区块链中的公钥分发
⑴ 区块链的基础知识有哪些
1、FISCO BCOS使用账户来标识和区分每一个独立的用户。在采用公私钥体系的区块链系统里,每一个账户对应着一对公钥和私钥。其中,由公钥经哈希等安全的单向性算法计算后,得到的地址字符串被用作该账户的账户名,即账户地址。仅有用户知晓的私钥则对应着传统认证模型中的密码。这类有私钥的账户也常被称为外部账户或账户。
2、FISCO BCOS中部署到链上的智能合约在底层存储中也对应一个账户,我们称这类账户为合约账户与外部账户的区别在于,合约账户的地址是部署时确定,根据部署者的账户地址及其账户中的信息计算得出,并且合约账户没有私钥。
3、SDK需要持有外部账户私钥,使用外部账户私钥对交易签名。区块链系统中,每一次对合约写接口的调用都是一笔交易,而每笔交易需要用账户的私钥签名。
4、权限控制需要外部账户的地址。FISCO BCOS权限控制模型,根据交易发送者的外部账户地址,判断是否有写入数据的权限。
5、合约账户地址唯一的标识区块链上的合约。每个合约部署后,底层节点会为其生成合约地址,调用合约接口时,需要提供合约地址。
⑵ 像诚信币这样基于区块链的数字货币中,私钥,公钥,地址到底是怎么回事
很多小白刚入场时,就被私钥,公钥,地址,等等关系弄晕头。有的甚至把自己私钥搞丢了,地址上特别有钱,可偏偏就是取不出来,今天小白就把私钥,公钥,还有地址之间的关系跟大家捋一捋。
私钥、公钥和地址这三者的关系是:
私钥转换成(生成)公钥,再转换成地址,如果某个地址上有比特币或诚信币,就可以使用转换成这个地址的私钥花费上面的诚信币。公钥和地址的生成都依赖于私钥,所以私钥才最重要。
手机钱包也是同样,但因为手机的文件管理方式不像计算机那么方便。所以一般手机钱包会提供一个名为或类似“导出私钥”的功能,通过这个功能,就可以将私钥用各种形式导出来。
比如比特币手机钱包可以导出为二维码,可以打印或者扫描到纸上。更换手机时,装好比特币钱包扫描一下这个二维码,就可以实现迁移比特币。比特币手机钱包和诚信币手机钱包可以导出为一份明文字符串,打印到纸上——这就是纸钱包。
纸钱包让用户可以到任何有比特币或诚信币钱包的终端来花费你的比特币或诚信币。
由于钱包丢失或损坏会导致失去私钥,从而彻底失去该数字货币的转账权。要防止出现这样的悲剧,就要记得经常备份钱包里的数据。除了地址外,备份时也保存了所有的私钥。
总结
私钥要保护好,防止丢失,防止忘记,在手机清信息时方式被清除,最好手抄一份,但不要泄露。
要防止自己钱包丢失或损坏,导致丢失私钥,丧失数字货币的转账权,否则你顿再多币取不出来,还不是没用。
⑶ 区块链技术的六大核心算法
区块链技术的六大核心算法
区块链核心算法一:拜占庭协定
拜占庭的故事大概是这么说的:拜占庭帝国拥有巨大的财富,周围10个邻邦垂诞已久,但拜占庭高墙耸立,固若金汤,没有一个单独的邻邦能够成功入侵。任何单个邻邦入侵的都会失败,同时也有可能自身被其他9个邻邦入侵。拜占庭帝国防御能力如此之强,至少要有十个邻邦中的一半以上同时进攻,才有可能攻破。然而,如果其中的一个或者几个邻邦本身答应好一起进攻,但实际过程出现背叛,那么入侵者可能都会被歼灭。于是每一方都小心行事,不敢轻易相信邻国。这就是拜占庭将军问题。
在这个分布式网络里:每个将军都有一份实时与其他将军同步的消息账本。账本里有每个将军的签名都是可以验证身份的。如果有哪些消息不一致,可以知道消息不一致的是哪些将军。尽管有消息不一致的,只要超过半数同意进攻,少数服从多数,共识达成。
由此,在一个分布式的系统中,尽管有坏人,坏人可以做任意事情(不受protocol限制),比如不响应、发送错误信息、对不同节点发送不同决定、不同错误节点联合起来干坏事等等。但是,只要大多数人是好人,就完全有可能去中心化地实现共识
区块链核心算法二:非对称加密技术
在上述拜占庭协定中,如果10个将军中的几个同时发起消息,势必会造成系统的混乱,造成各说各的攻击时间方案,行动难以一致。谁都可以发起进攻的信息,但由谁来发出呢?其实这只要加入一个成本就可以了,即:一段时间内只有一个节点可以传播信息。当某个节点发出统一进攻的消息后,各个节点收到发起者的消息必须签名盖章,确认各自的身份。
在如今看来,非对称加密技术完全可以解决这个签名问题。非对称加密算法的加密和解密使用不同的两个密钥.这两个密钥就是我们经常听到的”公钥”和”私钥”。公钥和私钥一般成对出现, 如果消息使用公钥加密,那么需要该公钥对应的私钥才能解密; 同样,如果消息使用私钥加密,那么需要该私钥对应的公钥才能解密。
区块链核心算法三:容错问题
我们假设在此网络中,消息可能会丢失、损坏、延迟、重复发送,并且接受的顺序与发送的顺序不一致。此外,节点的行为可以是任意的:可以随时加入、退出网络,可以丢弃消息、伪造消息、停止工作等,还可能发生各种人为或非人为的故障。我们的算法对由共识节点组成的共识系统,提供的容错能力,这种容错能力同时包含安全性和可用性,并适用于任何网络环境。
区块链核心算法四:Paxos 算法(一致性算法)
Paxos算法解决的问题是一个分布式系统如何就某个值(决议)达成一致。一个典型的场景是,在一个分布式数据库系统中,如果各节点的初始状态一致,每个节点都执行相同的操作序列,那么他们最后能得到一个一致的状态。为保证每个节点执行相同的命令序列,需要在每一条指令上执行一个“一致性算法”以保证每个节点看到的指令一致。一个通用的一致性算法可以应用在许多场景中,是分布式计算中的重要问题。节点通信存在两种模型:共享内存和消息传递。Paxos算法就是一种基于消息传递模型的一致性算法。
区块链核心算法五:共识机制
区块链共识算法主要是工作量证明和权益证明。拿比特币来说,其实从技术角度来看可以把PoW看做重复使用的Hashcash,生成工作量证明在概率上来说是一个随机的过程。开采新的机密货币,生成区块时,必须得到所有参与者的同意,那矿工必须得到区块中所有数据的PoW工作证明。与此同时矿工还要时时观察调整这项工作的难度,因为对网络要求是平均每10分钟生成一个区块。
区块链核心算法六:分布式存储
分布式存储是一种数据存储技术,通过网络使用每台机器上的磁盘空间,并将这些分散的存储资源构成一个虚拟的存储设备,数据分散的存储在网络中的各个角落。所以,分布式存储技术并不是每台电脑都存放完整的数据,而是把数据切割后存放在不同的电脑里。就像存放100个鸡蛋,不是放在同一个篮子里,而是分开放在不同的地方,加起来的总和是100个。
⑷ 区块链中点对点分布式技术是指什么
“一种基于网络的计算机处理技术,与集中式相对应。由于个人计算机的性能得到极大的提高及其使用的普及,使处理能力分布到网络上的所有计算机成为可能。分布式计算是和集中式计算相对立的概念,分布式计算的数据可以分布在很大区域。”
⑸ 公钥与私钥的区别与应用。
现实生活中,我要给依依转1个比特币,我需要在比特币交易平台、比特币钱包或者比特币客户端里面,输入我的比特币钱包地址、依依的钱包地址、转出比特币的数量、手续费。然后,我们等十分钟左右,矿工处理完交易信息之后,这1个比特币就成功地转给依依了。
这个过程看似很简单也很便捷,跟我们现在的银行卡转账没什么区别,但是,你知道这个过程是怎样在比特币系统里面实现的吗?它隐藏了哪些原理呢?又或者,它是如何保证交易能够在一个安全的环境下进行呢?
我们今天就来讲一讲。
对于转出方和接收方来讲,也就是我和依依(我是转出方,依依是接收方)我们都需要出具两个东西:钱包地址、私钥。
我们先说钱包地址。比特币钱包地址其实就相当于银行卡、支付宝账号、微信钱包账号,是比特币支付转账的“凭证”,记录着平台与平台、钱包与钱包、钱包与平台之间的转账信息。
我们在使用银行卡、支付宝、微信转账时都需要密码,才能够支付成功。那么,在比特币转账中,同样也有这么一个“密码”,这个“密码“被称作“私钥”。掌握了私钥,就掌握了其对应比特币地址上的生杀大权。
“私钥”是属于“非对称加密算法”里面的概念,与之对应的还有另一个概念,名叫:“公钥”。
公钥和私钥,从字面意思我们就可以理解:公钥,是可以公开的;而私钥,是私人的、你自己拥有的、需要绝对保密的。
公钥是根据私钥计算形成的,比特币系统使用的是椭圆曲线加密算法,来根据私钥计算出公钥。这就使得,公钥和私钥形成了唯一对应的关系:当你用了其中一把钥匙加密信息时,只有配对的另一把钥匙才能解密。所以,正是基于这种唯一对应的关系,它们可以用来验证信息发送方的身份,还可以做到绝对的保密。
我们举个例子讲一下,在非对称加密算法中,公钥和私钥是怎么运作的。
我们知道,公钥是可以对外公开的,那么,所有人都知道我们的公钥。在转账过程中,我不仅要确保比特币转给依依,而不会转给别人,还得让依依知道,这些比特币是我转给她的,不是鹿鹿,也不是韭哥。
比特币系统可以满足我的上述诉求:比特币系统会把我的交易信息缩短成固定长度的字符串,也就是一段摘要,然后把我的私钥附在这个摘要上,形成一个数字签名。因为数字签名里面隐含了我的私钥信息,所以,数字签名可以证明我的身份。
完成之后,完整的交易信息和数字签名会一起广播给矿工,矿工用我的公钥进行验证、看看我的公钥和我的数字签名能不能匹配上,如果验证成功,都没问题,那么,就能够说明这个交易确实是我发出的,而且信息没有被更改。
接下来,矿工需要验证,这笔交易花费的比特币是否是“未被花费”的交易。如果验证成功,则将其放入“未确认交易”,等待被打包;如果验证失败,则该交易会被标记为“无效交易”,不会被打包。
其实,公钥和私钥,简单理解就是:既然是加密,那肯定是不希望别人知道我的消息,所以只能我才能解密,所以可得出:公钥负责加密,私钥负责解密;同理,既然是签名,那肯定是不希望有人冒充我的身份,只有我才能发布这个数字签名,所以可得出:私钥负责签名,公钥负责验证。
到这里,我们简单概括一下上面的内容。上面我们主要讲到这么几个词:私钥、公钥、钱包地址、数字签名,它们之间的关系我们理一下:
(1)私钥是系统随机生成的,公钥是由私钥计算得出的,钱包地址是由公钥计算得出的,也就是:私钥——公钥——钱包地址,这样一个过程;
(2)数字签名,是由交易信息+私钥信息计算得出的,因为数字签名隐含私钥信息,所以可以证明自己的身份。
私钥、公钥都是密码学范畴的,属于“非对称加密”算法中的“椭圆加密算法”,之所以采用这种算法,是为了保障交易的安全,二者的作用在于:
(1)公钥加密,私钥解密:公钥全网公开,我用依依的公钥给信息加密,依依用自己的私钥可以解密;
(2)私钥签名,公钥验证:我给依依发信息,我加上我自己的私钥信息形成数字签名,依依用我的公钥来验证,验证成功就证明的确是我发送的信息。
只不过,在比特币交易中,加密解密啦、验证啦这些都交给矿工了。
至于我们现在经常用的钱包APP,只不过是私钥、钱包地址和其他区块链数据的管理工具而已。钱包又分冷钱包和热钱包,冷钱包是离线的,永远不联网的,一般是以一些实体的形式出现,比如小本子什么的;热钱包是联网的,我们用的钱包APP就属于热钱包。
⑹ 区块链中的私钥是指什么
私钥公钥这个名词可谓是所有考题中最简单的了。
公开的密钥叫公钥,只有自己知道的叫私钥。
公钥(Public Key)与私钥(Private Key)是通过一种算法得到的一个密钥对(即一个公钥和一个私钥),公钥是密钥对中公开的部分,私钥则是非公开的部分。
一句话明了~
⑺ 在区块链中使用的是什么方式确定其身份
在区块链中,金窝窝集团认为四使用公钥和私钥来识别身份的。
公钥和私钥还可以保证分布式网络点对点新型传递的安全。
在区块链信息传递中,信息传递双方的公钥和私钥的加密与解密往往是不成对出现的。
⑻ 区块链技术中的哈希算法是什么
1.1. 简介
计算机行业从业者对哈希这个词应该非常熟悉,哈希能够实现数据从一个维度向另一个维度的映射,通常使用哈希函数实现这种映射。通常业界使用y = hash(x)的方式进行表示,该哈希函数实现对x进行运算计算出一个哈希值y。
区块链中哈希函数特性:
函数参数为string类型;
固定大小输出;
计算高效;
collision-free 即冲突概率小:x != y => hash(x) != hash(y)
隐藏原始信息:例如区块链中各个节点之间对交易的验证只需要验证交易的信息熵,而不需要对原始信息进行比对,节点间不需要传输交易的原始数据只传输交易的哈希即可,常见算法有SHA系列和MD5等算法
1.2. 哈希的用法
哈希在区块链中用处广泛,其一我们称之为哈希指针(Hash Pointer)
哈希指针是指该变量的值是通过实际数据计算出来的且指向实际的数据所在位置,即其既可以表示实际数据内容又可以表示实际数据的存储位置。下图为Hash Pointer的示意图

⑼ 区块链中的对称加密是什么非对称加密又是什么
对称加密算法是指在加密和解密时使用的是同一个秘钥。与对称加密算法不同,非对称加密算法需要公钥和私钥。公钥和私钥是一对,如果用公钥对数据进行加密,只有用对应的私钥才能解密。
非对称加密与对称加密相比,其安全性更好。对称加密的通信双方使用相同的秘钥,如果一方的秘钥遭泄露,那么整个通信就会被破解。
而非对称加密使用一对秘钥,一个用来加密,一个用来解密,而且公钥是公开的,秘钥是自己保存的,在通讯前不需要先同步秘钥,避免了在同步私钥过程中被黑客盗取信息的风险。
⑽ 区块链我不是很了解啊,滨合云智的分布式存储技术到底是怎么样,有什么技术优势
攻克区块链关键核心技术
滨合云智集团发挥强大的长跑能力,投入大量人力、物力不断开发新的技术和产品,集中攻克分布式存储、加密算法、P2P通信以及共识机制等区块链关键核心技术,引领区块链的前沿发展。经过多年的探索和实践,滨合云智集团已经形成了数据库、中间件、安全产品到应用系统一体化的业务链条,覆盖政务、知识产权、金融等国民经济安全的重要领域。
2.构建良性的项目研发体系
滨合云智集团基于技术研发经费持续投入,已形成了良性的项目研发体系,可以快速投入生产环境使用,领先于传统高新技术及互联网企业。其分布式存储核心技术具备领先分布式融合架构,在加密机制和数据交换垂直领域发挥“专、高、精”精神,有效解决数据存储安全、海量数据交换等问题,实现敏感隐私数据不出库,并融合AI、LOT等信息技术,有效降低数据提供方与需求方的协作成本。
3.建设公平透明网络,高效低成本交换数据
滨合云智集团通过结合区块链分布式存储技术及libp2p技术建设自有分布式存储服务平台,构建基于区块链技术和链下P2P网络搭建跨机构的可信数据交换环境,实现敏感隐私数据不出库,降低数据提供方与需求方的协作成本,同时对数据共享进行细粒度的权限控制,并保证后期可追溯确权,符合真实生产环境的安全性诉求。
4.构建三环加密机制
滨合云智集团采用非对称加密机制,完成硬件、软件、人员、策略和规程的公钥基础设施建设,实现基于公钥密码体制的密钥和证书的产生、管理、存储、分发和撤销等功能。第一,公钥私钥一一对应,构成区块链项目的账户体系;第二,再加密机制,有助于高效、安全的授权、提权和使用数据,并促进数据使用的公平性,用户可以自主选择不同的加密服务商、保险公司,甚至开源的代码服务。第三,重加密机制,在原有的常用加密手段上对用户的隐私实现明文保密、公钥保密、防非法公钥替换、防合法公钥替换、别名无关性等。三环加密算法改变数据的存储方式、安全性和权力主体,打破数据原有边界和数据孤岛现象,不同类型的数据实现统一整合。