当前位置:首页 » 区块链知识 » 区块链完整性保护

区块链完整性保护

发布时间: 2022-03-27 01:00:57

⑴ 什么是区块链+知识产权保护

区块链+知识产权保护主要就是将知识产权创作记录在区块链上,并且持有人可以在区块链上直接转让知识产权使用权等,可以免去很多不必要的流程问题节约很多时间成本和法律成本。你可以留意一下中芯区块链公共服务平台,他们做区块链的,就有区块链+知识产权保护,项目也已经落地了。

⑵ 区块链发明专利如何提高保护效果

1、可能的侵权范围
《专利法》规定,发明或者实用新型专利权的保护范围以其权利要求的内容为准,说明书及附图可以用于解释权利要求的内容。
《最高人民法院关于审理侵犯专利权纠纷案件应用法律若干问题的解释》规定:人民法院判定被诉侵权技术方案是否落入专利权的保护范围,应当审查权利人主张的权利要求所记载的全部技术特征
相同或者等同的技术特征的,人民法院应当认定其落入专利权的保护范围;被诉侵权技术方案的技术特征与权利要求记载的全部技术特征相比,缺少权利要求记载的一个以上的技术特征,或者有一个以上技术特征不相同也不等同的,人民法院应当认定其没有落入专利权的保护范围。
通过以上规定可以看出,专利文件中,如果一项产品被认定为侵权,其必须涵盖了权利要求项中记载的全部技术特征,因此,要想获得较大的保护范围,权利要求项中的内容应该越少越好,也就是不要加入不必要的内容。
涉及区块链的创新,通常关联多个执行方,是一个需要各方配合才能完成的体系化方案。例如,数据发布节点、区块链网络、授权节点等,如果揉在一项权利要求里,会发现当专利权人想要控告某个执行方侵权时,该方并没有覆盖该项权利要求的全部内容(至少不涵盖其他执行方),这就导致虽然这一方使用了本专利的创新构思,但是并不侵权。因此,在一项权利要求里,最好围绕一个执行主体来撰写保护范围。
2、可能的侵权对象
《专利法》规定,发明和实用新型专利权被授予后,除本法另有规定的以外,任何单位或者个人未经专利权人许可,都不得实施其专利,即不得为生产经营目的制造、使用、许诺销售、销售、进口其专利产品,或者使用其专利方法以及使用、许诺销售、销售、进口依照该专利方法直接获得的产品。
这里要注意的是“以生产经营为目的”,也就是说,不以该目的的实施,不侵权。因此,在撰写权利要求时,还应该考虑可能的侵权对象是谁,专利权的内容应尽量对他们起到限制作用,而不要把不必要的对象(例如终端消费者使用的设备)纳入其中。

⑶ 如何通过微版权校验区块链存证数据的完整性

《关于办理刑事案件收集提取和审查判断电子数据若干问题的规定》第5条规定,可以采用计算电子数据完整性校验值等来保护电子数据的完整性。

校验电子数据的完整性,一般是采用哈希值等校验算法进行判定。

微版权通过SHA-512哈希算法、时间戳服务、PBFT共识算法,对原数据进行加密运算,把存证主体、存证时间、存证过程和存证内容等生成唯一对应的数字指纹,加密存储到区块链上,有效保障存证数据的完整性。

用户通过微版权官网上的“验证保全”,输入存证数据的备案号并上传原文件,系统自动对上传文件的哈希值和原始存证数据的哈希值进行比对,如果存证数据与上传文件完整无误,则通过验证,反之,不通过。

⑷ 区块链怎么保护企业数据

因为区块链的不可更改的特点,所以在数据保护上做的很好,长沙高新区发起的中芯区块链也是征集企业上链的,到时候企业都可以在链上成交。

⑸ 区块链在信息安全保护方面有什么样的特征

金窝窝网络科技区块链+大数据技术的诞生,则用代码构建了一个最低成本的信任方式,区块链只需执行代码,就可做到真实的、全流程的、不可篡改的数据记录

⑹ 区块链技术是如何保证数据的安全性的

私有密钥 ~

⑺ 区块链使用安全如何来保证呢

区块链本身解决的就是陌生人之间大规模协作问题,即陌生人在不需要彼此信任的情况下就可以相互协作。那么如何保证陌生人之间的信任来实现彼此的共识机制呢?中心化的系统利用的是可信的第三方背书,比如银行,银行在老百姓看来是可靠的值得信任的机构,老百姓可以信赖银行,由银行解决现实中的纠纷问题。但是,去中心化的区块链是如何保证信任的呢?
实际上,区块链是利用现代密码学的基础原理来确保其安全机制的。密码学和安全领域所涉及的知识体系十分繁杂,我这里只介绍与区块链相关的密码学基础知识,包括Hash算法、加密算法、信息摘要和数字签名、零知识证明、量子密码学等。您可以通过这节课来了解运用密码学技术下的区块链如何保证其机密性、完整性、认证性和不可抵赖性。
基础课程第七课 区块链安全基础知识
一、哈希算法(Hash算法)
哈希函数(Hash),又称为散列函数。哈希函数:Hash(原始信息) = 摘要信息,哈希函数能将任意长度的二进制明文串映射为较短的(一般是固定长度的)二进制串(Hash值)。
一个好的哈希算法具备以下4个特点:
1、 一一对应:同样的明文输入和哈希算法,总能得到相同的摘要信息输出。
2、 输入敏感:明文输入哪怕发生任何最微小的变化,新产生的摘要信息都会发生较大变化,与原来的输出差异巨大。
3、 易于验证:明文输入和哈希算法都是公开的,任何人都可以自行计算,输出的哈希值是否正确。
4、 不可逆:如果只有输出的哈希值,由哈希算法是绝对无法反推出明文的。
5、 冲突避免:很难找到两段内容不同的明文,而它们的Hash值一致(发生碰撞)。
举例说明:
Hash(张三借给李四10万,借期6个月) = 123456789012
账本上记录了123456789012这样一条记录。
可以看出哈希函数有4个作用:
简化信息
很好理解,哈希后的信息变短了。
标识信息
可以使用123456789012来标识原始信息,摘要信息也称为原始信息的id。
隐匿信息
账本是123456789012这样一条记录,原始信息被隐匿。
验证信息
假如李四在还款时欺骗说,张三只借给李四5万,双方可以用哈希取值后与之前记录的哈希值123456789012来验证原始信息
Hash(张三借给李四5万,借期6个月)=987654321098
987654321098与123456789012完全不同,则证明李四说谎了,则成功的保证了信息的不可篡改性。
常见的Hash算法包括MD4、MD5、SHA系列算法,现在主流领域使用的基本都是SHA系列算法。SHA(Secure Hash Algorithm)并非一个算法,而是一组hash算法。最初是SHA-1系列,现在主流应用的是SHA-224、SHA-256、SHA-384、SHA-512算法(通称SHA-2),最近也提出了SHA-3相关算法,如以太坊所使用的KECCAK-256就是属于这种算法。
MD5是一个非常经典的Hash算法,不过可惜的是它和SHA-1算法都已经被破解,被业内认为其安全性不足以应用于商业场景,一般推荐至少是SHA2-256或者更安全的算法。
哈希算法在区块链中得到广泛使用,例如区块中,后一个区块均会包含前一个区块的哈希值,并且以后一个区块的内容+前一个区块的哈希值共同计算后一个区块的哈希值,保证了链的连续性和不可篡改性。
二、加解密算法
加解密算法是密码学的核心技术,从设计理念上可以分为两大基础类型:对称加密算法与非对称加密算法。根据加解密过程中所使用的密钥是否相同来加以区分,两种模式适用于不同的需求,恰好形成互补关系,有时也可以组合使用,形成混合加密机制。
对称加密算法(symmetric cryptography,又称公共密钥加密,common-key cryptography),加解密的密钥都是相同的,其优势是计算效率高,加密强度高;其缺点是需要提前共享密钥,容易泄露丢失密钥。常见的算法有DES、3DES、AES等。
非对称加密算法(asymmetric cryptography,又称公钥加密,public-key cryptography),与加解密的密钥是不同的,其优势是无需提前共享密钥;其缺点在于计算效率低,只能加密篇幅较短的内容。常见的算法有RSA、SM2、ElGamal和椭圆曲线系列算法等。 对称加密算法,适用于大量数据的加解密过程;不能用于签名场景:并且往往需要提前分发好密钥。非对称加密算法一般适用于签名场景或密钥协商,但是不适于大量数据的加解密。
三、信息摘要和数字签名
顾名思义,信息摘要是对信息内容进行Hash运算,获取唯一的摘要值来替代原始完整的信息内容。信息摘要是Hash算法最重要的一个用途。利用Hash函数的抗碰撞性特点,信息摘要可以解决内容未被篡改过的问题。
数字签名与在纸质合同上签名确认合同内容和证明身份类似,数字签名基于非对称加密,既可以用于证明某数字内容的完整性,同时又可以确认来源(或不可抵赖)。
我们对数字签名有两个特性要求,使其与我们对手写签名的预期一致。第一,只有你自己可以制作本人的签名,但是任何看到它的人都可以验证其有效性;第二,我们希望签名只与某一特定文件有关,而不支持其他文件。这些都可以通过我们上面的非对称加密算法来实现数字签名。
在实践中,我们一般都是对信息的哈希值进行签名,而不是对信息本身进行签名,这是由非对称加密算法的效率所决定的。相对应于区块链中,则是对哈希指针进行签名,如果用这种方式,前面的是整个结构,而非仅仅哈希指针本身。
四 、零知识证明(Zero Knowledge proof)
零知识证明是指证明者在不向验证者提供任何额外信息的前提下,使验证者相信某个论断是正确的。
零知识证明一般满足三个条件:
1、 完整性(Complteness):真实的证明可以让验证者成功验证;
2、 可靠性(Soundness):虚假的证明无法让验证者通过验证;
3、 零知识(Zero-Knowledge):如果得到证明,无法从证明过程中获知证明信息之外的任何信息。
五、量子密码学(Quantum cryptography)
随着量子计算和量子通信的研究受到越来越多的关注,未来量子密码学将对密码学信息安全产生巨大冲击。
量子计算的核心原理就是利用量子比特可以同时处于多个相干叠加态,理论上可以通过少量量子比特来表达大量信息,同时进行处理,大大提高计算速度。
这样的话,目前的大量加密算法,从理论上来说都是不可靠的,是可被破解的,那么使得加密算法不得不升级换代,否则就会被量子计算所攻破。
众所周知,量子计算现在还仅停留在理论阶段,距离大规模商用还有较远的距离。不过新一代的加密算法,都要考虑到这种情况存在的可能性。

⑻ 区块链怎样保护知识产权

知识产权的全流程都可以上链的,区块链+模式挺火的,长沙高新区发起的中芯区块链平台也是入围了,是征集企业上链的。

⑼ 区块链技术是怎样做到隐私的保护的

区块链的隐私性是大家最关注的话题之一。从区块链理论本身来说,Laikelib区块链底层架构完全可以保证数据的隐私性。

⑽ 区块链技术可以保护你的数据。为什么不能私下存储你所有的数据,或者也许出售这些数据呢

区块链技术可以保护你的数据。首先,区块链将促进更干净、更有组织的个人数据的建立。其次,区块链会促进新市场的出现:
1、比如数据市场(这个是比较容易实现的);
2、比如模型市场(这个要有趣得多);
3、甚至最后可能还会出现AI市场。
因此,简单的数据共享和新的市场,再加上区块链数据验证一起,这些将提供更加顺畅的集成,从而降低小企业的进入门槛,缩小科技巨头的竞争优势。在降低进入门槛的努力中,实际上解决了两个问题,即提供更广泛的数据访问以及更有效的数据货币化机制 。
链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。

热点内容
莱特币今日最新价 发布:2025-07-08 19:36:53 浏览:777
元小宇宙 发布:2025-07-08 19:35:18 浏览:951
北大荒与区块链有什么关系 发布:2025-07-08 19:22:52 浏览:153
美版卡贴机怎么查询合约期 发布:2025-07-08 19:21:30 浏览:143
usdt冻结了一部分 发布:2025-07-08 19:21:17 浏览:546
以太坊冲破2万 发布:2025-07-08 19:13:58 浏览:259
以太坊私钥公钥主要看哪块 发布:2025-07-08 19:13:03 浏览:1
Usdt是啥东西 发布:2025-07-08 19:03:38 浏览:6
莱特币a4怎么设置 发布:2025-07-08 19:00:25 浏览:527
rgb显示器与元宇宙有什么关系 发布:2025-07-08 18:23:03 浏览:628