯的结构,它由6个碳原子和6个氢原子组成。凯库勒断定,6个碳原子形成六角形,各带有一个氢原子与每个碳原子相连。

自从凯库勒辨明苯的形状以来,120年内有机化学家们当然发现了更为复杂的分子的形状,诸如双螺旋的脱氧核糖核酸分子。但只是在近些年,化学家们才观察到形状呈麦比乌斯带的分子。

麦比乌斯分子不是在自然界中发现的,而是由戴维•沃尔巴及其同事们在实验室里合成的。开始时,他用形状像一架3级梯子的分子合成。(梯子的每级实际上是一个碳-碳的双键,这里可以忽略掉。)然后使梯子环绕着弯曲,再把两端连接,使其实际上形成一个环状物。

环形物中一半仅仅是一条环形带,而在另一半,当它两端连接时,将半截扭转,从而形成一条麦比乌斯带。

麦比乌斯带分子与麦比乌斯纸带一样,都具有许多神秘的性能。如果3个碳双健全部断开,那么分子仍然还是单个分子。碳双键的断开,相当于沿着纸带的中线环绕着把麦比乌斯带分成两半。对于分子和纸带两者来说,结果都是单带,只是其周长为原来的两倍。

化学家们很早就已知道,两种化合物可以有同样的分子式(即由同样化学成分严格地按同样比例组成的化合物),但却以性质不同的化学实体存在。如果同样的化学成分以不同的方式或以不同的角度相互键合时,这种现象就可能发生。然而,两种具有同样分子式的化合物,甚至具有同样的化学键,其在化学性质上也可能不同。怎么会有这种可能呢?

一门叫做拓扑学的数学分支学科可以解释这种现象。它是研究物体在不断发生变形时其性质仍然保持不变的数学学科。设想某物体是由柔性橡胶制成。拓扑学家想要知道,当物体受到推拉但不戳破或撕裂时,什么性质仍然保持不变。可用麦比乌斯带这个实例形象地说明这种抽象概念。假设你有一条橡胶的麦比乌斯带,你可以用一切可能的方法使它伸缩。不管你用多少种方法也都不能使它变形,最后得到的形状总是只有单面。因此,只有单面的性质就是拓扑学家们所关心的事。当一种形状能够连续变形成为另一种形状时,从拓扑学上看,两种形状被认为是等价的,所以,不管把麦比乌斯带伸缩成什么形状,从拓扑学的定义来说,它们也都是等价的。

现在考虑两条麦比乌斯带,一条用橡胶带朝某一方向扭转而成,另一条也用橡胶带但朝相反方向扭转制成。

从拓扑学上看,这两条麦比乌斯带是否等价?它们不等价。两者都不可能变形成为另一种形状。如果你从镜子里看这两条带子中的一条,那么你会看到,其映像很像另一条带;两条带互成镜像。

这里我必须停下来发表一项否认声明,以避免数学家们来信恶意攻击。数学家们都是一群怪人,拓扑学家们都不把自己局限在三维空间之中。而在四维空间中,他们却能证明,镜子里的麦比乌斯带可以互相转变。然而我仍将坚持把我们的讨论限于三维之内,因为我们探究的主要对象分子的形状总是在三维中观察到的。因此,我要重申,在三维中,镜像的麦比乌斯带从拓扑学来看是截然不同的。

成分一样而且化学键相同的两种化学化合物为什么会有性质截然不同的实体,关键在于从拓扑学上看,可能存在着截然不同的镜像。

因为右手和左手都是众所周知的镜像,所以人们习惯地把与其镜像相反的物体称为左手的或右手的。在一对镜像物中,究竟哪一个叫做像,是一个习惯问题。这正如街道的右侧不存在绝对位置一样,它取决于你行走的方向。两种麦比乌斯带已被人们称为右旋和左旋的麦比乌斯带,但是不必担心何者右旋,何者左旋。分子也存在右旋和左旋形式,人们称它们为手性,它是从希腊词“手(Cheir)”借用来的。

右旋和左旋麦比乌斯带都是镜像形状的实例,从拓扑学来看,它们在性质上是截然不同的,但有着等价的镜像形状。现以一简单图形为例,一个圆形是它本身的镜像,显然,从拓扑学上看,圆形与它本身是等价的。

另一个例子是字母R及其镜像Я。若用软橡胶制成图形R,那么可以用拓扑学的变形方法把它变换成为它的镜像。

可是,分子不是软橡胶制成的,物理的约束力防止它们以任何方式发生变形。尽管如此,R形分子还是能够转变成为它的镜像,无须弯曲变形——的确根本不需要弯曲。这次,如果把用硬塑料制成的字母图形R及其镜像Я放在桌子上,那么,只要把它拿起来翻转,就能使其中一个变成另一个。

这种变换由于物体始终保持其刚性,所以叫做刚性变换。

许多有机分子都是刚性的手性分子:它与它的镜像在刚性上是截然不同的。人体明显偏爱某种手征的手性分子。例如,大多数的蛋白质都是由左旋氨基酸和右旋糖组成的。当手性分子在人体内合成时,只能产生具有所需手征的手性分子。

但是,当诸如药物等手性分子在实验室内用非生物方法合成时,结果都是右旋与左旋形式分子的对半混合。当病人服药时,由于难于除掉不是所需形式的分子,所以服用的是混合物。一般说来,非所需形式的分子在生物学上是惰性的,而且只是经过身体,无任何作用。有时还是有害的。60年代初期,就曾发生给妊娠妇女

服用擦里多米德药物事件。药物中的右旋分子具有所需的镇静药性,而左旋分子却能造成新生儿畸形。

英国伦敦皇家学院化学教授斯蒂芬•梅森在英国周刊《新科学家》发表的文章中,注意到收入标准药物手册中的486种合成生产的手性药物,只有88种是由所需的手征分子组成的。其余的398种全都是对半的混合物。梅森得出了结论:“它们都是在特定环境(人体)中使用,某种手征会得到特别的偏爱。可是,效果又会怎样呢?”

当一位有机化学家分析一种新分子时,首先要做的事是试图确定分子是否刚性的手性分子,即在刚性上与其镜像是否截然不同。这里可借助于拓扑学。从拓扑学上看,如果分子与其镜像性质不同,那么它们在刚性上也是不同的,因为刚性变换只能是许多通过拓扑学完成的变换中的一种。还以上面讨论过的R及其镜像Я作为例子。在从一个变形成为另一个时,可以得到一种中间的形状Я,它具有对称性,其左半是其右半的镜像。

拓扑学家们知道,如果一种形状能够变形成为某种具有反射对称性的形状,那么该形状本身就能够变形成为其镜像。这就意味着,如果化学家能够让分子获得具有反射对称性的形状,那么,他就能消除分子的手性。

这种见解往往证明是有用的。沃尔巴已经从三级梯形分子中合成出分子的麦比乌斯带,他请我去直接观察从两级梯形分子中合成的类似方法。所得到的形状是手性吗?如下图所示,由于它能变换成为具有反射对称性的形状,所以不是手性的。

可惜,这种解释对于三级麦比乌斯分子似乎不起作用。经过许多思考实验之后,沃尔巴推测,好像它不可能变形成为具有反射对称性的形状。如果变形后已经显示出反射对称性,那么他就会断定,三级麦比乌斯形状可以变形成为它的镜像。可是,这样的逆叙正确吗?任何变形未能显示出反射对称性,是否意味着分子本身就不能变形成为其镜像?

毛病就出在答案太容易上。沃尔巴请我考虑两只橡胶手套,一只为右手的,另一只则是左手的。

手套显然都是镜像的,可是从拓扑学来看,它们等价吗?当然,手套在刚性上是不等价的,因为如果我们像翻转字母R那样翻转两只手套中的一只来获得镜像,那是行不通的。然而,如果我们把任何一只手套从里往外翻转,那么就能使手套成为等价。

(拓扑学家因而发现它自己处在一个奇特的位置上,既不能认为手套是右手的,也不能认为是左手的。)在把手套从里往外翻转的过程中,手套在任何步骤都不具有反射对称性。

我们也许能够得出结论,手套是一个反例:某种形状在拓扑学上与其镜像等价,但在其变形过程中却不具备反射对称性。这种结论可能是错误的。只是我们没有让手套充分变形。如果我们使劲拽开手套,那么至少在理论上能够把手套变形成为一个圆盘的形状,这时手套就具有反射对称性(沿任何直径方向都有反射对称性)。

以上讨论的要点是,沃尔巴在化学方面的一些研究已向拓扑学家提出一个重要问题:如果某种形状在变形过程中不可能具备反射对称性,那么是否可以得出结论,从拓扑学上看,形状本身与其镜像不等价呢?这是一个基本问题,但在数学文献上,好像还没有人提出来过。

这个问题整个都牵扯到一个重要的哲学问题:物理科学上的新概念是否常常会启迪出数学上的新概念?或者反之?换句话说,何者在先,是物理科学,还是数学?许多哲学家遇到过这个问题,这与众所周知的关于鸡和蛋何者在先的问题一样,答案看来是不会令人满意的。

在这两种情况下,人们所得出的结论,似乎不是一个不可置否的证据,而是一个目的性的试验。一些步柏拉图后尘的专横数学家断言,他们的学科是与物理学实际相脱离的。他们认为,即使没有可供计数的物体,数字也会存在。不大固执的数学家们则承认,科学与数学是紧密相连的,但他们坚持数学在先。他们提出群论作为证据,群论是数学的一门分支学科,在19世纪30年代诞生,它完全没有物理学上的用途,只是最近才被粒子物理学家应用,以便用于研究过去20年内发现的亚原子粒子集。

但是,物理学家们则相信他们的学科在先,而且认为历史是站在他们一边。例如伊萨克•牛顿创造了数学中著名的分支学科微积分,就是因为他当时需要一种数学工具,用来分析极小的空间与时间间隔。而我认为,数学与科学都相得益彰,才是惟一公正的结论,尽管这种判断既不鼓舞人心,也不增进知识。麦比乌斯带的故事就是数学与物理科学之间错综复杂相互促进关系的一个很好的实例。1858年的论文竞赛中提出的麦比乌斯带仅仅创立了纯数学,现在它在化学中发展起来,而且已被化学家们熟练地运用,又为纯理论的数学家提出许多问题。

你可以感到欣慰的是,麦比乌斯带不仅可以服务于化学家,而且也可以服务于工业家。B.F.古德里奇公司已经获得麦比乌斯输送带的专利权。在普通输送带中,带的一侧会有较多的磨损与撕裂。而在麦比乌斯输送带中,应力可分布到“两侧”,从而可以延长其使用期一倍。

麦比乌斯简介(Mobius,1790~1868)

德国数学家,天文学家 。1790 年11月17日生于瑙姆堡附近的舒尔普福塔,1868年9月26日卒于莱比锡。1809 年入莱比锡大学学习法律,后转攻数学、物理和天文。1814 年获博士学位,1816年任副教授,1829年当选为柏林科学院通讯院士,1844年任莱比锡大学天文与高等力学教授。

麦比乌斯的科学贡献涉及天文和数学两大领域。他领导建立了莱比锡大学天文台并任台长。因发表《关于行星掩星的计算》而获得天文学家的赞誉,此外还著有《天文学原理》和《天体力学基础》等天文学著作。在数学方面,麦比乌斯发展了射影几何学的代数方法。他在其主要著作《重心计算》中,独立于 J. 普吕克等人而创立了代数射影几何的基本概念——齐次坐标。在同一著作中他还揭示了对偶原理与配极之间的关系,并对交比概念给出了完善的处理。麦比乌斯最为人知的数学发现是后来以他的名字命名的单侧曲面——麦比乌斯带。此外,麦比乌斯对拓扑学球面三角等其他数学分支也有重要贡献。
一堂有趣的数学活动课
——制作神奇的莫比乌斯带

班会主题:上周五上午下课 时郑老师在黑板上写下“神奇的莫比乌斯带(数学活动课)”。一个中午我们全班都在好奇中期待这节课。
年 级:三年级
活动目标:南京琅琊路小学“科技月——小手动起来”。
1、 让我们认识“莫比乌斯带”,学会将长方形纸条制成莫比乌斯带。
2、 引导我们通过思考操作发现并验证“莫比乌斯带”的特征,培养我们大胆猜测、勇于探究的求索精神。
3、 在莫比乌斯带魔术般的变化中感受数学的无穷魅力,拓展数学视野,进一步激发我们学习数学的兴趣。
活动准备:准备剪刀,胶带、彩笔,三张长方形彩纸。
活动过程:
一、制作莫比乌斯带
手操作:可以首尾相接围成一个圈。
(此图来自网络)
我们取出2号纸条,先做成一个普通的纸圈,然后将一端翻转180°,再用胶带粘牢。这样就完成了只有一个面一条边的纸圈。
你们知道这样的一个纸圈叫什么名字吗?它就是神奇的莫比乌斯带。它是德国数学家莫比乌斯在1858年偶然间发现的,所以就以他的名字命名叫“莫比乌斯带”。也有人叫它“莫比乌斯圈”,还有人管他叫“怪圈”。

二、研究莫比乌斯带
莫比乌斯带到底有多神奇呢?下面我们就用“剪”的办法来研究。
老师先拿出平常的纸圈,问:如果沿着纸带的中间剪下去,会变成什么样呢?(老师动手剪,学生观察验证。)请同学们认真观察老师是怎么剪的?(变成2个分开的纸圈)
(一)1/2剪莫比乌斯带
1、现在,老师拿出莫比乌斯带,我们也用剪刀沿中线剪开这个莫比乌斯纸圈,老师让我们猜一猜会变成什么样子?
2、请同学们自己动手验证一下
3、我们按照老师的示范做了起来,验证结果:变成了一个更大的圈。

你们说神奇吗?
(二)1/3剪莫比乌斯带
1、我们拿出3号纸条,再做成一个莫比乌斯带。
2、如果我们要沿着三等分线剪,猜一猜:要剪几次?剪的结果会是怎样呢?
3、我们动手操作,我和同桌合作帮助。
4、验证结果:一个大圈套着一个小圈。

三、生活中应用
莫比乌斯带不仅好玩有趣,而且还被应用到生活的方方面面。
1、过山车:有些过山车的跑道采用的就是莫比乌斯原理。
(此图来自网络)
2、莫比乌斯爬梯
中国科技馆的标志性的物体,是由莫比乌斯带演变而成的。
(此图来自网络)
通过今天这节课的学习,我们觉得莫比乌斯带充满了奥秘。有的问题老师也不怎么清楚。我爸爸告诉我,数学中有一门专门研究莫比乌斯带的书叫《拓扑学》。这种现象还可以应用到许许多多的生活中去呢。

我们用扭节来打比方。看底下这个图形,如果我们把它看作平面

上的曲线的话,那么它似乎自身相交,再一看似乎又断成了三截。但
其实很容易明白,这个图形其实是三维空间中的曲线,它并不和自己
相交,而且是连续不断的一条曲线。在平面上一条曲线自然做不到这
样,但是如果有第三维的话,它就可以穿过第三维来避开和自己相交。
只是因为我们要把它画在二维平面上时,只好将就一点,把它画成相
交或者断裂了的样子。克莱因瓶也一样,这是一个事实上处于四维空
间中的曲面。在我们这个三维空间中,即使是最高明的能工巧匠,也
不得不把它做成自身相交的模样;就好象最高明的画家,在纸上画扭
结的时候也不得不把它们画成自身相交的模样。题图就是一个用玻璃
吹制的克莱因瓶。

这款创意时钟的外形就像神奇的莫比乌斯圈。由三个外圈组成,每个面用来显示时间数字。除了极具个性的创意扭曲外形,设计师还特地准备了方便的小睡模式,当时钟响起的时候,只要将其翻转,就会关闭闹钟进入小睡模式,十分方便。而设置时钟时间的操作方法也与之类似。

Ⅹ 生活中哪里可以用到莫比乌斯环

莫比乌斯环只是个几何模型,但这个怪圈有着丰富的内涵,它与自然﹑人类﹑科学﹑艺术等有着深刻的联系.它是一种变异的系统结构:系统不同层次的相互渗透﹑缠绕,如将“内”与“外”、“高”与“低”、“二维”与“三维”、“有限”与“无限”、“部分”与“整体”等等不同层次缠绕在一起。
科学研究发现,在生命﹑人体﹑物质﹑宇宙等诸多自然事物上,处处存在悖论﹑怪圈,而人造物却都是常圈结构。相比之下,在自然界中,怪圈更显和谐,完美。于是,怪圈开始被应用于越来越多的场所。
在艺术上同样有所体现。古典音乐大师巴赫的《音乐的奉献》中就有这样的技巧:听众感到有限的音阶上能演奏出升调无限地升高上去的音乐。
车站﹑工厂的传送带,常见的是“常圈”结构,缺点是带的一面会有较多的磨损。有人将传送带做成莫比乌斯带的形状,使应力分布到“两面”,可延长使用周期一倍。计算机的打印机色带也做成了莫比乌斯带结构。1982年,美国的D.M.沃尔巴等人成功地合成了莫比乌斯分子,形似一个弯曲翻转的环状物,这种分子同样具有许多神秘的性能。
甚至有人提出生命遗传的DNA双螺旋分子结构模型即怪圈结构。不论是在数学、逻辑学、生命遗传学,或是在大脑思维、人工智能领域,甚至音乐、绘画领域,怪圈研究的前景都非常广阔,应当引起人们的足够重视。

热点内容
收到假eth币 发布:2025-10-20 08:58:16 浏览:973
暗黑破坏神2eth打孔 发布:2025-10-20 08:42:58 浏览:105
BTC和CBT是一样的吗 发布:2025-10-20 08:42:57 浏览:233
华硕trx40Pro供电 发布:2025-10-20 08:33:26 浏览:432
晒人民币编号的朋友圈 发布:2025-10-20 08:25:32 浏览:687
doge格式 发布:2025-10-20 08:02:00 浏览:382
以太坊会爆发吗 发布:2025-10-20 08:01:59 浏览:772
一台比特币矿机的功率 发布:2025-10-20 07:39:24 浏览:925
trx辅助带 发布:2025-10-20 07:35:29 浏览:48
比特币哈希值有多少位 发布:2025-10-20 07:31:20 浏览:633