区块链Apache
⑴ 哪些网站/行业要用到高防服务器
需要用到高防服务器的还是有很多的,比如游戏、棋牌、电商、视频直播、私服等等,以及凡是容易被竞争对手或黑客盯上的,都有必要用到高防服务器来防御攻击
⑵ 补全创建以太坊账户的命令账户名称
⑶ 大数据七大趋势令人振奋
大数据七大趋势令人振奋
跟着小编一起来展望2016年大数据发展的七大趋势。
1.算法(Algorithms)的崛起
大数据已过时,算法正当道。数据已经成为一种商品,每个组织都能够收集和存储大量的数据。分析大数据也不再那么引人注目了。每个组织都可以聘用或培训大数据分析人员来了解数据模式。
2016年,人们更加关注对已接触数据采取什么行动。算法将大行其道。算法能够定义行为,它们是非常专业的软件,能够很好地执行专业的指令,远比人类做的要好。例如,当你访问一个网站时,根据你手上的资料,快速确定最合适的广告。或者在大量的交易数据中找出异常值来甄别欺诈行为。
这些算法是非常专业的人工智能,不是已经存在多年的普通人工智能所能比的。但是,非常专业的AI已经存在,2016年我们将见证算法商务的崛起。
2.数据湖服务作为一种解决方案(Data-Lake-as-a-Service Solutions)
2015年,我们已认识了数据湖。企业从M2M连接、社交网络和远程工作人员积累了越来越多的数据,数据湖将成为他们的重要数据存储工具。
据Gartner称,“到2020年,信息将被用于重新创造、数字化、或消除80%的业务流程和产品(相比于10年前——2010年)”。在传统的存储解决方案中,数据之间是相互孤立的。数据湖与之正好相反,它允许存在各处的原始的、质朴的信息字节相互整合、分析。数据湖能够帮助你实现商业的数字化,使之真正成为数据驱动的商业,就像Gartner对2020年的商业预计一样。
由于数据湖带来了相当多的挑战,在2016年,我们将看到数据湖管理的未来:数据湖服务作为一种解决方案,为您的数据湖提供一个完整的管理方案。
数据湖服务将提供主动式存储方案,通过整理大量的结构化和非结构化数据,大量的应用才能够用于对其进行加工处理,包括企业数据仓库或开源技术,如Apache Hadoop或 Spark。一个使用了数据湖服务的企业,每个月仅需要为十亿字节支付几美分。
在2016年,我们将看到越来越多的大数据供应商提供这样的解决方案:给企业提供一个完整的、易于使用的、可扩展的解决方案,省去企业自建数据湖的麻烦。由于数据湖在大规模数据存储和分析方面具有巨大优势,数据湖服务解决方案将被用于许多组织中。尤其是规模较小的组织,例如互联网领域的初创公司,将从数据湖服务方案中获得数据湖所有的益处,省去了创建和维护数据湖的所有麻烦。
3. 区块链将被各行各业所接受
在过去的几年中,我们看到区块链主要应用于比特币,但区块链技术提供了更多的可能性。在2016年,我们将看到很多行业将采用区块链。
一个区块链可以被看作是数字事件的一个公共分类帐或记录。这个公共分类帐由许多不同当事人共享,计算地理上和计算上的孤立节点,并且只有该系统的大部分成员都同意的情况下,这个记录才能被更新。只要新信息输入到分类帐,它就不能被擦除,而且所有人可见。因为区块链的存在,所有输入到分类账上的信息都是全透明的。
区块链的一个关键优势是:该系统是完全透明的,任何人都可以在不损害个人隐私的情况下,看到哪些交易输入到分类账。您可以在不透露当事人个人隐私的情况下,记录事件发生的事实,甚至记录它的正确性。
虽然大多数人将区块链与加密的比特币联系在一起,其实它还有更多的可能性。尤其是金融业将迎来的区块链技术的全面开花。世界上许多大银行正在试用区块链,更或正在对区块链初创公司进行投资。UBS(瑞银集团)已经创造了一个区块链实验室,Santander正在研究如何使用区块链管理他们的贷款活动,Goldman Sachs (高盛集团)投资了一个区块链初创公司,并且有一个大财团(R3 ’s global bank partnership),负责调查的区块链的潜力。
然而,在2016年我们将看到,不同行业的多个应用程序使用区块链。基本上任何存在数字化交易的行业都将会受益于区块链技术,从金融业,法律行业,房地产,公证员,赌博,发布到数据存储。未来一年,更广泛的采用区块链将迫在眉睫。
4.人力资源分析
对于大多数组织而言,人才是最重要的财富;对于大多数高级管理人员而言,人才是重中之重。根据普华永道的研究,34%的美国首席执行官们“非常关注”组织中关键技能的可用性。因此,高级管理人员正在寻找其人力资源的确切数据,所以,2016年我们会看到人力资源分析将迈出一大步。
人力资源分析虽然是人事部门新的业务领域,但为了更好地提高人力资源的投资回报率,该业务增长极为迅速。人力资源分析可以被定义为一项大数据技术,使用人力相关数据片段优化商务产出、解决商务问题。因此,人力资源分析越来越重要。
人力资源分析可以帮助回答一些问题,例如:我们在组织内是否有正确的技能搭配?我们的员工,特别是那些优秀的员工是如何工作的呢?我们能更好地预测企业未来的领导人是谁么?员工的精神状况怎样……如此等等。
在一个过热的市场,对人才的争夺战愈演愈烈,优秀的大数据科学家和数据分析师资源越来越稀缺,越来越贵,因此发现人才不是一件容易的事情。对于一个组织而言,了解员工的驱动因素,并且很好的激励他们变得越来越重要。因此,在2016年,更多的组织将致力于人力资源分析,这些领域的初创企业数量将迅猛增长。
5.智能政府致力于提高社会和公民体验
对于那些大的商业组织而言,大数据已经成为通用语言。在适应新趋势方面,政府是缓慢的,但是在2016年,我们会看到更多的国家、地区和地方政府会采用大数据技术来提高社会和公民的体验。
政府正在尝试用大数据技术来提高公民体验的管理,通过政府分析、把数据驱动决策引入到一线员工的管理,从而创造无摩擦交易,提高政府绩效。一个政府,或智慧政府,将会于实现目标做出重要贡献,在2016年,在全球范围内将会有越来越多的政府向智能政府方向发展。
我们已经看到一些例子。迪拜当局正努力把政府变成智能政府。他们已经开始践行提高客户(例如,公民)体验,并推动知识经济的实践。他们已经为数十个智能政府服务创建了一个单独的、安全的登录界面,大量的服务也都支持移动应用程序。
最好的智能政府的例子就是爱沙尼亚。这个仅有130万公民的波罗的海国家被联合国提名为“具有十年最优电子政务内容“ 。每一次与外部的或内部的互动都是数据化的,爱沙尼亚政府对于自己的数据具有完全的掌控。此外,议会正在推行无纸化办公,电子签署法律文件,全电子化商务,因为所有的服务都是互联的,所以报税非常简单。
尽管爱沙尼亚政府远远走在同行的前列,但这个进程远没有停止。在荷兰,国家政府的目标是,截止到2017年,从与政府取得联系到缴税,全部实现工数字化。
因此在未来一年,我们将在世界范围内看到越来越多的政府开发智能方案。我们也将看到更多的政府开放自己的数据集,应用开放的API(应用程序编程接口)使初创公司和企业够轻松地与政府部门对接。这不仅能加速政府的智能化过程,甚至可能收获更多。
6.增强大数据安全、防止数据泄露
伴随着数字化进程,物联网将物物连接为网络,大数据的安全变得越来越重要。在过去的几年里,我们已经遭遇了许多大规模的数据泄露事件,包括Ashley Madison hack(婚外情网站)和TalkTalk公司(英国宽带服务供应商)的黑客攻击事件。
基本上,任何组织未来都可能被黑客攻击,如果没有被黑客攻击,说明其根本不重要。因此,任何组织不仅应该把重点放在防止安全漏洞,在遭遇黑客攻击时,还要实施正确的危机应对计划。
2016年,我们会看到更多的数据泄露新闻,更多组织犯傻试图掩盖,更多由物联网引起的对实物的攻击。特别是后者,可能会对数据安全产生深远影响。毕竟,我们已经看到过黑客远程操控毁灭了一辆正在高速路上行驶的吉普车。
因此,2016年,我们将看到组织是如何管理他们的数据保证数据安全,包括黑客攻击前、攻击中、攻击后的各种管理措施。组织将增加安全开支,与有道德的黑客合作提高数据安全,改善内部流程使得员工对于黑客更加警惕。毕竟,通常情况下人是公司安全协议中最薄弱的一环。
7.智能机器带来的雾分析(Fog Analytic s)起步
雾计算正在迅速地获得大量动力。雾计算是指推进连接到物联网的终端设备和存储数据的云计算之间的存储、传输和计算。随着物联网的进步,雾计算势头越来越猛,因为传感器变得相当精密,它们现在可以收集大量数据。
想象一下,你有一个网络,连接各种设备,它们产生了大量的实时数据。在设备和云之间来回传输数据变得尤其昂贵,而且花费时间太长。采用雾计算或雾分析。雾分析使得智能机器在当地执行一部分分析,只将分析结果发送到云端。
据Gartner称,智能机器是新的现实。因此,在未来的一年,我们将看到更多的智能机器有着越来越多的精密传感器,能收集大量的数据。组织将不得不转向雾分析,以便数据易于管理,保持洞察力可用并尽可能降低成本。
令人振奋的新一年
在大数据方面,2016年将是令人振奋的一年。智能算法将接替现在由人类来完成的许多业务。我们将看到数据湖服务作为一种服务解决方案出现,帮助企业以最少的工作更多的使用数据。越来越多的行业将开始试用数据区块链技术(blockchain technology)以改变他们的行业。
组织将转向人力资源分析,以更好地激励员工,争夺稀缺人才。政府终将看到大数据的益处,并向智能化方向转变,但是组织和政府将不得不警惕黑客攻击,并采取适当措施。最后,由于智能机器将出现在各行各业,雾分析时代正式开启。
⑷ 现在学Java还有前景吗现在市场饱和了吗
每年Java还是很香,招聘需求还是很旺,但是企业对于人才的要求也是越来越高。底层饱和,中高级人才稀缺,是当前大多数开发岗位的现状,无论是Java还是前端,都是如此。因此如果只是抱着挣快钱的想法来入行的,建议可以绕道了。不是真心想进入这行的,不是真正喜欢Java的,就不要轻易转行了。可能你听很多机构都是在说Java前景好,就业好,薪资高,但是我们更想问问你,你自己的情况是怎样的?
转行之前,你先问问自己,为什么要学Java,是不是真的能坚持下去,能吃得了苦吗。
另外,现在企业对Java人才的要求越来越高。讲实话,站在为你们负责的角度,我们真心不建议学历低的人学Java。不是歧视低学历的人,而是行业门槛就摆在那里。
如果各方面适合,自己又喜欢Java,最后决定了要培训转行Java的话,那就一定要有全身心投入学习的觉悟,要做好能吃苦的准备。有的培训机构会跟你说Java就业好,工资高,但是他们为了你口袋里的钱,不会跟你说班级里面并不是所有人都高薪就业的,学员努力程度不同,学习成果也会大相径庭。培训只对愿意投入学习的人士有用。如果你培训期间也对学习产生懈怠,那你的培训结果一般都不会太好。
静下心来好好学,都不是事!
⑸ 网站的防盗链系统是如何做的
在HTTP协议中,有一个表头字段叫referer,采用URL的格式来表示从哪儿链接到当前的网页或文件。换句话说,通过referer,网站可以检测目标网页访问的来源网页,如果是资源文件,则可以跟踪到显示它的网页地址。有了referer跟踪来源就好办了,这时就可以通过技术手段来进行处理,一旦检测到来源不是本站即进行阻止或者返回指定的页面。
如果想对自己的网站进行防盗链保护,则需要针对不同的情况进行区别对待。如果网站服务器用的是apache,那么使用apache自带的Url
Rewrite功能可以很轻松地防止各种盗链,其原理是检查refer,如果refer的信息来自其他网站则重定向到指定图片或网页上。
如果服务器使用的是IIS的话,则需要通过第三方插件来实现防盗链功能了,现在比较常用的一款产品叫做ISAPI_Rewrite,可以实现类似于apache的防盗链功能。另外对于论坛来说还可以使用“登录验证”的方法进行防盗链。
你要做系统?来我们公司就好,很专业的,南宁区块链技术
⑹ Java培训之如何成为架构师
要成为Java架构师,应该具备多方面的知识技能,特别重要的是,一定要有多个实际项目经验。需要的工作年数和个人能力有关,一般来说3到5年吧。
拿Web服务开发为例,为了满足实际需求,项目功能和架构都日趋复杂:多层架构,数据中台,动静分离,集群化部署,自动化运维,等等。
不同于一个Demo演示,用于商业、有价值的一个Web服务是功能全面的。比如常见的电商系统、信息管理系统、企业应用开发等方面,搭配Spring Boot开发框架,需要掌握如下这些重点:
1)数据库,免费开源的MySQL,收费的Oracle,其他主流数据库
2)缓存系统,Redis,MongoDB以及其它的NoSQL数据库
3)消息队列,常用的ActiveMQ,RocketMQ,RabbitMQ
4)鉴权认证,Apache Shiro或者定制开发的框架
5)异步任务调度,复杂应用使用Quartz,简单应用可使用Spring Schele
6)日志系统,常用ELK日志处理,分析报警
7)服务监控,Actuator,ZooKeeper,Dubbo等微服务架构
8)具体的行业和业务场景还有不同的功能组件,比如大数据、物联网、区块链等
云服务已经成为IT技术的核心基础设施,架构师应该具备提供云服务解决方案的能力。对新开发的系统,要符合云原生理念,充分利用云服务提供的弹性和分布式优势,赋能运营、维护和监控。
有运营价值的系统,运维工作非常重要。基于云服务的DevOps将开发和运维结合起来,架构师作为项目核心参与者,具备DevOps技能,将有效提升团队和个人工作效率。
以Docker容器技术为例,从代码提交、镜像构建、部署发布,架构师要负责设计实现整个流程,做到自动化、一键部署、灾备回滚等关键节点的。架构师水平越高,其负责的系统运维自动化程度越高。
#企业架构师的日常#
⑺ 计算机网络技术就业方向
计算机网络技术是通信技术与计算机技术相结合的产物。计算机网络是按照网络协议,将地球上分散的、独立的计算机相互连接的集合。连接介质可以是电缆、双绞线、光纤、微波、载波或通信卫星。计算机网络具有共享硬件、软件和数据资源的功能,具有对共享数据资源集中处理及管理和维护的能力。
就业方向:计算机系统维护、网络管理、程序设计、网站建设、网络设备调试、网络构架工程师、网络集成工程师、网络安全工程师、数据恢复工程师、网络安全分析师等岗位。
就职岗位:网络管理员,网络工程师,综合布线工程师,网络安全工程师,网站设计师,网站开发工程师
⑻ 大数据科学新发展展望 四大趋势不可阻挡
大数据科学新发展展望:四大趋势不可阻挡但无论技术热点如何变换,我们能看到的是,随着行业沉下心来进行实质的落地,大数据生态也越来越细分。今天就我和大家来谈谈大数据领域的一些新变化、新趋势。就发展趋势而言,这个可以放在第一位来讲讲。多年来,数据已经在企业中不断快速积累。物联网(IoT) 更是不断加速数据的生成。对于许多企业来说,大数据的解决方案就是利用类似于开源的Apache Hadoop等技术作为基础支持,创建数据湖(DataLake),即创建整个企业的数据管理平台,用于以本机格式存储企业的所有数据。数据湖将通过提供一个单一的数据存储库来消除信息孤岛,整个组织都可以使用该存储库来进行业务分析、数据挖掘等各种应用。当有了数据湖之后,大家会倾向于认为这东西将会成为一个全方位和万能的大数据集,例如点击流数据、物联网数据、日志数据等都会被要求进入这个湖中,而这些数据很难处理的问题却会被忽略。但是,除非你知道数据湖里具体有什么,并且能够访问到合适的数据进行分析,否则数据湖再大也没有意义。因此,最后大家都会意识到许多数据湖是表现不佳的资源,人们不知道其中存储着什么内容,如何进行访问,或者如何从这些数据中获取洞察力。但是,方便地找到想要的东西、同时管理好权限并不容易。除了数据湖以外,治理的另一个主题是以安全的、可审计的方式为任何人提供对可靠数据的便捷访问。所以,站在管理并使用好公司数据资产的角度而言,数据治理犹如公司的顶层制度和宣言一样需要被重视,并且用相应的策略、流程等来进行落实。最终目的是通过实现数据治理,来提升数据管理、确保数据质量、形成开放共享的新局面等。此外,数据治理也是决策、职能以及操作流程有机组合的系统,并且人们对这些数据资产承担责任。在大多数大型企业里,大数据的采用是从少数独立项目开始的,个推也是如此:譬如这里做一点Hadoop集群,那里用一用分析工具,跑一个简单业务模型,以及意识到需要设立一些新的职位(数据科学家、首席数据官)等等。现在,业务场景越来越丰富,异质性也越来越突出,各种各样的工具在整个企业范围内得到了使用。在公司的组织范围内,集中化的“数据科学部门”正在逐渐让位于更加去中心化的组织,原因在于集中化的部门越来越走向瓶颈,也更容易造成资源的流失。这个由数据科学家、数据工程师以及数据分析师组成的群体,正日益嵌入到不同的业务部门里。因此,对于平台来说需求已经很明显了,那就是要让一切都能协作到一起来,因为大数据的成功正是建立在设立一条由技术、人以及流程组成的装配线基础之上的。因此,一些全新的协作平台类型(譬如Jupyter等)正在加快出现,引领着所谓的DataOps(与DevOps对应)领域的发展。数据科学家(DataScientist)依然是市场上炙手可热的争夺对象。但是我们在周围却很少见到这类人,哪怕是财富前1000强的公司也为无法招到更多“数据科学家”而感到困扰。而在一些组织里,数据科学部门正在从使能者演变为瓶颈。与此同时,AI的大众化以及自服务工具的蔓延使得数据科学技能有限的数据工程师,甚至是数据分析师在执行一些基本操作时变得更加容易了,而这些操作直到最近仍然是数据科学家的领地。在自动化工具的帮助下,企业大量的大数据工作,尤其是那些简单枯燥的工作,将由数据工程师和数据分析师进行处理,而不必麻烦有着深厚技术技能的数据科学家。当然,即便如此,数据科学家目前还不需要太过“恐惧”。在可预见的未来里,自服务工具和自动化模型将会“增强”数据科学家而不是消灭他们,会解放他们,让他们把焦点放在需要判断、创造力、社会化技能或者需要垂直行业知识的任务上,那样才能更加体现科学家的名号。大数据管理员(BDA)也对标于数据库管理员(DBA),虽然两个英文字母只是变换了一下顺序,但是其内涵相差甚远。一个非常明显的趋势是,企业将对一个新岗位角色产生需求,即大数据管理员。DBA大家已经非常熟悉,但它与大数据时代下的数据管理员,有非常大的差别。数据管理员处于数据使用者和数据工程师之间。为了取得成功,数据管理员在进行大数据系统的维护工作之外,还必须了解数据的含义以及掌握应用于数据中的一些技术。数据管理员需要清楚整个组织内需要执行的数据分析类型,哪些数据集非常适用于这项工作,以及如何将数据从原始状态转换为数据使用者执行这项工作所需的形态和形式。数据管理员应使用像自助服务数据平台这样的系统来加快数据使用者访问基本数据集的端到端流程,而无需制作无数的数据副本。以上四个方面是数据科学在实践发展中提出的新需求,谁能在这些方面得到好的成绩,谁便会在这个大数据时代取得领先的位置。从2012年开始,几乎人人(至少是互联网界)言必称大数据,似乎不和大数据沾点边都不好意思和别人聊天。从2016年开始,大数据系统逐步开始在企业中进入部署阶段,大数据的炒作逐渐散去,随之而来的是应用的蓬勃发展期,一些代表成熟技术的标志性IPO在国内外资本市场也不断出现。转眼间,大数据几年前经历的泡沫正在无可争议地转移到人工智能身上。可以说,在过去的一年,AI所经历的共同意识“大爆炸”与当年的大数据相比,有过之而无不及。最近风口又转移到区块链上了,某种程度上也成为业内人士焦虑的一种诱因了。
⑼ 成为Java高级架构师要学多久,有推荐的学校吗
java架构师需要你多各种设计模式非常熟悉,对公司的代码结构所需要的业务逻辑非常熟悉,算法还是其次,关键要有很广阔的知识面
⑽ 我们如何运用比特盒子的底层技术提升工作效率
贯彻落实比特盒子核心发展价值观,积极提升目前区块链行业的各个层面