区块链公钥验证
A. 谁知道在区块链上认证视频和图片的版权原理是什么
基本上原理都一样, 用抱品网举例子, 抱品网视频区块链认证其实就是DApp, 先把视频每分钟关键帧的图片截图, 然后转码成一串唯一的数字 , 然后上传记录到以太坊区块链之中。
B. 区块链使用安全如何来保证呢
区块链本身解决的就是陌生人之间大规模协作问题,即陌生人在不需要彼此信任的情况下就可以相互协作。那么如何保证陌生人之间的信任来实现彼此的共识机制呢?中心化的系统利用的是可信的第三方背书,比如银行,银行在老百姓看来是可靠的值得信任的机构,老百姓可以信赖银行,由银行解决现实中的纠纷问题。但是,去中心化的区块链是如何保证信任的呢?
实际上,区块链是利用现代密码学的基础原理来确保其安全机制的。密码学和安全领域所涉及的知识体系十分繁杂,我这里只介绍与区块链相关的密码学基础知识,包括Hash算法、加密算法、信息摘要和数字签名、零知识证明、量子密码学等。您可以通过这节课来了解运用密码学技术下的区块链如何保证其机密性、完整性、认证性和不可抵赖性。
基础课程第七课 区块链安全基础知识
一、哈希算法(Hash算法)
哈希函数(Hash),又称为散列函数。哈希函数:Hash(原始信息) = 摘要信息,哈希函数能将任意长度的二进制明文串映射为较短的(一般是固定长度的)二进制串(Hash值)。
一个好的哈希算法具备以下4个特点:
1、 一一对应:同样的明文输入和哈希算法,总能得到相同的摘要信息输出。
2、 输入敏感:明文输入哪怕发生任何最微小的变化,新产生的摘要信息都会发生较大变化,与原来的输出差异巨大。
3、 易于验证:明文输入和哈希算法都是公开的,任何人都可以自行计算,输出的哈希值是否正确。
4、 不可逆:如果只有输出的哈希值,由哈希算法是绝对无法反推出明文的。
5、 冲突避免:很难找到两段内容不同的明文,而它们的Hash值一致(发生碰撞)。
举例说明:
Hash(张三借给李四10万,借期6个月) = 123456789012
账本上记录了123456789012这样一条记录。
可以看出哈希函数有4个作用:
简化信息
很好理解,哈希后的信息变短了。
标识信息
可以使用123456789012来标识原始信息,摘要信息也称为原始信息的id。
隐匿信息
账本是123456789012这样一条记录,原始信息被隐匿。
验证信息
假如李四在还款时欺骗说,张三只借给李四5万,双方可以用哈希取值后与之前记录的哈希值123456789012来验证原始信息
Hash(张三借给李四5万,借期6个月)=987654321098
987654321098与123456789012完全不同,则证明李四说谎了,则成功的保证了信息的不可篡改性。
常见的Hash算法包括MD4、MD5、SHA系列算法,现在主流领域使用的基本都是SHA系列算法。SHA(Secure Hash Algorithm)并非一个算法,而是一组hash算法。最初是SHA-1系列,现在主流应用的是SHA-224、SHA-256、SHA-384、SHA-512算法(通称SHA-2),最近也提出了SHA-3相关算法,如以太坊所使用的KECCAK-256就是属于这种算法。
MD5是一个非常经典的Hash算法,不过可惜的是它和SHA-1算法都已经被破解,被业内认为其安全性不足以应用于商业场景,一般推荐至少是SHA2-256或者更安全的算法。
哈希算法在区块链中得到广泛使用,例如区块中,后一个区块均会包含前一个区块的哈希值,并且以后一个区块的内容+前一个区块的哈希值共同计算后一个区块的哈希值,保证了链的连续性和不可篡改性。
二、加解密算法
加解密算法是密码学的核心技术,从设计理念上可以分为两大基础类型:对称加密算法与非对称加密算法。根据加解密过程中所使用的密钥是否相同来加以区分,两种模式适用于不同的需求,恰好形成互补关系,有时也可以组合使用,形成混合加密机制。
对称加密算法(symmetric cryptography,又称公共密钥加密,common-key cryptography),加解密的密钥都是相同的,其优势是计算效率高,加密强度高;其缺点是需要提前共享密钥,容易泄露丢失密钥。常见的算法有DES、3DES、AES等。
非对称加密算法(asymmetric cryptography,又称公钥加密,public-key cryptography),与加解密的密钥是不同的,其优势是无需提前共享密钥;其缺点在于计算效率低,只能加密篇幅较短的内容。常见的算法有RSA、SM2、ElGamal和椭圆曲线系列算法等。 对称加密算法,适用于大量数据的加解密过程;不能用于签名场景:并且往往需要提前分发好密钥。非对称加密算法一般适用于签名场景或密钥协商,但是不适于大量数据的加解密。
三、信息摘要和数字签名
顾名思义,信息摘要是对信息内容进行Hash运算,获取唯一的摘要值来替代原始完整的信息内容。信息摘要是Hash算法最重要的一个用途。利用Hash函数的抗碰撞性特点,信息摘要可以解决内容未被篡改过的问题。
数字签名与在纸质合同上签名确认合同内容和证明身份类似,数字签名基于非对称加密,既可以用于证明某数字内容的完整性,同时又可以确认来源(或不可抵赖)。
我们对数字签名有两个特性要求,使其与我们对手写签名的预期一致。第一,只有你自己可以制作本人的签名,但是任何看到它的人都可以验证其有效性;第二,我们希望签名只与某一特定文件有关,而不支持其他文件。这些都可以通过我们上面的非对称加密算法来实现数字签名。
在实践中,我们一般都是对信息的哈希值进行签名,而不是对信息本身进行签名,这是由非对称加密算法的效率所决定的。相对应于区块链中,则是对哈希指针进行签名,如果用这种方式,前面的是整个结构,而非仅仅哈希指针本身。
四 、零知识证明(Zero Knowledge proof)
零知识证明是指证明者在不向验证者提供任何额外信息的前提下,使验证者相信某个论断是正确的。
零知识证明一般满足三个条件:
1、 完整性(Complteness):真实的证明可以让验证者成功验证;
2、 可靠性(Soundness):虚假的证明无法让验证者通过验证;
3、 零知识(Zero-Knowledge):如果得到证明,无法从证明过程中获知证明信息之外的任何信息。
五、量子密码学(Quantum cryptography)
随着量子计算和量子通信的研究受到越来越多的关注,未来量子密码学将对密码学信息安全产生巨大冲击。
量子计算的核心原理就是利用量子比特可以同时处于多个相干叠加态,理论上可以通过少量量子比特来表达大量信息,同时进行处理,大大提高计算速度。
这样的话,目前的大量加密算法,从理论上来说都是不可靠的,是可被破解的,那么使得加密算法不得不升级换代,否则就会被量子计算所攻破。
众所周知,量子计算现在还仅停留在理论阶段,距离大规模商用还有较远的距离。不过新一代的加密算法,都要考虑到这种情况存在的可能性。
C. 在区块链中使用的是什么方式确定其身份
在区块链中,金窝窝集团认为四使用公钥和私钥来识别身份的。
公钥和私钥还可以保证分布式网络点对点新型传递的安全。
在区块链信息传递中,信息传递双方的公钥和私钥的加密与解密往往是不成对出现的。
D. 怎么解读区块链的数字签名
在区块链的分布式网络里,节点之间进行通讯并达成信任,需要依赖数字签名技术,它主要实现了身份确认以及信息真实性、完整性验证。
数字签名
数字签名(又称公钥数字签名、电子签章)是一种类似写在纸上的普通的物理签名,但是使用了公钥加密领域的技术实现,用于鉴别数字信息的方法。一套数字签名通常定义两种互补的运算,一个用于签名,另一个用于验证。就是只有信息的发送者才能产生的别人无法伪造的一段数字串,这段数字串同时也是对信息的发送者发送信息真实性的一个有效证明。简单证明 “我就是我”。
E. 为什么区块链私钥 中的字母只有a-f之间
私钥:实际上是一组随机数,关于区块链中的随机数我们已经介绍过了
公钥:对私钥进行椭圆曲线加密算法生成,但是无法通过公钥倒推得到私钥。公钥的作用是在和对方交易时,使用自己的私钥加密信息,然后对方使用自己的公钥解密获得原始信息,这个过程俗称签名。
地址:由于公钥太长,在交易中不方便使用,就对公钥哈希进行SHA256、RIPEMD160、Base58算法加密生成地址
首先使用随机数发生器生成一个『私钥』。后续的公钥、地址都会由私钥生成,所以一句话概括私钥的重要性:"谁掌握了私钥, 谁就掌握了该钱包的使用权!"
『私钥』经过椭圆曲线算法(SECP256K1)算法加密生成了'公钥'。这是一种非对称单向加密算法,知道私钥可以算出公钥,但知道公钥却无法反向算出私钥
『公钥』经过单向Hash算法(SHA256、RIPEMD160)生成『公钥Hash』
将一个字节的地址版本号连接到『公钥哈希』头部(对于比特币网络的pubkey地址,这一字节为“0”),然后对其进行两次SHA256运算,将结果的前4字节作为『公钥哈希』的校验值,连接在其尾部。
将上一步结果使用BASE58进行编码(比特币定制版本),就得到了『钱包地址』。
F. git和区块链的区别
一、相似性
分布式
Git 确保每个代码仓库在本地保留完整的项目库,而不仅仅是自己在工作的这个分支和自己的提交历史。同时也保留了最近这次 pull 下来后的所有快照和索引信息。
区块链上,每个节点在本地保存完整数据库,而不仅仅是自己的交易信息。
可追溯性
Git commit 链上,每个 commit 对象都包含父级对象(上一次 commit 的对象,除了第一个 commit ),对之前的记录全部可追溯。
区块链上,每个区块都包含前一个区块的索引(除了创世区块),可以追溯之前所有有效交易。
不可篡改
Git 的 commit 链中,每个对象本身在存储前都计算校验和,然后以校验和来引用。一旦修改,校验和就会不对, 这意味着不可能在 Git 不知情时更改任何文件内容或目录内容。
Git 用以计算校验和的机制叫做 SHA-1 散列( hash,哈希)。 这是一个由 40 个十六进制字符( 0-9 和 a-f )组成字符串,基于 Git 中文件的内容或目录结构计算出来。SHA-1 哈希看起来是这样:区块链中,每个区块包含上个区块 ID,本区块 ID 两个 SHA-256 散列,这两个散列都是基于区块内容计算出来。一旦修改内容,则散列将变化,和其他节点的链不一致,最终不能加入到最长链中,因此无法真正篡改内容。
二、差异性
集体共识和中央节点意志: 1 - 区块链是基于集体共识( POW/POS)来 merge,形成最长链,最长链即为主链。
2 - 而 Git 体系里,通过仓库托管平台来进行多节点合作时,是平台项目的管理者掌握了 merge 的权力,体现的是中央节点的意志。
密码学
1 - 比特币区块链中,密码学主要用到了以下方式
在比特币区块链的整个体系中,大量使用了公开的加密算法,如 Merkle Tree 哈希数算法,椭圆曲线算法、哈希算法、对称加密算法及一些编码算法。各种算法在比特币区块链中的作用如下:
a)哈希算法
比特币系统中使用的两个哈希函数分别是:1.SHA-256,主要用于完成 PoW (工作量证明)计算; 2.RIPEMD160,主要用于生成比特币地址。
b)Merkle 哈希树
基于哈希值的二叉树或多叉树,在计算机领域,Merkle 树大多用来进行完整性验证处理,在分布式环境下,其进行完整性验证能大量减少数据传输和计算的复杂程度。
c)椭圆曲线算法
比特币中使用基于 secp256k1 椭圆曲线数学的公钥密码学算法进行签名与验证签名,一方面可以保证用户的账户不被冒名顶替,另一方面保证用户不能否认其所签名的交易。用私钥对交易信息签名,矿工用用户的公钥验证签名,验证通过,则交易信息记账,完成交易。
d)对称加密算法
比特币官方客户端使用 AES (对称分组密码算法)加密钱包文件,用户设置密码后,采用用户设置饿密码通过 AES 对钱包私钥进行加密,确保客户端私钥的安全。
e)Base58 编码
Base58 是比特币使用的一种独特的编码方式,主要用于产生比特币的钱包地址,其类似于古典密码学里的置换算法机制,目的是为里增加可读性,把二进制的哈希值变成了我们看到的地址“ ”。
2 - Git:主要用了 SSH 秘钥来进行远程登录验证,用了 SHA-1 来进行代码内容校验和。
SSH 是 Secure Shell 的缩写,由 IETF 的网络工作小组( Network Working Group )所制定,是一种专为远程登录会话和其他网络服务提供安全性的协议。利用 SSH 协议可以有效防止远程管理过程中的信息泄露问题。
SSH 传输的过程如下: (1)远程主机收到用户的登录请求,把自己的公钥发给用户。 (2)用户使用这个公钥,将登录密码加密后,发送回来。 (3)远程主机用自己的私钥,解密登录密码,如果密码正确,允许用户登录。
G. 区块链本质是什么比特币原理又是什么二者究竟有何区别
一枚比特币价格从2万多美元狂涨到4万美元。这不由得引起了我的研究兴趣,或者说简单了解了一下比特币到底是什么,它的机理具体是什么样子的,揭开它的神秘面纱。因此,简单搜索了一些资料,也对比特币有些了解,便把手头上的资料整理了一下。
(3)目的:去中心化,减少风险
中心式网络只有中央服务器能够存储和处理数据,其缺点是工作量大,一旦瘫痪则整个系统瘫痪;数据存储量大;中央管理者权限大。
分布式网络中的所有服务器均能够存储和处理数据,各服务器之间地位平等,可以存储更多的数据和具有更高的安全性。
大致的科普内容就是这样,如果还想多了解一些,可以看看中本聪的论文和下面的官方科普视频。
H. 区块链密码算法是怎样的
区块链作为新兴技术受到越来越广泛的关注,是一种传统技术在互联网时代下的新的应用,这其中包括分布式数据存储技术、共识机制和密码学等。随着各种区块链研究联盟的创建,相关研究得到了越来越多的资金和人员支持。区块链使用的Hash算法、零知识证明、环签名等密码算法:
Hash算法
哈希算法作为区块链基础技术,Hash函数的本质是将任意长度(有限)的一组数据映射到一组已定义长度的数据流中。若此函数同时满足:
(1)对任意输入的一组数据Hash值的计算都特别简单;
(2)想要找到2个不同的拥有相同Hash值的数据是计算困难的。
满足上述两条性质的Hash函数也被称为加密Hash函数,不引起矛盾的情况下,Hash函数通常指的是加密Hash函数。对于Hash函数,找到使得被称为一次碰撞。当前流行的Hash函数有MD5,SHA1,SHA2,SHA3。
比特币使用的是SHA256,大多区块链系统使用的都是SHA256算法。所以这里先介绍一下SHA256。
1、 SHA256算法步骤
STEP1:附加填充比特。对报文进行填充使报文长度与448模512同余(长度=448mod512),填充的比特数范围是1到512,填充比特串的最高位为1,其余位为0。
STEP2:附加长度值。将用64-bit表示的初始报文(填充前)的位长度附加在步骤1的结果后(低位字节优先)。
STEP3:初始化缓存。使用一个256-bit的缓存来存放该散列函数的中间及最终结果。
STEP4:处理512-bit(16个字)报文分组序列。该算法使用了六种基本逻辑函数,由64 步迭代运算组成。每步都以256-bit缓存值为输入,然后更新缓存内容。每步使用一个32-bit 常数值Kt和一个32-bit Wt。其中Wt是分组之后的报文,t=1,2,...,16 。
STEP5:所有的512-bit分组处理完毕后,对于SHA256算法最后一个分组产生的输出便是256-bit的报文。
2、环签名
2001年,Rivest, shamir和Tauman三位密码学家首次提出了环签名。是一种简化的群签名,只有环成员没有管理者,不需要环成员间的合作。环签名方案中签名者首先选定一个临时的签名者集合,集合中包括签名者。然后签名者利用自己的私钥和签名集合中其他人的公钥就可以独立的产生签名,而无需他人的帮助。签名者集合中的成员可能并不知道自己被包含在其中。
环签名方案由以下几部分构成:
(1)密钥生成。为环中每个成员产生一个密钥对(公钥PKi,私钥SKi)。
(2)签名。签名者用自己的私钥和任意n个环成员(包括自己)的公钥为消息m生成签名a。
(3)签名验证。验证者根据环签名和消息m,验证签名是否为环中成员所签,如果有效就接收,否则丢弃。
环签名满足的性质:
(1)无条件匿名性:攻击者无法确定签名是由环中哪个成员生成,即使在获得环成员私钥的情况下,概率也不超过1/n。
(2)正确性:签名必需能被所有其他人验证。
(3)不可伪造性:环中其他成员不能伪造真实签名者签名,外部攻击者即使在获得某个有效环签名的基础上,也不能为消息m伪造一个签名。
3、环签名和群签名的比较
(1)匿名性。都是一种个体代表群体签名的体制,验证者能验证签名为群体中某个成员所签,但并不能知道为哪个成员,以达到签名者匿名的作用。
(2)可追踪性。群签名中,群管理员的存在保证了签名的可追踪性。群管理员可以撤销签名,揭露真正的签名者。环签名本身无法揭示签名者,除非签名者本身想暴露或者在签名中添加额外的信息。提出了一个可验证的环签名方案,方案中真实签名者希望验证者知道自己的身份,此时真实签名者可以通过透露自己掌握的秘密信息来证实自己的身份。
(3)管理系统。群签名由群管理员管理,环签名不需要管理,签名者只有选择一个可能的签名者集合,获得其公钥,然后公布这个集合即可,所有成员平等。
链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。
I. 起盘区块链要注意什么
1、大部分人不知道什么是区块链
跟传统的股票、房产、债券、黄金等相比,区块链资产是一个非常抽象和虚拟的资产形式,以比特币为代表的区块链资产,是非常专业的一种计算机语言和程序运行方式,背后既没有任何国家的信用做背书,也没有任何企业赋予其证券化收益,完全依赖于陌生人之间的相互共识性信任,这种情况下虽然完成了去中心化的运行逻辑,但其试验还仅仅处在起步和发展阶段,参与相关投资,实际上就是一种勇敢的冒险者行为。
2、区块链资产价格波动剧烈
由于没有太多实体使用层面的支撑,诸多区块链项目完全依赖于社区运营和市场炒作,投资者很难从价值投资的角度去持有区块链资产,这就导致资金的流动会非常的频繁,价格大起大落的状况成了一种常态。一个区块链相关的代币,可以在一天之内暴涨500%,也可以在几个小时之内跌去90%,这种剧烈的价格波动,不是一般投资者能够承受得了的。
3、各国政策的不确定性太大
区块链作为一种底层技术,全球基本上都接受了其价值所在,但作为区块链的“伴生品”数字货币,各国政策方面的争议依然非常大,而且随着数字货币交易量的持续增大,对全球金融市场的影响也与日俱增。目前整个数字货币领域每日的交易额超过了600亿美元,跟中国沪深两市的成交量不相上下,也可以比肩纽交所日平均交易量,持续运行在监管之外那是不可能的,这就存在一个非常大的监管博弈周期,各国在这方面的政策将可能会陆续出台,对市场的影响不可忽视。
4、各类区块链项目良莠不齐
区块链技术本来是一个非常基础性的架构技术,目前由于全球范围内资金层面的追捧,导致很多本身跟区块链没有任何关系的项目方,开始运用区块链概念来设计产品,并且能够在非常短的时间内完成区块链白皮书的撰写,而后进行市场资金的募集。这种情况下,拉低了区块链整体的技术性门槛,诸多根本没有区块链开发实力和意愿的公司,纯粹为了获得资金的支持而打出区块链概念,造成了项目的泛滥,项目与项目之间的差距越拉越大,但普通投资者难以辨别,容易掉入陷阱。
5、炒币不等于区块链投资
目前有很多观点认为,区块链跟数字货币之间是一个整体,你不可能一边发展区块链技术,另一边去打压数字货币。这个逻辑我是比较认可的,但炒币确实并非等同于真正意义上的区块链投资。真正有投资价值的东西,一定是供给量稀缺的东西,如果随便发一个数字货币,就能代表区块链的应用价值,就能给社会带来某些革新,那么随便找一家可以发数字货币的区块链技术团队,都能在很短的时间内,发出几十种数字货币,改改名字而已。因此,数字货币本身,跟区块链资产没有太大的逻辑关系,区块链项目一定是一个稀缺性非常明显的市场,但数字货币并不存在较大的稀缺性。这就好比说,任何一个互联网公司,都可以开发出一个类似微信的聊天软件,但聊天软件本身并没有太大的价值,真正的价值在于聊天软件上吸附了多少民众的参与。数字货币只不过是一个聊天软件,目前的情况是大家都在炒这个软件,而很少有人关心软件上有什么东西,泡沫化比较明显。
6、短期过热,容易被不法分子利用
区块链行业的特殊性在于,其中诸多的生态已经变得非常的金融化,在整个运行的过程中,资金会非常的集中,而且大部分环节都是跟资金相关的。从ICO募集资金,到给投资者发送代币,再到交易所上线交易,以及用户在交易所买卖代币,整个流程下来,几乎全是金融化的环节,如果从业者不够专业,没有自律能力,监管方面缺失,那么每一个环节都可能会被不法分子利用,来操纵市场,获取各类非法收益。
7、各国政府在应对区块链发展方面各怀鬼胎
日本为了赶上下一轮金融科技以及数字革命,对比特币等交易持有非常开放的态度,以日元计价的数字货币交易,占据了全球整个法币交易区的半壁江山,日本希望利用数字货币来重振日本的金融竞争力。美国则希望用主流的金融市场,比如用期货期权类衍生品市场来驯服比特币等,使其成为美元霸权的又一个有力工具。而中国也在努力推动主权加密数字货币,其中一个重要目的是推动人民币的国际化。数字货币和区块链资产领域,有可能成为下一个大国博弈和争夺的点,这就会在无形中给投资者增加系统性风险,你很难知道这种大国博弈背后,突然间又冒出什么意外的政策,对整个市场会带来何种冲击。
8、量子计算机的威胁
区块链由于生成了一套自我激励的系统,保证其能够在去中心化的条件下,自我运行,大部分使用的是不对称的加密,用相应的公钥验证私钥签署的交易,以确保比特币等区块链资产只能被合法所有人使用。但量子计算机却可以解决不对称加密的问题,量子计算机可以在几分钟内从公钥推算出私钥,在知道所有的私钥后,拥有量子计算机的人们就可以随意花费比特币等数字货币了。当然,量子计算机什么时候问世本身也是一个问题,数字货币协议也在不断的加入新的加密标准,但量子计算机带来的潜在威胁,不得不引起投资者的重视。
9、供需层面存在大逆转的可能
区块链代币市场的市值规模,已经徘徊在万亿美元附近,虽然场外资金依然在源源不断的涌入,但其资金流入的稳定性和增速存疑。而加密数字货币的供给,是一个非常尴尬的事情,如果从单一的数字货币层面来说,总量严格受限,比如比特币只有2100万个,但发行加密数字货币的门槛越来越低,任何人和任何组织都可以随时随地发布加密数字货币,供给量几乎是不受任何限制的。另一方面,交易成本持续增大又在抑制需求端,目前交易环节投资者需要在交易所付出手续费,以及转账的时候还要支付给矿工费用,如果在未来各国开始给数字货币交易征税,意味着这一市场在没有产生本身盈利能力的情况下,却要更多的承担运行成本,如果再加上供给层面的不断增加,整体市场供需预期可能在某个瞬间发生逆转性变化。
10、区块链资产缺少法律层面的保护
全球数字货币交易所被“黑”的事件屡见不鲜,并且在各类场外、场内交易过程中,遭遇到诈骗等也时有发生,法律层面对投资者的保护是非常有限的。尤其是国内投资者,一旦因为交易数字货币遭遇了被盗或被骗的情况,几乎可以说很难有效追回。由于缺少银行等层面的中介担保,数字货币的安全性完全由自己负责,这虽然符合私有财产的自我保管逻辑,但也给数字货币资产的储存和交易带来了更大的不确定性。在没有完整的法律体系来保护个人数字货币资产权益之前,投资区块链相关资产的合法安全性是一个很严重的问题。
J. 像诚信币这样基于区块链的数字货币中,私钥,公钥,地址到底是怎么回事
很多小白刚入场时,就被私钥,公钥,地址,等等关系弄晕头。有的甚至把自己私钥搞丢了,地址上特别有钱,可偏偏就是取不出来,今天小白就把私钥,公钥,还有地址之间的关系跟大家捋一捋。
私钥、公钥和地址这三者的关系是:
私钥转换成(生成)公钥,再转换成地址,如果某个地址上有比特币或诚信币,就可以使用转换成这个地址的私钥花费上面的诚信币。公钥和地址的生成都依赖于私钥,所以私钥才最重要。
手机钱包也是同样,但因为手机的文件管理方式不像计算机那么方便。所以一般手机钱包会提供一个名为或类似“导出私钥”的功能,通过这个功能,就可以将私钥用各种形式导出来。
比如比特币手机钱包可以导出为二维码,可以打印或者扫描到纸上。更换手机时,装好比特币钱包扫描一下这个二维码,就可以实现迁移比特币。比特币手机钱包和诚信币手机钱包可以导出为一份明文字符串,打印到纸上——这就是纸钱包。
纸钱包让用户可以到任何有比特币或诚信币钱包的终端来花费你的比特币或诚信币。
由于钱包丢失或损坏会导致失去私钥,从而彻底失去该数字货币的转账权。要防止出现这样的悲剧,就要记得经常备份钱包里的数据。除了地址外,备份时也保存了所有的私钥。
总结
私钥要保护好,防止丢失,防止忘记,在手机清信息时方式被清除,最好手抄一份,但不要泄露。
要防止自己钱包丢失或损坏,导致丢失私钥,丧失数字货币的转账权,否则你顿再多币取不出来,还不是没用。