区块链安全性的体现
⑴ 区块链的特点
一、去中心化。
区块链技术不依赖额外的第三方管理机构或硬件设施,没有中心管制,除了自成一体的区块链本身,通过分布式核算和存储,各个节点实现了信息自我验证、传递和管理。
二、开放性。
区块链技术基础是开源的,除了交易各方的私有信息被加密外,区块链的数据对所有人开放,任何人都可以通过公开的接口查询区块链数据和开发相关应用,因此整个系统信息高度透明。
三、独立性。
基于协商一致的规范和协议(类似比特币采用的哈希算法等各种数学算法),整个区块链系统不依赖其他第三方,所有节点能够在系统内自动安全地验证、交换数据,不需要任何人为的干预。
四、安全性。
只要不能掌控全部数据节点的51%,就无法肆意操控修改网络数据,这使区块链本身变得相对安全,避免了主观人为的数据变更 。
五、匿名性。
除非有法律规范要求,单从技术上来讲,各区块节点的身份信息不需要公开或验证,信息传递可以匿名进行 。
拓展资料:
1、什么是区块链?一句话概括。
答:区块链是加密的数据库链条,即在多个时间戳/事件内交易数据加密后关联在一起,数据不可篡改可共享。
2、表现及逻辑:
a、外部操作表现形式:银行存取款汇款、记进出账、购物等。
b、内部逻辑处理(软件程序):人为操作后数据会先加密后存储到数据库,经过程序对数据进行划分区域,比如根据事件、时间戳内发生的数据进行归类放在一起为一个区域的数据。多个事件、时间戳内发生的数据相关联就是区块链。这样加密的数据可共享,但不可篡改。
c、共享表现形式:查询个人信息、查账等。查询权限/共享权限:权限不同查询的数据不同,如银行可以查所有人信息,个人只能查个人。
3、举的例子大多不同,但逻辑处理的思路是一致的,只不过实现方法和操作不一而已。
4、区块链:具有加密数据、不可篡改数据、共享数据特点。
5、区块链技术:即用编辑的程序对数据进行加密、分区、共享等运用的技术。
开放,共识,任何人都可以参与到区块链网络,每一台设备都能作为一个节点,每个节点都允许获得一份完整的数据库拷贝,节点之间基于一套共识机制,通过竞争计算共同维护整个区块链。
去中心化、去信任机制,区块链由众多的节点共同组成一个点对点的网络,不存在中心化的设备和管理机构,节点之间数据交互通过数字签名技术进行验证,不需要信任,只需要按照设置好的规则就行,节点之间不存在欺骗不信任的问题。
交易透明,双方匿名,区块链的运行规则是公开透明的,所有的数据信息也是公开的,每笔交易都是对所有节点公开可见,由于节点之间是去信任的,因此节点不需要公开身份,每个参与的节点都是匿名的。
不可篡改,可追溯,单个节点甚至多个节点对数据库的修改无法影响其他节点的数据库,区块链中的每一笔交易都通过密码学方法与两个相邻的两个区块串联,因此可以追溯每一笔交易的所有记录。
⑵ 区块链的投资价值和安全性
区块链的投资价值
区块链被认为是互联网发明以来最具有颠覆性的技术创新。区块链融合了密码学、经济学、博弈论以及计算机学科等多个学科,具有交易不可逆、数据不可篡改的特点,在很多领域具备商业价值,应用研究已拓展至金融、能源、物流、教育、文化和社会服务等领域。
区块链技术将为云计算、大数据、物联网、人工智能等等新一代信息技术的发展创造机遇,可以全方位地推进信息技术升级换代和实现信息产业的跨越式发展。
区块链的额安全性
隐私保护性 密码学保证了未经授权者能访问到数据,但无法解析。
随之带来的业务特性包括 可信任性:区块链可以提供天然可行的分布式账本平台,不需要额外第三方中介机构;
增强安全:区块链技术有利于安全可靠的审计管理和账目清算,减少犯罪的可能性和各种风险。
⑶ 区块链的应用方面
区块链主要应用的范围包括:数字货币、金融资产的交易结算、数字政务、存证防伪数据服务等领域。区块链是将数据区块有序链接,每个区块负责记录一个文件数据,并进行加密来确保数据不能够被修改和伪造的数据库技术。
区块链本质上是一个应用了密码学技术的多方参与、共同维护、持续增长的分布式数据库系统也称为分布式共享账本。共享账本中的每一页就是一个区块,每一个区块写满了交易记录,区块链技术匿名性、去中心化、公开透明、不可篡改等特点让其备受企业的青睐,得到了更加广泛的应用尝试。
区块链应用范围
1.金融领域
区块链能够提供信任机制,具备改变金融基础架构的潜力,各类金融资产如股权、债券、票据、仓单、基金份额等都可以被整合到区块链技术体系中,成为链上的数字资产,在区块链上进行存储、转移和交易。
区块链技术的去中心化,能够降低交易成本,使金融交易更加便捷、直观和安全。区块链技术与金融业相结合,必然会创造出越来越多的业务模式、服务场景、业务流程和金融产品,从而给金融市场、金融机构、金融服务及金融业态发展带来更多影响。随着区块链技术的改进及区块链技术与其他金融科技的结合,区块链技术将逐步适应大规模金融场景的应用。
2.公共服务领域
传统的公共服务依赖于有限的数据维度,获得的信息可能不够全面且有一定的滞后性。区块链不可篡改的特性使链上的数字化证明可信度极高,在产权、公证及公益等领域都可以以此建立全新的认证机制,改善公共服务领域的管理水平。
公益流程中的相关信息如捐赠项目、募集明细、资金流向、受助人反馈等,均可存放于区块链上,在满足项目参与者隐私保护及其他相关法律法规要求的前提下,有条件地进行公开公示,方便公众和社会监督。
3.
信息安全领域
利用区块链可追溯、不可篡改的特性,可以确保数据来源的真实性,同时保证数据的不可伪造性,区块链技术将从根本上改变信息传播路径的安全问题。
区块链对于信息安全领域体现在以下三点:
- 用户身份认证保护
- 数据完整性保护
- 有效阻止 DDoS 攻击
区块链的分布式存储架构则会令黑客无所适从,已经有公司着手开发基于区块链的分布式互联网域名系统,绝除当前 DNS 注册弊病的祸根,使网络系统更加干净透明。
4.物联网领域
区块链+物联网,可以让物联网上的每个设备独立运行,整个网络产生的信息可以通过区块链的智能合约进行保障。
安全性:传统物联网设备极易遭受攻击,数据易受损失且维护费用高昂。物联网设备典型的信息安全风险问题包括,固件版本过低、缺少安全补丁、存在权限漏洞、设备网络端口过多、未加密的信息传输等。区块链的全网节点验证的共识机制、不对称加密技术及数据分布式存储将大幅降低黑客攻击的风险。
可信性:传统物联网由中心化的云服务器进行管控,因设备的安全性和中心化服务器的不透明性,用户的隐私数据难以得到有效保障。而区块链是一个分布式账簿,各区块既相互联系又有各自独立的工作能力,保证链上信息不会被随意篡改。因此分布式账本可以为物联网提供信任、所有权记录、透明性和通信支持。
效益性:受限于云服务和维护成本,物联网难以实现大规模商用。传统物联网实现物物通信是经由中心化的云服务器。该模式的弊端是,随着接入设备的增多,服务器面临的负载也更多,需要企业投入大量资金来维持物联网体系的正常运转。
而区块链技术可以直接实现点对点交易,省略了中间其他中介机构或人员的劳务支出,可以有效减少第三方服务所产生的费用,实现效益最大化。
5.供应链领域
供应链由众多参与主体构成,存在大量交互协作,信息被离散地保存在各自的系统中,缺乏透明度。信息的不流畅导致各参与主体难以准确地了解相关事项的实时状况及存在问题,影响供应链的协同效率。当各主体间出现纠纷时,举证和追责耗时费力。
区块链可以使数据在各主体之间公开透明,从而在整个供应链条上形成完整、流畅、不可篡改的信息流。这可以确保各主体及时发现供应链系统运行过程中产生的问题,并有针对性地找到解决方案,进而提升供应链管理的整体效率。
6.汽车产业
去年宣布合伙使用区块链建立一个概念证明来简化汽车租赁过程,并把它建成一个“点击,签约,和驾驶的过程。未来的客户选择他们想要租赁的汽车,进入区块链的公共总账;然后,坐在驾驶座上,客户签订租赁协议和保险政策,而区块链则是同步更新信息。这不是个想象,对于汽车销售和汽车登记来说,这种类型的过程也可能会发展为现实。
7.股票交易
很多年来,许多公司致力于使得买进、卖出、交易股票的过程变得容易。新兴区块链创业公司认为,区块链技术可以使这一过程更加安全和自动化,并且比以往任何解决方案与此同时,区块链初创公司 Chain 正和纳斯达克合作,通过区块链实现私有公司的股权交
8.政府管理
政务信息、项目招标等信息公开透明,政府工作通常受公众关注和监督,由于区块链技术能够保证信息的透明性和不可更改性,对政府透明化管理的落实有很大的作用。政府项目招标存在一定的信息不透明性,而企业在密封投标过程中也存在信息泄露风险。区块链能够保证投标信息无法篡改,并能保证信息的透明性,在彼此不信任的竞争者之间形成信任共只。并能够通过区块链安排后续的智能合约,保证项目的建设进度,一定程度上防止了腐败的滋生。
区块链技术应用还有很多很多,这只是区块链应用的一下支点。未来区块链技术将应用各个地方
⑷ 区块链它是如何安全的
区块链中的安全性来自一些属性。
1.挖掘块需要使用资源。
2.每个块包含之前块的哈希值。
想象一下,如果攻击者想要通过改变5个街区之前的交易来改变链条。如果他们篡改了块,则块的哈希值会发生变化。然后攻击者必须将指针从下一个块更改为更改的块,然后更改下一个块的哈希值...这将一直持续到链的末尾。这意味着块体在链条的后面越远,其变化的阻力就越大。
实际上,攻击者必须模拟整个网络的哈希能力,直到链的前端。然而,当攻击者试图攻击时,链继续向前移动。如果攻击者的哈希值低于链的其余部分(<50%),那么他们将始终追赶并且永远不会产生最长的链。因此,这种类型的区块链可以抵御攻击,其中攻击者的哈希值低于50%。
当攻击者拥有51%的哈希值时,他们可以使用有效事务列表重写网络历史记录。这是因为他们可以比网络的其他部分更快地重新计算任何块排序的哈希值,因此它们最终可以保证更长的链。51%攻击的主要危险是双重花费的可能性。这简单的意思是攻击者可以购买一件物品并表明他们已经在区块链上用任意数量的确认付款。一旦他们收到了该物品,他们就可以对区块链进行重新排序,使其不包括发送交易,从而获得退款。
即使攻击者拥有>50%的哈希值,攻击者也只能造成这么大的伤害。他们不能做诸如将钱从受害者的账户转移到他们的账户或打印更多硬币之类的事情。这是因为所有交易都由帐??户所有者签署,因此即使他们控制整个网络,也无法伪造帐户签名。
⑸ 区块链使用安全如何来保证呢
区块链本身解决的就是陌生人之间大规模协作问题,即陌生人在不需要彼此信任的情况下就可以相互协作。那么如何保证陌生人之间的信任来实现彼此的共识机制呢?中心化的系统利用的是可信的第三方背书,比如银行,银行在老百姓看来是可靠的值得信任的机构,老百姓可以信赖银行,由银行解决现实中的纠纷问题。但是,去中心化的区块链是如何保证信任的呢?
实际上,区块链是利用现代密码学的基础原理来确保其安全机制的。密码学和安全领域所涉及的知识体系十分繁杂,我这里只介绍与区块链相关的密码学基础知识,包括Hash算法、加密算法、信息摘要和数字签名、零知识证明、量子密码学等。您可以通过这节课来了解运用密码学技术下的区块链如何保证其机密性、完整性、认证性和不可抵赖性。
基础课程第七课 区块链安全基础知识
一、哈希算法(Hash算法)
哈希函数(Hash),又称为散列函数。哈希函数:Hash(原始信息) = 摘要信息,哈希函数能将任意长度的二进制明文串映射为较短的(一般是固定长度的)二进制串(Hash值)。
一个好的哈希算法具备以下4个特点:
1、 一一对应:同样的明文输入和哈希算法,总能得到相同的摘要信息输出。
2、 输入敏感:明文输入哪怕发生任何最微小的变化,新产生的摘要信息都会发生较大变化,与原来的输出差异巨大。
3、 易于验证:明文输入和哈希算法都是公开的,任何人都可以自行计算,输出的哈希值是否正确。
4、 不可逆:如果只有输出的哈希值,由哈希算法是绝对无法反推出明文的。
5、 冲突避免:很难找到两段内容不同的明文,而它们的Hash值一致(发生碰撞)。
举例说明:
Hash(张三借给李四10万,借期6个月) = 123456789012
账本上记录了123456789012这样一条记录。
可以看出哈希函数有4个作用:
简化信息
很好理解,哈希后的信息变短了。
标识信息
可以使用123456789012来标识原始信息,摘要信息也称为原始信息的id。
隐匿信息
账本是123456789012这样一条记录,原始信息被隐匿。
验证信息
假如李四在还款时欺骗说,张三只借给李四5万,双方可以用哈希取值后与之前记录的哈希值123456789012来验证原始信息
Hash(张三借给李四5万,借期6个月)=987654321098
987654321098与123456789012完全不同,则证明李四说谎了,则成功的保证了信息的不可篡改性。
常见的Hash算法包括MD4、MD5、SHA系列算法,现在主流领域使用的基本都是SHA系列算法。SHA(Secure Hash Algorithm)并非一个算法,而是一组hash算法。最初是SHA-1系列,现在主流应用的是SHA-224、SHA-256、SHA-384、SHA-512算法(通称SHA-2),最近也提出了SHA-3相关算法,如以太坊所使用的KECCAK-256就是属于这种算法。
MD5是一个非常经典的Hash算法,不过可惜的是它和SHA-1算法都已经被破解,被业内认为其安全性不足以应用于商业场景,一般推荐至少是SHA2-256或者更安全的算法。
哈希算法在区块链中得到广泛使用,例如区块中,后一个区块均会包含前一个区块的哈希值,并且以后一个区块的内容+前一个区块的哈希值共同计算后一个区块的哈希值,保证了链的连续性和不可篡改性。
二、加解密算法
加解密算法是密码学的核心技术,从设计理念上可以分为两大基础类型:对称加密算法与非对称加密算法。根据加解密过程中所使用的密钥是否相同来加以区分,两种模式适用于不同的需求,恰好形成互补关系,有时也可以组合使用,形成混合加密机制。
对称加密算法(symmetric cryptography,又称公共密钥加密,common-key cryptography),加解密的密钥都是相同的,其优势是计算效率高,加密强度高;其缺点是需要提前共享密钥,容易泄露丢失密钥。常见的算法有DES、3DES、AES等。
非对称加密算法(asymmetric cryptography,又称公钥加密,public-key cryptography),与加解密的密钥是不同的,其优势是无需提前共享密钥;其缺点在于计算效率低,只能加密篇幅较短的内容。常见的算法有RSA、SM2、ElGamal和椭圆曲线系列算法等。 对称加密算法,适用于大量数据的加解密过程;不能用于签名场景:并且往往需要提前分发好密钥。非对称加密算法一般适用于签名场景或密钥协商,但是不适于大量数据的加解密。
三、信息摘要和数字签名
顾名思义,信息摘要是对信息内容进行Hash运算,获取唯一的摘要值来替代原始完整的信息内容。信息摘要是Hash算法最重要的一个用途。利用Hash函数的抗碰撞性特点,信息摘要可以解决内容未被篡改过的问题。
数字签名与在纸质合同上签名确认合同内容和证明身份类似,数字签名基于非对称加密,既可以用于证明某数字内容的完整性,同时又可以确认来源(或不可抵赖)。
我们对数字签名有两个特性要求,使其与我们对手写签名的预期一致。第一,只有你自己可以制作本人的签名,但是任何看到它的人都可以验证其有效性;第二,我们希望签名只与某一特定文件有关,而不支持其他文件。这些都可以通过我们上面的非对称加密算法来实现数字签名。
在实践中,我们一般都是对信息的哈希值进行签名,而不是对信息本身进行签名,这是由非对称加密算法的效率所决定的。相对应于区块链中,则是对哈希指针进行签名,如果用这种方式,前面的是整个结构,而非仅仅哈希指针本身。
四 、零知识证明(Zero Knowledge proof)
零知识证明是指证明者在不向验证者提供任何额外信息的前提下,使验证者相信某个论断是正确的。
零知识证明一般满足三个条件:
1、 完整性(Complteness):真实的证明可以让验证者成功验证;
2、 可靠性(Soundness):虚假的证明无法让验证者通过验证;
3、 零知识(Zero-Knowledge):如果得到证明,无法从证明过程中获知证明信息之外的任何信息。
五、量子密码学(Quantum cryptography)
随着量子计算和量子通信的研究受到越来越多的关注,未来量子密码学将对密码学信息安全产生巨大冲击。
量子计算的核心原理就是利用量子比特可以同时处于多个相干叠加态,理论上可以通过少量量子比特来表达大量信息,同时进行处理,大大提高计算速度。
这样的话,目前的大量加密算法,从理论上来说都是不可靠的,是可被破解的,那么使得加密算法不得不升级换代,否则就会被量子计算所攻破。
众所周知,量子计算现在还仅停留在理论阶段,距离大规模商用还有较远的距离。不过新一代的加密算法,都要考虑到这种情况存在的可能性。
⑹ 区块链如何保证使用安全
区块链项目(尤其是公有链)的一个特点是开源。通过开放源代码,来提高项目的可信性,也使更多的人可以参与进来。但源代码的开放也使得攻击者对于区块链系统的攻击变得更加容易。近两年就发生多起黑客攻击事件,近日就有匿名币Verge(XVG)再次遭到攻击,攻击者锁定了XVG代码中的某个漏洞,该漏洞允许恶意矿工在区块上添加虚假的时间戳,随后快速挖出新块,短短的几个小时内谋取了近价值175万美元的数字货币。虽然随后攻击就被成功制止,然而没人能够保证未来攻击者是否会再次出击。
当然,区块链开发者们也可以采取一些措施
一是使用专业的代码审计服务,
二是了解安全编码规范,防患于未然。
密码算法的安全性
随着量子计算机的发展将会给现在使用的密码体系带来重大的安全威胁。区块链主要依赖椭圆曲线公钥加密算法生成数字签名来安全地交易,目前最常用的ECDSA、RSA、DSA 等在理论上都不能承受量子攻击,将会存在较大的风险,越来越多的研究人员开始关注能够抵抗量子攻击的密码算法。
当然,除了改变算法,还有一个方法可以提升一定的安全性:
参考比特币对于公钥地址的处理方式,降低公钥泄露所带来的潜在的风险。作为用户,尤其是比特币用户,每次交易后的余额都采用新的地址进行存储,确保有比特币资金存储的地址的公钥不外泄。
共识机制的安全性
当前的共识机制有工作量证明(Proof of Work,PoW)、权益证明(Proof of Stake,PoS)、授权权益证明(Delegated Proof of Stake,DPoS)、实用拜占庭容错(Practical Byzantine Fault Tolerance,PBFT)等。
PoW 面临51%攻击问题。由于PoW 依赖于算力,当攻击者具备算力优势时,找到新的区块的概率将会大于其他节点,这时其具备了撤销已经发生的交易的能力。需要说明的是,即便在这种情况下,攻击者也只能修改自己的交易而不能修改其他用户的交易(攻击者没有其他用户的私钥)。
在PoS 中,攻击者在持有超过51%的Token 量时才能够攻击成功,这相对于PoW 中的51%算力来说,更加困难。
在PBFT 中,恶意节点小于总节点的1/3 时系统是安全的。总的来说,任何共识机制都有其成立的条件,作为攻击者,还需要考虑的是,一旦攻击成功,将会造成该系统的价值归零,这时攻击者除了破坏之外,并没有得到其他有价值的回报。
对于区块链项目的设计者而言,应该了解清楚各个共识机制的优劣,从而选择出合适的共识机制或者根据场景需要,设计新的共识机制。
智能合约的安全性
智能合约具备运行成本低、人为干预风险小等优势,但如果智能合约的设计存在问题,将有可能带来较大的损失。2016 年6 月,以太坊最大众筹项目The DAO 被攻击,黑客获得超过350 万个以太币,后来导致以太坊分叉为ETH 和ETC。
对此提出的措施有两个方面:
一是对智能合约进行安全审计,
二是遵循智能合约安全开发原则。
智能合约的安全开发原则有:对可能的错误有所准备,确保代码能够正确的处理出现的bug 和漏洞;谨慎发布智能合约,做好功能测试与安全测试,充分考虑边界;保持智能合约的简洁;关注区块链威胁情报,并及时检查更新;清楚区块链的特性,如谨慎调用外部合约等。
数字钱包的安全性
数字钱包主要存在三方面的安全隐患:第一,设计缺陷。2014 年底,某签报因一个严重的随机数问题(R 值重复)造成用户丢失数百枚数字资产。第二,数字钱包中包含恶意代码。第三,电脑、手机丢失或损坏导致的丢失资产。
应对措施主要有四个方面:
一是确保私钥的随机性;
二是在软件安装前进行散列值校验,确保数字钱包软件没有被篡改过;
三是使用冷钱包;
四是对私钥进行备份。
⑺ 大家如何看待区块链技术的安全性
全节点算力攻击。全网51%的算力攻击,这个可能性也是有的,目前算力大部分掌握在矿池,矿池的壮大则有可能导致,目前任何行业都有拔尖的企业,矿池同样可以做到,这就造成了一定的风险。
⑻ 区块链的技术特点主要体现在哪些方面
“区块链是一种共享的分布式数据库技术,其优势主要突出表现在分布式去中心化、无须信任系统和不可篡改和加密安全性三个方面。”
一、区块链技术的含义
区块链(BlockChain)技术是一种使用去中心化共识机制去维护一个完整的、分布式的、不可篡改的账本数据库的技术,它能够让区块链中的参与者在无需建立信任关系的前提下实现一个统一的账本系统。区块是公共帐本,多点维护;链就是盖上时间戳(Timestamps),不可伪造。区块链本质上是一个注重安全和可信度胜过效率的一项技术。
目前所有的系统背后都有一个数据库,也就是一个大账本。那么谁来记这个账本就变得很重要。现在就是谁的系统谁来记账,各个银行的账本就是各个银行在记,支付宝的账本就是阿里在记。但现在区块链系统中,系统中的每个人都可以有机会参与记账。在一定时间段内如果有新的交易数据变化,系统中每个人都可以来进行记账,系统会评判这段时间内记账最快最好的人,将其记录的内容写到账本,并将这段时间内账本内容发给系统内所有的其他人进行备份。这样系统中的每个人都有一本完整的账本。
因此,这些数据就会变得非常安全。篡改者需要同时修改超过半数的系统节点数据才能真正的篡改数据。这种篡改的代价极高,导致几乎不可能。例如,比特币运行已经超过7年,全球无数的黑客尝试攻击比特币,但是至今为止没有出现过交易错误,可以认为比特币区块链被证明是一个安全可靠的系统。因此可以认为,区块链技术就是一个全民参与记账的方式,它将带来的是记账方式的革新。
⑼ 区块链的安全法则
区块链的安全法则,即第一法则:
存储即所有
一个人的财产归属及安全性,从根本上来说取决于财产的存储方式及定义权。在互联网世界里,海量的用户数据存储在平台方的服务器上,所以,这些数据的所有权至今都是个迷,一如你我的社交ID归谁,难有定论,但用户数据资产却推高了平台的市值,而作为用户,并未享受到市值红利。区块链世界使得存储介质和方式的变化,让资产的所有权交付给了个体。
拓展资料
区块链系统面临的风险不仅来自外部实体的攻击,也可能有来自内 部参与者的攻击,以及组件的失效,如软件故障。因此在实施之前,需 要制定风险模型,认清特殊的安全需求,以确保对风险和应对方案的准 确把握。
1. 区块链技术特有的安全特性
● (1) 写入数据的安全性
在共识机制的作用下,只有当全网大部分节点(或多个关键节点)都 同时认为这个记录正确时,记录的真实性才能得到全网认可,记录数据才 允许被写入区块中。
● (2) 读取数据的安全性
区块链没有固有的信息读取安全限制,但可以在一定程度上控制信 息读取,比如把区块链上某些元素加密,之后把密钥交给相关参与者。同时,复杂的共识协议确保系统中的任何人看到的账本都是一样的,这是防 止双重支付的重要手段。
● (3) 分布式拒绝服务(DDOS)
攻击抵抗 区块链的分布式架构赋予其点对点、多冗余特性,不存在单点失效的问题,因此其应对拒绝服务攻击的方式比中心化系统要灵活得多。即使一个节点失效,其他节点不受影响,与失效节点连接的用户无法连入系统, 除非有支持他们连入其他节点的机制。
2. 区块链技术面临的安全挑战与应对策略
● (1) 网络公开不设防
对公有链网络而言,所有数据都在公网上传输,所有加入网络的节点 可以无障碍地连接其他节点和接受其他节点的连接,在网络层没有做身份验证以及其他防护。针对该类风险的应对策略是要求更高的私密性并谨慎控制网络连接。对安全性较高的行业,如金融行业,宜采用专线接入区块链网络,对接入的连接进行身份验证,排除未经授权的节点接入以免数据泄漏,并通过协议栈级别的防火墙安全防护,防止网络攻击。
● (2) 隐私
公有链上交易数据全网可见,公众可以跟踪这些交易,任何人可以通过观察区块链得出关于某事的结论,不利于个人或机构的合法隐私保护。 针对该类风险的应对策略是:
第一,由认证机构代理用户在区块链上进行 交易,用户资料和个人行为不进入区块链。
第二,不采用全网广播方式, 而是将交易数据的传输限制在正在进行相关交易的节点之间。
第三,对用 户数据的访问采用权限控制,持有密钥的访问者才能解密和访问数据。
第四,采用例如“零知识证明”等隐私保护算法,规避隐私暴露。
● (3) 算力
使用工作量证明型的区块链解决方案,都面临51%算力攻击问题。随 着算力的逐渐集中,客观上确实存在有掌握超过50%算力的组织出现的可 能,在不经改进的情况下,不排除逐渐演变成弱肉强食的丛林法则。针对 该类风险的应对策略是采用算法和现实约束相结合的方式,例如用资产抵 押、法律和监管手段等进行联合管控。
⑽ 区块链技术是如何保证数据的安全性的
私有密钥 ~