区块链上椭圆曲线加密算法
A. 椭圆曲线加密怎么实现的
椭圆曲线
椭圆曲线指的是由韦尔斯特拉斯(Weierstrass)方程 y2+a1xy+a3y=x3+a2x2+a4x+a6 所确定的平面曲线。若F是一个域,ai ∈F,i=1,2,…,6。满足式1的数偶(x,y)称为F域上的椭圆曲线E的点。F域可以式有理数域,还可以式有限域GF(Pr)。椭圆曲线通常用E表示。除了曲线E的所有点外,尚需加上一个叫做无穷远点的特殊O。
在椭圆曲线加密(ECC)
在椭圆曲线加密(ECC)中,利用了某种特殊形式的椭圆曲线,即定义在有限域上的椭圆曲线。其方程如下:
y2=x3+ax+b(mod p)
这里p是素数,a和b为两个小于p的非负整数,它们满足:
4a3+27b2(mod p)≠0 其中,x,y,a,b ∈Fp,则满足式(2)的点(x,y)和一个无穷点O就组成了椭圆曲线E。
椭圆曲线离散对数问题ECDLP
椭圆曲线离散对数问题ECDLP定义如下:给定素数p和椭圆曲线E,对 Q=kP,在已知P,Q的情况下求出小于p的正整数k。可以证明,已知k和P计算Q比较容易,而由Q和P计算k则比较困难,至今没有有效的方法来解决这个问题,这就是椭圆曲线加密算法原理之所在。
椭圆曲线算法与RSA算法的比较
椭圆曲线算法与RSA算法的比较
椭圆曲线公钥系统是代替RSA的强有力的竞争者。椭圆曲线加密方法与RSA方法相比,有以下的优点:
(1)安全性能更高 如160位ECC与1024位RSA、DSA有相同的安全强度。
(2)计算量小,处理速度快 在私钥的处理速度上(解密和签名),ECC远 比RSA、DSA快得多。
(3)存储空间占用小 ECC的密钥尺寸和系统参数与RSA、DSA相比要小得多, 所以占用的存储空间小得多。
(4)带宽要求低使得ECC具有广泛得应用前景。
ECC的这些特点使它必将取代RSA,成为通用的公钥加密算法。比如SET协议的制定者已把它作为下一代SET协议中缺省的公钥密码算法。
B. 在椭圆曲线加密算法中,如果两个点的横坐标相同,纵坐标不同,要怎么相加呢
根据椭圆曲线的运算规则,P+(-P)=O,O为无穷远点。
C. 椭圆曲线加密算法
这需要自己设计,如果明文空间为M,则需要构造一个映射,将M中的元素(一般为二进制序列)映射到椭圆曲线上的点。
一种可能的做法是:将M转化为十进制整数m,然后令椭圆曲线中点的横坐标为m,根据曲线方程计算出纵坐标,便得到了一个点。
D. 椭圆曲线(ecc)加密,签名(ecdsa)问题。
用asp实现椭圆曲线加密,签名。
一个你可以下载一个加密软件,可心在www,.com中搜索加密软件,加密软件很多,你要椭圆曲线加密,签名,你先建立一个文件夹,然后将椭圆保存,对文件夹加密就行了!
E. 区块链技术中的哈希算法是什么
1.1. 简介
计算机行业从业者对哈希这个词应该非常熟悉,哈希能够实现数据从一个维度向另一个维度的映射,通常使用哈希函数实现这种映射。通常业界使用y = hash(x)的方式进行表示,该哈希函数实现对x进行运算计算出一个哈希值y。
区块链中哈希函数特性:
函数参数为string类型;
固定大小输出;
计算高效;
collision-free 即冲突概率小:x != y => hash(x) != hash(y)
隐藏原始信息:例如区块链中各个节点之间对交易的验证只需要验证交易的信息熵,而不需要对原始信息进行比对,节点间不需要传输交易的原始数据只传输交易的哈希即可,常见算法有SHA系列和MD5等算法
1.2. 哈希的用法
哈希在区块链中用处广泛,其一我们称之为哈希指针(Hash Pointer)
哈希指针是指该变量的值是通过实际数据计算出来的且指向实际的数据所在位置,即其既可以表示实际数据内容又可以表示实际数据的存储位置。下图为Hash Pointer的示意图

F. 求椭圆曲线加密算法的源代码
G. 谁能给我椭圆曲线加密算法的C源代码
我也正需要这个,如果找的话,能给我一份么?十分感谢,我邮箱是[email protected]
H. 什么是区块链加密算法
区块链加密算法(EncryptionAlgorithm)
非对称加密算法是一个函数,通过使用一个加密钥匙,将原来的明文文件或数据转化成一串不可读的密文代码。加密流程是不可逆的,只有持有对应的解密钥匙才能将该加密信息解密成可阅读的明文。加密使得私密数据可以在低风险的情况下,通过公共网络进行传输,并保护数据不被第三方窃取、阅读。
区块链技术的核心优势是去中心化,能够通过运用数据加密、时间戳、分布式共识和经济激励等手段,在节点无需互相信任的分布式系统中实现基于去中心化信用的点对点交易、协调与协作,从而为解决中心化机构普遍存在的高成本、低效率和数据存储不安全等问题提供了解决方案。
区块链的应用领域有数字货币、通证、金融、防伪溯源、隐私保护、供应链、娱乐等等,区块链、比特币的火爆,不少相关的top域名都被注册,对域名行业产生了比较大的影响。
I. 椭圆加密算法的方程
椭圆曲线密码体制来源于对椭圆曲线的研究,所谓椭圆曲线指的是由韦尔斯特拉斯(Weierstrass)方程:
y2+a1xy+a3y=x3+a2x2+a4x+a6 (1)
所确定的平面曲线。其中系数ai(I=1,2,…,6)定义在某个域上,可以是有理数域、实数域、复数域,还可以是有限域GF(pr),椭圆曲线密码体制中用到的椭圆曲线都是定义在有限域上的。
椭圆曲线上所有的点外加一个叫做无穷远点的特殊点构成的集合连同一个定义的加法运算构成一个Abel群。在等式
mP=P+P+…+P=Q (2)
中,已知m和点P求点Q比较容易,反之已知点Q和点P求m却是相当困难的,这个问题称为椭圆曲线上点群的离散对数问题。椭圆曲线密码体制正是利用这个困难问题设计而来。椭圆曲线应用到密码学上最早是由Neal Koblitz 和Victor Miller在1985年分别独立提出的。
椭圆曲线密码体制是目前已知的公钥体制中,对每比特所提供加密强度最高的一种体制。解椭圆曲线上的离散对数问题的最好算法是Pollard rho方法,其时间复杂度为,是完全指数阶的。其中n为等式(2)中m的二进制表示的位数。当n=234, 约为2117,需要1.6x1023 MIPS 年的时间。而我们熟知的RSA所利用的是大整数分解的困难问题,目前对于一般情况下的因数分解的最好算法的时间复杂度是子指数阶的,当n=2048时,需要2x1020MIPS年的时间。也就是说当RSA的密钥使用2048位时,ECC的密钥使用234位所获得的安全强度还高出许多。它们之间的密钥长度却相差达9倍,当ECC的密钥更大时它们之间差距将更大。更ECC密钥短的优点是非常明显的,随加密强度的提高,密钥长度变化不大。
德国、日本、法国、美国、加拿大等国的很多密码学研究小组及一些公司实现了椭圆曲线密码体制,我国也有一些密码学者
做了这方面的工作。许多标准化组织已经或正在制定关于椭圆曲线的标准,同时也有许多的厂商已经或正在开发基于椭圆曲线的产品。对于椭圆曲线密码的研究也是方兴未艾,从ASIACRYPTO’98上专门开辟了ECC的栏目可见一斑。
在椭圆曲线密码体制的标准化方面,IEEE、ANSI、ISO、IETF、ATM等都作了大量的工作,它们所开发的椭圆曲线标准的文档有:IEEE P1363 P1363a、ANSI X9.62 X9.63、 ISO/IEC14888等。
2003年5月12日中国颁布的无线局域网国家标准 GB15629.11 中,包含了全新的WAPI(WLAN Authentication and Privacy Infrastructure)安全机制,能为用户的WLAN系统提供全面的安全保护。这种安全机制由 WAI和WPI两部分组成,分别实现对用户身份的鉴别和对传输的数据加密。WAI采用公开密钥密码体制,利用证书来对WLAN系统中的用户和AP进行认证。证书里面包含有证书颁发者(ASU)的公钥和签名以及证书持有者的公钥和签名,这里的签名采用的就是椭圆曲线ECC算法。
加拿大Certicom公司是国际上最著名的ECC密码技术公司,已授权300多家企业使用ECC密码技术,包括Cisco 系统有限公司、摩托罗拉、Palm等企业。Microsoft将Certicom公司的VPN嵌入微软视窗移动2003系统中。
以下资料摘自:http://www.hids.com.cn/data.asp