当前位置:首页 » 区块链知识 » 方成试函数运算说区块链

方成试函数运算说区块链

发布时间: 2022-04-30 08:32:36

Ⅰ 所谓“区块链”是什么

可以说,2020年是产业区块链元年。随着区块链技术的不断发展,积极布局区块链的企业数量呈指数级增长。然而,区块链还处在一个很早期的发展阶段,区块链应用落地仍需要不断探索。
近十多年,区块链技术已经在全球范围内产生了广泛的影响。相比诞生之初,区块链行业的面貌发生了天翻地覆的变化。
前几年的区块链市场更像是2000年之前的互联网,2000年之前的互联网经历了躁动期,也遇到过起起伏伏,然后大浪淘沙,真正有实力的企业才发展起来。
在参加Cointelegraph中文的活动时,Avalanche亚洲生态合伙人Wilson表示:“在2018年的时候,区块链生态和现在完全不一样,那个时候更多是概念式的。去年开始,区块链行业发生了很大的差异。越来越多靠谱的项目诞生。”
的确,除了最初局限于在数字货币领域应用,如今区块链技术已经逐渐成为不同传统行业的基础设施。经过十多年的探索与研发,区块链也已经发现了更多能够凸显其价值的应用场景。
增长之势不减,但仍未实现大规模应用
可以说,2020年是产业区块链元年。随着区块链技术的不断发展,积极布局区块链的企业数量呈指数级增长。在新冠肺炎疫情爆发的大背景下,区块链技术也展现出其巨大的待开发潜力。
在过去的一年,全球区块链企业继续呈增长趋势,但是速度有所减缓。根据中国信息通信研究院的《区块链白皮书(2020年)》数据显示,截止至2020年9月,全球共有3709家区块链企业,并主要分布在美国和中国,其中美国占27%,中国占24%。
显而易见,随着全球各个国家不断出台向好的区块链政策,推动区块链技术赋能实体经济,区块链行业泡沫出净,行业也回归至理性。越来越多的企业跑步入场,积极利用区块链技术拓展业务。
即使目前区块链相关企业如雨后春笋般出现,但区块链还处在一个很早期的发展阶段。从最底层的协议层来说,离成熟和完整的状态还很早。中间件层可能离成熟也非常远,而中间件层可能是未来区块链与真实的世界和实体经济结合所需要的很重要的基础设施。
当这些东西都已经逐渐走向标准化成熟的时候,我们才会迎来一个区块链走向主流和大爆发的阶段。
对于整个区块链技术的发展状况,Helium中国Managing Director高原指出:“现在各种区块链应用的用户体验还不是很好,中间件的发展和用户端的成熟,是实现大规模应用的关键点。最终区块链能够落地、能够成为实体经济的一部分,需要监管层面上的成熟和清晰的状态。”
然而,区块链应用落地仍需要不断探索。如果区块链底层基础设施的性能不提高,未来的商业化大规模应用是很难实现的。那么,大量区块链应用没有成功落地的原因是什么呢?Polygon中国区负责人Charlie Hu认为:
一是对开发者不够友好;
二是扩容性能有限;
三是缺乏互操作性,其核心逻辑就是未来区块链世界不是只有一条链,是多链共存的。基于不同的商业应用有不同的链存在,跨链互操作性是很重要的。
为什么互操作性对于不同区块链至关重要?
区块链的“互操性”,是指不同的区块链网络之间能够轻易实现相互通信,共享信息。互操作主要指应用层互操作、链间互操作、链下数据互操作。
IOHK首席执行官和Cardano创始人Charles Hoskinson在接受福布斯采访时称,区块链的互操作性将带来从一个系统到另一个系统的轻松迁移。
在区块链行业中,一个能够满足用户需求、并且运转高效的区块链是必需品,其地位举重若轻。虽然以太坊创新的创造出智能合约技术,并构建了包含各式应用的超级生态系统,但它远远未能满足商业需求,至少在以太坊2.0完全推出之前是这样。
为什么区块链的互操性如此重要?随着区块链技术自身的不断扩张以及在不同行业的应用拓展,不同链之间的难以互操作、不同应用之间的难以对接、链上链下的难以可信交互,这些问题在很大程度上限制了区块链的大规模应用。
不同的区块链之间的场景需求可能有所不同,而在这些不同需求下就需要产生大量交互。针对互操作性,Edge & Node 亚洲商务战略负责人Iris表示:“如果链和链之间是孤岛,就没有办法交互,这样就会大大地影响应用。互操作性跨链是有不同层面的,从资产到数据,再到更底层的共识。很多项目已经实现了资产跨链,下一步比较难的就是数据跨链。”
只实现不同区块链之间的互操作是远远不够的。在雷兔科技创始人知县看来,互操作性不应局限于区块链生态内部,只有打通区块链与互联网之间的互操作性,才能实现用户基数的最大化。
跨链技术是实现互操作性的关键。目前,跨链技术包括公证人机制、侧链/中继链、哈希时间锁定和分布式私钥控制等。
针对交互过程中的数据可信、安全问题,O3Labs 产品VP Tim认为,不同链的互操作性可能会有一些挑战。他补充道:
第一,用户体验。产品做出来要面向更多的用户,不管在企业中、机构中还是消费者,都会考虑到用户体验问题。即使在技术方面可以实现,但是也要在体验方面能够实现。
第二,安全性。不同链上会需要调一些链下的数据。不同链的方式不一样,保证数据的准确很重要。因为这会变成一个基础,如果未来在这个链上有很多应用的话,这些数据的准确性和速度等等就必须要很一致。
与传统互联网中注重隐私保护一样,不同链之间以及链上链下交互过程中也要注重隐私保护问题。每一次交互都应避免交互过程中的隐私泄露。Suterusu CTO林煌对此表示,目前,跨链方面项目太多,可以看到有很多这方面的产品。然而,考虑支持多链的隐私保护的产品是比较少的,Suterusu现在已经做了很多隐私保护方面的工作,接下来会部署在一些链上。
区块链的未来——多链并存
区块链行业一直处在不断的进化之中。除以太坊之外,还有很多抱有和以太坊一样愿景的区块链涌现,比如EOS、Polkadot、Cosmos、Avalanche、Polygon等。
各个行业的发展竞争和合作是必然的,区块链行业也是如此。只有竞争,才能不断地创新。
未来,以太坊不会是“一超多强”,势必会形成多链并存的局面。不同的公链以及不同的基础设施会有一些差异化的竞争,最后通过跨链技术将这些不同链连接在一起。
在被问及区块链的未来发展时,BSN发展联盟常务理事兼北京红枣科技有限公司CEO何亦凡展望:
3至5年后,特别是操作系统层越来越成熟的情况下,区块链技术技术应该变成一个常规技术。如果开发者连传统数据库都不会使用,根本就不用工作了。3至5年后,每一个开发者应该会用区块链技术搭建基本的应用。

Ⅱ 区块链,这东西属于金融还是计算机为什么这样说呢

感觉属于金融科技吧

Ⅲ 软件开发区块链各种系统是怎么做的

区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。所谓共识机制是区块链系统中实现不同节点之间建立信任、获取权益的数学算法。

Ⅳ 区块链技术中的哈希算法是什么

1.1. 简介

计算机行业从业者对哈希这个词应该非常熟悉,哈希能够实现数据从一个维度向另一个维度的映射,通常使用哈希函数实现这种映射。通常业界使用y = hash(x)的方式进行表示,该哈希函数实现对x进行运算计算出一个哈希值y。
区块链中哈希函数特性:

  • 函数参数为string类型;

  • 固定大小输出;

  • 计算高效;

  • collision-free 即冲突概率小:x != y => hash(x) != hash(y)

    隐藏原始信息:例如区块链中各个节点之间对交易的验证只需要验证交易的信息熵,而不需要对原始信息进行比对,节点间不需要传输交易的原始数据只传输交易的哈希即可,常见算法有SHA系列和MD5等算法

  • 1.2. 哈希的用法

    哈希在区块链中用处广泛,其一我们称之为哈希指针(Hash Pointer)
    哈希指针是指该变量的值是通过实际数据计算出来的且指向实际的数据所在位置,即其既可以表示实际数据内容又可以表示实际数据的存储位置。下图为Hash Pointer的示意图


Ⅳ 区块链挖矿工作量证明是什么

POW的拼法是Proof of Work(工作证明)。简单说就是需要干非常多的苦力,才能获得相对优厚报酬的工作模式。
矿工们在挖一个新的区块时,必须对SHA-256密码散列函数进行运算,区块中的随机散列值以一个或多个0开始。随着0数目的上升,找到这个解所需要的工作量将呈指数增长,矿工通过反复尝试找到这个解。
最先算出正确答案的矿机可获得当前区块的记账权,同时获得新发行比特币的奖励。理论上来说,算力(力气)越大,算(搬)得越快,收益值就越高。这个你们应该看得懂的说,POW 的意思就是按劳分配,多劳多得。目前,币界老大哥比特币、现在的二哥以太币等都是这种模式。

Ⅵ 区块链技术中的哈希函数是什么

重庆金窝窝: 哈希函数可将任意长度的资料经由Hash算法转换为一组固定长度的代码,原理是基于一种密码学上的单向哈希函数,这种函数很容易被验证,但是却很难破解。
通常业界使用y =hash(x)的方式进行表示,该哈希函数实现对x进行运算计算出一个哈希值y。

Ⅶ 区块链的"区块"是何含义

“区块链,就相当于这个账本,区块就相当于这个账本的一页,区块中所承载的信息,就是这一页上记载的交易内容。区块链是一块一块的,每一块写满了交易记录,连在一起成了一条链就是区块链。”

以比特币为例,大约每十分钟就行一次「算力竞赛」来竞争这个记账的权利。就好比说,你的算力牛逼,算得多,就像肌肉更结实,更会打,大家都服你,让你来记这个帐,即向区块链这个总账本写入一个区块(注意不是区块里的内容)的权利。不过需要说明的一点是,计算能力只能决定赢得竞争的概率。就好比说,一共有若干张彩票,算力多的可以买更多张提高中奖概率,然而买得多的人,也不一定最后就中奖了

区块链即为一个个用这样的计算力保障的数据块链条。从第一块开始,每一个区块依照一定规则收集数据,然后将这些数据附上一个值,使得形成的数据块经过类似的单向函数计算后的结果落到一定范围内。通过估算全网的算力以及控制结果范围的大小,来保障符合要求数据块在足够长的时间内才能被找到。这个计算结果会被下一个区块包含,而这样形成的链式数据结构则称为区块链。

每一个小账本被称为区块,每一个不同的区块链协议(产生不同的加密货币)都会规定每一个区块的大小(最初比特币为1M)账本组成区块,区块构成链表,区块的头包含前一块的哈希值,这就是区块链。如此一来,任何人就不能随意修改其中的内容,或者交换顺序。如果你这么做,意味着你需要重新计算所有的特殊数字。

规定,允许世界上的每一个人建造区块。每一个新建区块的人(找到了这个特殊数字 - SHA256值有30个零)都能获得奖励,对于新建区块的这部分人(矿工)来说:

1.没有发送者信息,不需要签名

2.每一个新区块都会给整个币种增加新的虚拟(加密)货币

3.新建区块的过程又被称为“挖矿”:需要大量工作量并且可以向整个经济体注入新的货币

4.挖矿的工作是:接受交易信息,建造区块,把区块广播出去,然后得到新的钱作为奖励

对每个矿工来说,每个区块就像一个小彩票,所有人都在拼命快速猜数字,直到有一个幸运儿找到了一个特殊数字,使得整个区块的哈希值开头有许多个零,就能得到奖励。我记得有一个知乎答主给了一个形象的比喻,区块链就像一个拥有貌美如花女儿(区块)的国王,有很多的青年翘首以盼,而国王的方法是出了一道很难得题目让所有的青年计算(学习改变人生),谁算的快(在计算哈希值过程也可能是运气好)就能抱得美人归

对于想用这个系统来收付款的用户来说,他们不需要收听所有的交易,而只要收听矿工们广播出来的区块,然后更新到自己保存的区块链中就可以了

“区块”也可以想象为一个盒子,区块里放着一些数字货币以及一张小纸条,小纸条上记录了这十分钟内产生的那唯一一笔交易信息, 比如说——“小A转账给了小B100元”;当然,这段信息肯定是被加密处理过的,为的就是保证只有小A和小B(通过他们手上的钥匙)才有能力解读里面真正的内容。

这个神奇的区块被创造出来之后,很快被埋在了地底下,至于埋在哪里?没有一个人不知道,需要所有计算机节点一起参与进来掘地三尺后才有可能找到(找到一个有效的工作量证明)。显然,这是一件工作量巨大、成果随机的事件。但是呢,对于计算机节点来说,一旦从地底下挖出这个区块,他将获得区块内价值不菲的数字货币,以及“小A转账给了小B100元”过程中小A所支付的小费。同时,对于这个节点来说,也只有他才有权利真正记录小纸条里的内容,这是一份荣耀,而其他节点相当于只能使用它的复制品,一个已经没有数字货币加持的副本。当然这个神奇的区块还有一些其他很特别的地方,

可以将计算机节点从地底下挖出区块的过程叫做「挖矿」,刚才说了,这是一件工作量巨大、运气成分较多、但收益丰厚的事儿。来自中国上海浦东新区张衡路上的一个节点突然跳出来很兴奋的说:“ 我挖到区块了!里面的小纸条都是有效的!奖励归我!” 。虽然此刻张衡路节点已经拿到了数字货币,但对于其他计算机节点来说,因为这里面还涉及到其他一些利益瓜葛,他们不会选择默认相信张衡路节点所说的话;基于陌生节点彼此不信任的原则,他们拿过张衡路节点所谓挖到的区块(副本),开始校验区块内的小纸条信息是否真实有效等等。在区块链世界里,节点们正是通过校验小纸条信息的准确性,或间接或直接判断成功挖出区块的节点是否撒谎。(如何定义小纸条信息真实有效,后面会讲解,这里暂不做赘述)。在校验过程中,各个节点们会直接通过下面两个行为表达自己对张衡路节点的认同(准确无误)和态度:停止已经进行了一半甚至80%的挖矿进程;将张衡路节点成功挖出的区块(副本)追加到自己区块链的末尾。你可以稍微有点困惑:停止可能已经执行了80%的挖矿行为,那之前80%的工作不是就白做了嘛?!然后,区块链的末尾又是个什么鬼东西?对于第一个困惑。我想说,你说的一点没错,但是没办法,现实就是这么残酷,即便工作做了80%,那也得放弃,这80%的工作劳苦几乎可以视为无用功,绝对的伤财劳众。第二个困惑,区块链和区块链的末尾是什么鬼?这里因为事先并没有讲清楚,但是你可以简单想象一下:区块是周期性不断的产生和不断的被挖出来,一个计算机节点可能事先已经执行了N次“从别人手上拿过区块 -> 校验小纸条有效性”的流程,肯定在自己的节点上早已经存放了N个区块,这些区块会按照时间顺序整齐的一字排列成为一个链状。没错,这个链条,就是你一直以来认为的那个区块链。如果你还是不能够理解,没关系,文章后面还会有很多次机会深入研究。

进入到区块内更微观的世界里一探究竟,看看小纸条到底是怎么一回事,它的产生以及它终其一生的使命:发起交易的时候,发起人会收到一张小纸条,他需要将交易记录比如说“盗盗转账给张三40元”写在纸上。说来也神奇,当写完的那一刹那,在小纸条的背面会自动将这段交易记录格式化成至少包含了“输入值”和“输出值”这两个重要字段;“输入值”用于记录数字货币的有效来源,“输出值”记录着数字货币发往的对象。刚刚创建的小纸条立马被标记成为“未确认”的小纸条。从地下成功挖出区块并最终连接到区块链里的小纸条一开始会被标记为“有效”。若这条有效的小纸条作为其他交易的输入值被使用,那么,这个有效的小纸条很快会被标记为“无效”。因为各种原因,区块从链上断开、丢弃,曾经这个区块内被标记为“有效”的小纸条会被重新标记为“未确认”。区块链里面没有账户余额的概念,你真正拥有的数字资产实际上是一段交易信息;通过简单的加减法运算获知你数字钱包里的余额。上面的1、2、3仅仅作为结论一开始强行灌输给你的知识点,其中有几个描述可能会有点绕,让你觉得云里雾里,只有了解整体区块链你才能更全面认知其中奥妙。

区块容量,比特币从被创建时,或者说源代码中规定了,区块容量是1M。最初设计成1M的原因一方面,防止DOS攻击。另一方面,当年中本聪在创建区块链的时候的容量是32M,但是他通过一个说明为”Clear up“这样毫不起眼的Commit把区块容量改成了1M,为防止区块链体积增长过快,为区块容量这个问题添加了些神秘色彩。1M的容量意味着比特币最大的处理交易数量在约2400(486882区块1034.39的大小很接近了)。

区块链说白了,就是一个分布式的记账的一个小本本,用来记账的一个工具,并且基于密码学加密学的技术铺垫,一旦数据交易记录在区块链这个本本上了,数据是不可篡改和抵赖的。互联网是价值的传递,那区块链呢就是信任的传递。在区块链技术作为信用背书的前提下,区块链中的各节点从各自单一的中心变为多方参与的统一多中心,不需要第三方机构的参与便可实现交易传递,效率提高。

Ⅷ 区块链使用安全如何来保证呢

区块链本身解决的就是陌生人之间大规模协作问题,即陌生人在不需要彼此信任的情况下就可以相互协作。那么如何保证陌生人之间的信任来实现彼此的共识机制呢?中心化的系统利用的是可信的第三方背书,比如银行,银行在老百姓看来是可靠的值得信任的机构,老百姓可以信赖银行,由银行解决现实中的纠纷问题。但是,去中心化的区块链是如何保证信任的呢?
实际上,区块链是利用现代密码学的基础原理来确保其安全机制的。密码学和安全领域所涉及的知识体系十分繁杂,我这里只介绍与区块链相关的密码学基础知识,包括Hash算法、加密算法、信息摘要和数字签名、零知识证明、量子密码学等。您可以通过这节课来了解运用密码学技术下的区块链如何保证其机密性、完整性、认证性和不可抵赖性。
基础课程第七课 区块链安全基础知识
一、哈希算法(Hash算法)
哈希函数(Hash),又称为散列函数。哈希函数:Hash(原始信息) = 摘要信息,哈希函数能将任意长度的二进制明文串映射为较短的(一般是固定长度的)二进制串(Hash值)。
一个好的哈希算法具备以下4个特点:
1、 一一对应:同样的明文输入和哈希算法,总能得到相同的摘要信息输出。
2、 输入敏感:明文输入哪怕发生任何最微小的变化,新产生的摘要信息都会发生较大变化,与原来的输出差异巨大。
3、 易于验证:明文输入和哈希算法都是公开的,任何人都可以自行计算,输出的哈希值是否正确。
4、 不可逆:如果只有输出的哈希值,由哈希算法是绝对无法反推出明文的。
5、 冲突避免:很难找到两段内容不同的明文,而它们的Hash值一致(发生碰撞)。
举例说明:
Hash(张三借给李四10万,借期6个月) = 123456789012
账本上记录了123456789012这样一条记录。
可以看出哈希函数有4个作用:
简化信息
很好理解,哈希后的信息变短了。
标识信息
可以使用123456789012来标识原始信息,摘要信息也称为原始信息的id。
隐匿信息
账本是123456789012这样一条记录,原始信息被隐匿。
验证信息
假如李四在还款时欺骗说,张三只借给李四5万,双方可以用哈希取值后与之前记录的哈希值123456789012来验证原始信息
Hash(张三借给李四5万,借期6个月)=987654321098
987654321098与123456789012完全不同,则证明李四说谎了,则成功的保证了信息的不可篡改性。
常见的Hash算法包括MD4、MD5、SHA系列算法,现在主流领域使用的基本都是SHA系列算法。SHA(Secure Hash Algorithm)并非一个算法,而是一组hash算法。最初是SHA-1系列,现在主流应用的是SHA-224、SHA-256、SHA-384、SHA-512算法(通称SHA-2),最近也提出了SHA-3相关算法,如以太坊所使用的KECCAK-256就是属于这种算法。
MD5是一个非常经典的Hash算法,不过可惜的是它和SHA-1算法都已经被破解,被业内认为其安全性不足以应用于商业场景,一般推荐至少是SHA2-256或者更安全的算法。
哈希算法在区块链中得到广泛使用,例如区块中,后一个区块均会包含前一个区块的哈希值,并且以后一个区块的内容+前一个区块的哈希值共同计算后一个区块的哈希值,保证了链的连续性和不可篡改性。
二、加解密算法
加解密算法是密码学的核心技术,从设计理念上可以分为两大基础类型:对称加密算法与非对称加密算法。根据加解密过程中所使用的密钥是否相同来加以区分,两种模式适用于不同的需求,恰好形成互补关系,有时也可以组合使用,形成混合加密机制。
对称加密算法(symmetric cryptography,又称公共密钥加密,common-key cryptography),加解密的密钥都是相同的,其优势是计算效率高,加密强度高;其缺点是需要提前共享密钥,容易泄露丢失密钥。常见的算法有DES、3DES、AES等。
非对称加密算法(asymmetric cryptography,又称公钥加密,public-key cryptography),与加解密的密钥是不同的,其优势是无需提前共享密钥;其缺点在于计算效率低,只能加密篇幅较短的内容。常见的算法有RSA、SM2、ElGamal和椭圆曲线系列算法等。 对称加密算法,适用于大量数据的加解密过程;不能用于签名场景:并且往往需要提前分发好密钥。非对称加密算法一般适用于签名场景或密钥协商,但是不适于大量数据的加解密。
三、信息摘要和数字签名
顾名思义,信息摘要是对信息内容进行Hash运算,获取唯一的摘要值来替代原始完整的信息内容。信息摘要是Hash算法最重要的一个用途。利用Hash函数的抗碰撞性特点,信息摘要可以解决内容未被篡改过的问题。
数字签名与在纸质合同上签名确认合同内容和证明身份类似,数字签名基于非对称加密,既可以用于证明某数字内容的完整性,同时又可以确认来源(或不可抵赖)。
我们对数字签名有两个特性要求,使其与我们对手写签名的预期一致。第一,只有你自己可以制作本人的签名,但是任何看到它的人都可以验证其有效性;第二,我们希望签名只与某一特定文件有关,而不支持其他文件。这些都可以通过我们上面的非对称加密算法来实现数字签名。
在实践中,我们一般都是对信息的哈希值进行签名,而不是对信息本身进行签名,这是由非对称加密算法的效率所决定的。相对应于区块链中,则是对哈希指针进行签名,如果用这种方式,前面的是整个结构,而非仅仅哈希指针本身。
四 、零知识证明(Zero Knowledge proof)
零知识证明是指证明者在不向验证者提供任何额外信息的前提下,使验证者相信某个论断是正确的。
零知识证明一般满足三个条件:
1、 完整性(Complteness):真实的证明可以让验证者成功验证;
2、 可靠性(Soundness):虚假的证明无法让验证者通过验证;
3、 零知识(Zero-Knowledge):如果得到证明,无法从证明过程中获知证明信息之外的任何信息。
五、量子密码学(Quantum cryptography)
随着量子计算和量子通信的研究受到越来越多的关注,未来量子密码学将对密码学信息安全产生巨大冲击。
量子计算的核心原理就是利用量子比特可以同时处于多个相干叠加态,理论上可以通过少量量子比特来表达大量信息,同时进行处理,大大提高计算速度。
这样的话,目前的大量加密算法,从理论上来说都是不可靠的,是可被破解的,那么使得加密算法不得不升级换代,否则就会被量子计算所攻破。
众所周知,量子计算现在还仅停留在理论阶段,距离大规模商用还有较远的距离。不过新一代的加密算法,都要考虑到这种情况存在的可能性。

热点内容
eth注册矿工 发布:2025-06-27 03:12:49 浏览:862
现在1比特币多钱 发布:2025-06-27 03:09:40 浏览:406
ipone比特币无法验证应用 发布:2025-06-27 03:09:32 浏览:936
现在一个以太坊人民币多少钱 发布:2025-06-27 03:09:30 浏览:464
币圈第一大资金盘崩盘 发布:2025-06-27 02:49:07 浏览:544
洗衣机比特币病毒 发布:2025-06-27 02:38:00 浏览:543
coin币圈 发布:2025-06-27 02:30:30 浏览:969
ltc曲线经济含义 发布:2025-06-27 02:25:45 浏览:42
区块链的查询性能 发布:2025-06-27 02:18:49 浏览:632
区块链新闻消息 发布:2025-06-27 02:08:27 浏览:566