当前位置:首页 » 区块链知识 » raft算法区块链

raft算法区块链

发布时间: 2022-07-14 15:43:34

㈠ 为什么去中心化了还能升级

什么是“去中心化”?

“去中心化”翻译自英语单词Decentralization,是由前缀de-、词干central、后缀-ization组成。其中,词干central意为“中心”,后缀-ization意为“……化”,而前缀de-则有离开、除去、取消、相反等含义。因此,将其翻译为去中心化是非常准确的。

那么,去中心化具体而言是什么含义呢?

以太坊创始人Vitalik Buterin于2017年2月发表的《The meaning of decentralization》一文中,详细阐述了去中心化的含义。他认为应该从三个角度来区分计算机软件的中心化和去中心化:架构、治理和逻辑。

架构中心化是指系统能容忍多少节点的崩溃而可以继续运行;治理中心化是指需要多少的个人和组织能最终控制这个系统;逻辑中心化是指系统呈现的接口和数据是否像是一个单一的整体。

区块链是全网统一的账本,因此从逻辑上看是中心化的,这一点无可置疑。从架构上看,区块链是基于对等网络的,因此是架构去中心化的。从治理上看,区块链通过共识算法使得少数人很难控制整个系统,因此是治理去中心化的。架构和治理上的去中心化为区块链带来三个好处:容错性、抗攻击力和防合谋。

区块链与传统分布式系统的5点区别

作为一种全新种类的分布式系统,区块链往往被错误地当作是一个分布式的数据库或日志系统,实际上区块链与传统的分布式系统之间有着本质的区别——去中心化。现在我们来审视一下区块链与传统分布式系统的主要区别:

(1)一致性算法:区块链需要解决的是拜占庭将军问题,即网络中存在一个或多个欺诈节点,可能会故意违反协议或传输错误的数据,因此区块链往往采用拜占庭容错的一致性算法(通常称为共识算法),如BFT、PoW、PoS等;而传统分布式系统只需考虑节点失效和通讯错误的情况,往往采用paxos、raft之类的一致性算法,这类算法不能对抗欺诈节点。

(2)中央控制方:在区块链网络中是不存在中央控制方的,没有一个节点可以控制或协调账本数据的生成,各节点通过共识算法进行协调,生成一致的账本。而传统发布式系统则往往是由一个机构进行控制,统一调度各节点参与运算。

(3)规则制定:区块链的规则就是共识协议,又称共识机制,共识算法是其中的一部分。共识机制一般是由一个人或一个团队设计制定,并开发出相应的程序,提供给社区使用。这一点似乎与传统的分布式系统一样,但区块链的共识机制的改变、升级是需要社区对此有一致的共识,如果不能达成共识,则任何人都可以实施硬分叉,另建一个社区、一条链。这就是共识机制的去中心化过程。

㈡ raft算法与paxos算法相比有什么优势,使用场景有什么差异

raft集成了成员管理,这个地方是唯一比paxos精妙的地方。里面的正确性的保证很有趣。
raft增加了committed状态,如同@郁白 所说,这个在paxos里没有具体说。raft可以看成multiple paxos的一个实现。
raft给你的基本是伪代码的描述了,方便实现。学理论的话还是paxos好。

大部分场景都可以用raft实现,paxos应该没什么能直接使用的场景,太理论了

㈢ 区块链目前用到哪些共识机制它们各自的优缺点和适用范围是什么

目前主要有四大类共识机制:Pow、Pos、DPos、Pool
1、Pow工作量证明,就是大家熟悉的挖矿,通过与或运算,计算出一个满足规则的随机数,即获得本次记账权,发出本轮需要记录的数据,全网其它节点验证后一起存储;
优点:完全去中心化,节点自由进出;
缺点:目前bitcoin已经吸引全球大部分的算力,其它再用Pow共识机制的区块链应用很难获得相同的算力来保障自身的安全;挖矿造成大量的资源浪费;共识达成的周期较长,不适合商业应用

2、Pos权益证明,Pow的一种升级共识机制;根据每个节点所占代币的比例和时间;等比例的降低挖矿难度,从而加快找随机数的速度。
优点:在一定程度上缩短了共识达成的时间
缺点:还是需要挖矿,本质上没有解决商业应用的痛点

3、DPos股份授权证明机制,类似于董事会投票,持币者投出一定数量的节点,代理他们进行验证和记账。
优点:大幅缩小参与验证和记账节点的数量,可以达到秒级的共识验证
缺点:整个共识机制还是依赖于代币,很多商业应用是不需要代币存在的

4、Pool验证池,基于传统的分布式一致性技术,加上数据验证机制;是目前行业链大范围在使用的共识机制
优点:不需要代币也可以工作,在成熟的分布式一致性算法(Pasox、Raft)基础上,实现秒级共识验证;
缺点:去中心化程度不如bictoin;更适合多方参与的多中心商业模式

在使用共识机制,保证数据一致性时的巨大优势(共识机制则是Ripple首先提出的,数据正确性优先的网络交易同步机制,在共识网络中,无论软件代码怎么变动,无法取得共识就无法进入网络,更不要提分叉了)。
——————————————————
PS:稍微自黑下,虽然共识机制绝对能确保任何时候都不会产生硬分叉。但是,这种机制的缺点也比较明显,那就是要取得与其他节点的共识,明显要比当前Bitcoin网络漫长的多。极端情况下,在Ripple共识机制网络中掉线的后果也是很恐怖的。

有可能你家停电一天,第二天整个系统就再也无法与其它Rippled节点取得共识了(共识机制事实上需要超过80%的节点承认了你的数据,你的提交才会被其它节点接受,否则就会被排它的拒绝连接),甚至只能清空自己全部500多GB数据重新同步才能连上其它Ripple节点。

所以目前来说,现有的Rippled端并不适合民用(商用的话影响就比较小,比如RL自己的Rippled节点托管在亚马逊云数据中心,长时间无响应是可以高额索赔的,而且那种地方除了大型灾害几乎不会断),这也是RL一直想改进的方面之一。

㈣ 共数识据是什么平台

共数识据是都会存在着一些信息泄露的隐患,因为有一些不法分子,会想法设法的获得用户的信息,他们就整天研究这些黑科技。

共识数据是BCOS平台。BCOS平台采用高效的PBFT、RAFT共识算法,采用插件化设计实现,通过修改系统配置,即可以在一个联盟链里使用不同的共识机制,参与到这个联盟链的所有节点必须采用同一种共识配置。

功能特性:

BCOS平台通过集成身份认证、非对称加密算法、引入技术治理功能、支持全面的监管审计功能等举措,可顺应多个行业的应用需求,满足中国金融业务要求,填补了区块链领域的空白,为区块链技术在中国各行业的应用以及推动分布式商业发展奠定了坚实的基础。

对于使用BCOS平台的开发者而言,既能够共享区块链的底层设施,包括共享云服务相关的技术、软件和代码,不需要每个开发成员重复投入,又能使用友好、简单、跨平台的应用开发API,与图形化管理台、及区块链浏览器等,加速开发流程,改善区块链产品的创建和管理体验。



㈤ raft算法是什么呢

raft是一种更为简单方便易于理解的分布式算法,主要解决了分布式中的一致性问题,相比传统的Paxos算法,Raft将大量的计算问题分解成为了一些简单的相对独立的子问题,相比于传统的一致性算法Paxos,Raft有一些自己的独特的特性,比如增加了强领导性,优化了领导的选举过程,在成员发生变化之后依然能够很好的进行工作。

以下是文章部分内容的翻译,来自Github,由于字数限制只摘取了算法的核心部分,建议阅读原文,寻找一种易于理解的一致性算法。

raft的内容

一致性算法允许一组机器像一个整体一样工作,即使其中一些机器出现故障也能够继续工作下去。正因为如此,一致性算法在构建可信赖的大规模软件系统中扮演着重要的角色,在过去的10年里,Paxos算法统治着一致性算法这一领域,绝大多数的实现都是基于Paxos或者受其影响。

同时Paxos也成为了教学领域里讲解一致性问题时的示例,但是不幸的是,尽管有很多工作都在尝试降低它的复杂性,但是Paxos算法依然十分难以理解,并且,Paxos自身的算法结构需要进行大幅的修改才能够应用到实际的系统中,这些都导致了工业界和学术界都对Paxos算法感到十分头疼。

㈥ 什么是混合共识算法

转载泛融科技创始人谭宜勇博士的回答:

共识是区块链技术的核心算法,也基本上决定了该链的效率。区块是机器之间所需要共识的内容。账户层面,通过OLog(n)的Merkle验证树,可以快速定位出被篡改的数据,遍历StateTree安全获取用户余额,防止双花的出现。

区块链通过共识算法,让机器之间达成信任的基础,从实践上就是去解决拜占庭将军问题。BFT(拜占庭将军容错)里面,3F+1<N可以说是重要的共识理论,在实践中,BFT有多种变种算法:PBFT、RBFT、Q/U、HQ、Zyzzyva、ABsTRACTs、Aardvark、Adapt、A2M-PBFT-EAandMinBFT等等。这些算法,都根据不同设定的场景,从消息的广播方式、节点网络拓扑、硬件配置等方面进行了效率的优化。共识目标是达成共识,最终的解决方案就是投票(Vote),无论是BFT、PoW、PoS、DPoS……投票就有点模拟人类的生产模式,在区块链里面,是机器去投票。BFT类似于4PC(四段式)提交,从PrePrepare,PrePare,Commit,Reply四个阶段。每个阶段都要把消息广播给网络中的所有节点,参与下一个阶段的投票。

BFT最大的问题是节点之间的消息广播,会特别多。而且必须事先确定本次消息投票的节点基数。结合BFT投票性能差的问题,我们提出了一种方案,让BFT仅仅参与很少的投票过程,例如就是节点基数上。假定有100个备选节点,如何选出21个节点出来?每个节点记多少个块?这100个节点的能否达到了当前最高的高度,网络延迟等性能能否达标?这些信息,实际上跟我们交易没有任何关系。但是又会影响到整个链的性能。我们用PBFT去解决节点基数问题,为后续的交易广播和区块投票,提供了更高更高效的基础设施。在这一层,大家都是平等的,没有权益的参与。

下一步,Raft是一个Leader-Follow的算法,每一轮Term会随机选出一个Leader来,负责交易的收集和广播,其他节点Follow主节点的信息。在垂直的区块链3.0应用中,对链上的VM性能要求更高,而不是简单的栈式计算(EVM)了。例如游戏的主服务器逻辑放,如果每个节点都参与VM的计算,会造成大量的资源浪费。大数据处理系统里面,Raft可以去解决分工问题,做一个工作的调度者,可以让任务公平、安全的分发到不同的节点机器上。这样好处是可以通过几台机器,构建一个超级机器。Raft共识在我们链中,负责交易的验证广播分发,这是成块的基础,如果交易都是错误的,那就无需要进入区块了。

最后我们结合了DPoS共识算法,随机生成当前的轮值节点,对已验证过的交易进行打包和区块头的广播。区块仅仅是个头部验证信息而已,可以快速的到达每台机器。关于轮值的节点,我们认为一个节点每次就记一次块。出块速度由网络较好的节点决定,由他们构成了超级节点记账模式。

㈦ SAC应用生态,相比于传统数据应用技术具有哪些优势

现在有许多的企业都极为关注SAC应用生态,因为希望可以通过它来确保企业的数据安全,为企业打造一个坚不可摧的数据安全模式。传统的数据应用技术可以说是存在一定的漏洞的,只要是企业的信息与网络连接就会被中心机构接收到,而中心机构为了赚取到更高的利益就会出卖企业的信息,进而损害企业的利益。SAC应用生态十分位应用链和数据链两种体系的,其中应用链采用的是DOCKER部署,能够有效的降低企业级应用的部署难度,基于SDK、接口、智能合约、可快速的开发各种业务应用,将支持多种语言编写智能合约,使得业务开发过程中更加符合企业级软件开发惯例。其中的共识采取可插拔模块机制,支持POW、POS,以及更高效的PBFT、RAFT共识算法,可以实现不同的共识机制,以满足不同的业务需求,支持分组多副本方式储存文件,并且在区块链中保存文件的哈希值和相关寻址信息,提高区块链的储存和网络同步效率。引入监管节点,令合规性以及可审计性得到更好保证,还支持多种加密模块。而数据链SAC应用生态接口层数据链可以与应用链进行交互,还可以提供一些如储存和验证类的BAAS的接口支持,用户可以开发自己的数据链以及数据链应用。总之,这种世界领先的计算机技术的严谨性是极高的,科学性更不在话下,故而绝对值得广大用户们体验。

㈧ 区块链的核心技术是什么

简单来说,区块链是一个提供了拜占庭容错、并保证了最终一致性的分布式数据库;从数据结构上看,它是基于时间序列的链式数据块结构;从节点拓扑上看,它所有的节点互为冗余备份;从操作上看,它提供了基于密码学的公私钥管理体系来管理账户。
或许以上概念过于抽象,我来举个例子,你就好理解了。
你可以想象有 100 台计算机分布在世界各地,这 100 台机器之间的网络是广域网,并且,这 100 台机器的拥有者互相不信任。
那么,我们采用什么样的算法(共识机制)才能够为它提供一个可信任的环境,并且使得:
节点之间的数据交换过程不可篡改,并且已生成的历史记录不可被篡改;
每个节点的数据会同步到最新数据,并且会验证最新数据的有效性;
基于少数服从多数的原则,整体节点维护的数据可以客观反映交换历史。
区块链就是为了解决上述问题而产生的技术方案。
二、区块链的核心技术组成
无论是公链还是联盟链,至少需要四个模块组成:P2P 网络协议、分布式一致性算法(共识机制)、加密签名算法、账户与存储模型。
1、P2P 网络协议
P2P 网络协议是所有区块链的最底层模块,负责交易数据的网络传输和广播、节点发现和维护。
通常我们所用的都是比特币 P2P 网络协议模块,它遵循一定的交互原则。比如:初次连接到其他节点会被要求按照握手协议来确认状态,在握手之后开始请求 Peer 节点的地址数据以及区块数据。
这套 P2P 交互协议也具有自己的指令集合,指令体现在在消息头(Message Header) 的 命令(command)域中,这些命令为上层提供了节点发现、节点获取、区块头获取、区块获取等功能,这些功能都是非常底层、非常基础的功能。如果你想要深入了解,可以参考比特币开发者指南中的 Peer Discovery 的章节。
2、分布式一致性算法
在经典分布式计算领域,我们有 Raft 和 Paxos 算法家族代表的非拜占庭容错算法,以及具有拜占庭容错特性的 PBFT 共识算法。
如果从技术演化的角度来看,我们可以得出一个图,其中,区块链技术把原来的分布式算法进行了经济学上的拓展。
在图中我们可以看到,计算机应用在最开始多为单点应用,高可用方便采用的是冷灾备,后来发展到异地多活,这些异地多活可能采用的是负载均衡和路由技术,随着分布式系统技术的发展,我们过渡到了 Paxos 和 Raft 为主的分布式系统。
而在区块链领域,多采用 PoW 工作量证明算法、PoS 权益证明算法,以及 DPoS 代理权益证明算法,以上三种是业界主流的共识算法,这些算法与经典分布式一致性算法不同的是,它们融入了经济学博弈的概念,下面我分别简单介绍这三种共识算法。
PoW: 通常是指在给定的约束下,求解一个特定难度的数学问题,谁解的速度快,谁就能获得记账权(出块)权利。这个求解过程往往会转换成计算问题,所以在比拼速度的情况下,也就变成了谁的计算方法更优,以及谁的设备性能更好。
PoS: 这是一种股权证明机制,它的基本概念是你产生区块的难度应该与你在网络里所占的股权(所有权占比)成比例,它实现的核心思路是:使用你所锁定代币的币龄(CoinAge)以及一个小的工作量证明,去计算一个目标值,当满足目标值时,你将可能获取记账权。
DPoS: 简单来理解就是将 PoS 共识算法中的记账者转换为指定节点数组成的小圈子,而不是所有人都可以参与记账。这个圈子可能是 21 个节点,也有可能是 101 个节点,这一点取决于设计,只有这个圈子中的节点才能获得记账权。这将会极大地提高系统的吞吐量,因为更少的节点也就意味着网络和节点的可控。
3、加密签名算法
在区块链领域,应用得最多的是哈希算法。哈希算法具有抗碰撞性、原像不可逆、难题友好性等特征。
其中,难题友好性正是众多 PoW 币种赖以存在的基础,在比特币中,SHA256 算法被用作工作量证明的计算方法,也就是我们所说的挖矿算法。
而在莱特币身上,我们也会看到 Scrypt 算法,该算法与 SHA256 不同的是,需要大内存支持。而在其他一些币种身上,我们也能看到基于 SHA3 算法的挖矿算法。以太坊使用了 Dagger-Hashimoto 算法的改良版本,并命名为 Ethash,这是一个 IO 难解性的算法。
当然,除了挖矿算法,我们还会使用到 RIPEMD160 算法,主要用于生成地址,众多的比特币衍生代码中,绝大部分都采用了比特币的地址设计。
除了地址,我们还会使用到最核心的,也是区块链 Token 系统的基石:公私钥密码算法。
在比特币大类的代码中,基本上使用的都是 ECDSA。ECDSA 是 ECC 与 DSA 的结合,整个签名过程与 DSA 类似,所不一样的是签名中采取的算法为 ECC(椭圆曲线函数)。
从技术上看,我们先从生成私钥开始,其次从私钥生成公钥,最后从公钥生成地址,以上每一步都是不可逆过程,也就是说无法从地址推导出公钥,从公钥推导到私钥。
4、账户与交易模型
从一开始的定义我们知道,仅从技术角度可以认为区块链是一种分布式数据库,那么,多数区块链到底使用了什么类型的数据库呢?
我在设计元界区块链时,参考了多种数据库,有 NoSQL 的 BerkelyDB、LevelDB,也有一些币种采用基于 SQL 的 SQLite。这些作为底层的存储设施,多以轻量级嵌入式数据库为主,由于并不涉及区块链的账本特性,这些存储技术与其他场合下的使用并没有什么不同。
区块链的账本特性,通常分为 UTXO 结构以及基于 Accout-Balance 结构的账本结构,我们也称为账本模型。UTXO 是“unspent transaction input/output”的缩写,翻译过来就是指“未花费的交易输入输出”。
这个区块链中 Token 转移的一种记账模式,每次转移均以输入输出的形式出现;而在 Balance 结构中,是没有这个模式的。

㈨ 请教个etcd中的raft算法问题

etcd是一个高可用的键值存储系统,主要用于共享配置和服务发现。etcd是由CoreOS开发并维护的,灵感来自于 ZooKeeper 和 Doozer,它使用Go语言编写,并通过Raft一致性算法处理日志复制以保证强一致性。Raft是一个来自Stanford的新的一致性算法,适用于分布式系统的日志复制,Raft通过选举的方式来实现一致性,在Raft中,任何一个节点都可能成为Leader。Google的容器集群管理系统Kubernetes、开源PaaS平台Cloud Foundry和CoreOS的Fleet都广泛使用了etcd。

㈩ 区块链几大共识机制及优缺点

首先,没有一种共识机制是完美无缺的,各共识机制都有其优缺点,有些共识机制是为解决一些特定的问题而生。
1.pow( Proof of Work)工作量证明
一句话介绍:干的越多,收的越多。
依赖机器进行数学运算来获取记账权,资源消耗相比其他共识机制高、可监管性弱,同时每次达成共识需要全网共同参与运算,性能效率比较低,容错性方面允许全网50%节点出错。
优点:
1)算法简单,容易实现;
2)节点间无需交换额外的信息即可达成共识;
3)破坏系统需要投入极大的成本;
缺点:
1)浪费能源;
2)区块的确认时间难以缩短;
3)新的区块链必须找到一种不同的散列算法,否则就会面临比特币的算力攻击;
4)容易产生分叉,需要等待多个确认;
5)永远没有最终性,需要检查点机制来弥补最终性;
2.POS Proof of Stake,权益证明
一句话介绍:持有越多,获得越多。
主要思想是节点记账权的获得难度与节点持有的权益成反比,相对于PoW,一定程度减少了数学运算带来的资源消耗,性能也得到了相应的提升,但依然是基于哈希运算竞争获取记账权的方式,可监管性弱。该共识机制容错性和PoW相同。它是Pow的一种升级共识机制,根据每个节点所占代币的比例和时间,等比例的降低挖矿难度,从而加快找随机数的速度
优点:在一定程度上缩短了共识达成的时间;不再需要大量消耗能源挖矿。
缺点:还是需要挖矿,本质上没有解决商业应用的痛点;所有的确认都只是一个概率上的表达,而不是一个确定性的事情,理论上有可能存在其他攻击影响。例如,以太坊的DAO攻击事件造成以太坊硬分叉,而ETC由此事件出现,事实上证明了此次硬分叉的失败。
DPOS与POS原理相同,只是选了一些“人大代表”。
BitShares社区首先提出了DPoS机制。
与PoS的主要区别在于节点选举若干代理人,由代理人验证和记账。其合规监管、性能、资源消耗和容错性与PoS相似。类似于董事会投票,持币者投出一定数量的节点,代理他们进行验证和记账。
DPoS的工作原理为:
去中心化表示每个股东按其持股比例拥有影响力,51%股东投票的结果将是不可逆且有约束力的。其挑战是通过及时而高效的方法达到51%批准。为达到这个目标,每个股东可以将其投票权授予一名代表。获票数最多的前100位代表按既定时间表轮流产生区块。每名代表分配到一个时间段来生产区块。所有的代表将收到等同于一个平均水平的区块所含交易费的10%作为报酬。如果一个平均水平的区块含有100股作为交易费,一名代表将获得1股作为报酬。
网络延迟有可能使某些代表没能及时广播他们的区块,而这将导致区块链分叉。然而,这不太可能发生,因为制造区块的代表可以与制造前后区块的代表建立直接连接。建立这种与你之后的代表(也许也包括其后的那名代表)的直接连接是为了确保你能得到报酬。
该模式可以每30秒产生一个新区块,并且在正常的网络条件下区块链分叉的可能性极其小,即使发生也可以在几分钟内得到解决。
成为代表:
成为一名代表,你必须在网络上注册你的公钥,然后分配到一个32位的特有标识符。然后该标识符会被每笔交易数据的“头部”引用。
授权选票:
每个钱包有一个参数设置窗口,在该窗口里用户可以选择一个或更多的代表,并将其分级。一经设定,用户所做的每笔交易将把选票从“输入代表”转移至“输出代表”。一般情况下,用户不会创建特别以投票为目的的交易,因为那将耗费他们一笔交易费。但在紧急情况下,某些用户可能觉得通过支付费用这一更积极的方式来改变他们的投票是值得的。
保持代表诚实:
每个钱包将显示一个状态指示器,让用户知道他们的代表表现如何。如果他们错过了太多的区块,那么系统将会推荐用户去换一个新的代表。如果任何代表被发现签发了一个无效的区块,那么所有标准钱包将在每个钱包进行更多交易前要求选出一个新代表。
抵抗攻击:
在抵抗攻击上,因为前100名代表所获得的权力权是相同的,每名代表都有一份相等的投票权。因此,无法通过获得超过1%的选票而将权力集中到一个单一代表上。因为只有100名代表,可以想象一个攻击者对每名轮到生产区块的代表依次进行拒绝服务攻击。幸运的是,由于事实上每名代表的标识是其公钥而非IP地址,这种特定攻击的威胁很容易被减轻。这将使确定DDOS攻击目标更为困难。而代表之间的潜在直接连接,将使妨碍他们生产区块变得更为困难。
优点:大幅缩小参与验证和记账节点的数量,可以达到秒级的共识验证。
缺点:整个共识机制还是依赖于代币,很多商业应用是不需要代币存在的。
3.PBFT :Practical Byzantine Fault Tolerance,实用拜占庭容错
介绍:在保证活性和安全性(liveness & safety)的前提下提供了(n-1)/3的容错性。
在分布式计算上,不同的计算机透过讯息交换,尝试达成共识;但有时候,系统上协调计算机(Coordinator / Commander)或成员计算机 (Member /Lieutanent)可能因系统错误并交换错的讯息,导致影响最终的系统一致性。
拜占庭将军问题就根据错误计算机的数量,寻找可能的解决办法,这无法找到一个绝对的答案,但只可以用来验证一个机制的有效程度。
而拜占庭问题的可能解决方法为:
在 N ≥ 3F + 1 的情况下一致性是可能解决。其中,N为计算机总数,F为有问题计算机总数。信息在计算机间互相交换后,各计算机列出所有得到的信息,以大多数的结果作为解决办法。
1)系统运转可以脱离币的存在,pbft算法共识各节点由业务的参与方或者监管方组成,安全性与稳定性由业务相关方保证。
2)共识的时延大约在2~5秒钟,基本达到商用实时处理的要求。
3)共识效率高,可满足高频交易量的需求。
缺点:
1)当有1/3或以上记账人停止工作后,系统将无法提供服务;
2)当有1/3或以上记账人联合作恶,且其它所有的记账人被恰好分割为两个网络孤岛时,恶意记账人可以使系统出现分叉,但是会留下密码学证据
下面说两个国产的吧~
4.dBFT: delegated BFT 授权拜占庭容错算法
介绍:小蚁采用的dBFT机制,是由权益来选出记账人,然后记账人之间通过拜占庭容错算法来达成共识。
此算法在PBFT基础上进行了以下改进:
将C/S架构的请求响应模式,改进为适合P2P网络的对等节点模式;
将静态的共识参与节点改进为可动态进入、退出的动态共识参与节点;
为共识参与节点的产生设计了一套基于持有权益比例的投票机制,通过投票决定共识参与节点(记账节点);
在区块链中引入数字证书,解决了投票中对记账节点真实身份的认证问题。
优点:
1)专业化的记账人;
2)可以容忍任何类型的错误;
3)记账由多人协同完成,每一个区块都有最终性,不会分叉;
4)算法的可靠性有严格的数学证明;
缺点:
1)当有1/3或以上记账人停止工作后,系统将无法提供服务;
2)当有1/3或以上记账人联合作恶,且其它所有的记账人被恰好分割为两个网络孤岛时,恶意记账人可以使系统出现分叉,但是会留下密码学证据;
以上总结来说,dBFT机制最核心的一点,就是最大限度地确保系统的最终性,使区块链能够适用于真正的金融应用场景。
5.POOL验证池
基于传统的分布式一致性技术,加上数据验证机制。
优点:不需要代币也可以工作,在成熟的分布式一致性算法(Pasox、Raft)基础上,实现秒级共识验证。
缺点:去中心化程度不如bictoin;更适合多方参与的多中心商业模式。

热点内容
炒币usDt技巧 发布:2025-06-22 16:33:50 浏览:978
usdt近期情况 发布:2025-06-22 16:33:47 浏览:646
比特币矿机为什么要显卡 发布:2025-06-22 16:32:57 浏览:837
以太坊storage 发布:2025-06-22 16:31:30 浏览:660
区块链的心态 发布:2025-06-22 16:24:53 浏览:961
区块链项目售卖 发布:2025-06-22 16:23:48 浏览:166
比特币价格走势视频 发布:2025-06-22 16:22:24 浏览:469
比特币何时再到3000美刀 发布:2025-06-22 16:22:17 浏览:645
区块链交易所国内经营策略 发布:2025-06-22 15:59:49 浏览:339
苹果公司元宇宙 发布:2025-06-22 15:59:39 浏览:464