当前位置:首页 » 区块链知识 » 区块链的特点共识机制

区块链的特点共识机制

发布时间: 2023-02-15 11:13:21

『壹』 区块链的基本特征是什么

答:区块链的基本特征

一、去中心化。
区块链技术不依赖额外的第三方管理机构或硬件设施,没有中心管制,除了自成一体的区块链本身,通过分布式核算和存储,各个节点实现了信息自我验证、传递和管理。

二、开放性。

区块链技术基础是开源的,除了交易各方的私有信息被加密外,区块链的数据对所有人开放,任何人都可以通过公开的接口查询区块链数据和开发相关应用,因此整个系统信息高度透明 。

三、独立性。

基于协商一致的规范和协议(类似比特币采用的哈希算法等各种数学算法),整个区块链系统不依赖其他第三方,所有节点能够在系统内自动安全地验证、交换数据,不需要任何人为的干预 。

四、安全性。

只要不能掌控全部数据节点的51%,就无法肆意操控修改网络数据,这使区块链本身变得相对安全,避免了主观人为的数据变更 。

五、匿名性。

除非有法律规范要求,单从技术上来讲,各区块节点的身份信息不需要公开或验证,信息传递可以匿名进行 。

『贰』 区块链的共识机制是什么

如何让去中心化网络达成共识?
在区块链系统当中,没有一个像银行一样的中心化记账机构,保证每一笔交易在所有记账节点上的一致性,即让全网达成共识至关重要。共识机制解决的就是这个问题。
目前主要的共识机制有工作量证明机制PoW和权益证明机制PoS。
PoW通过评估你的工作量来决定你获得记账权的机率,工作量越大,就越有可能获得此次记账机会。
PoS通过评估你持有代币的数量和时长来决定你获得记账权的机率。这就类似于股票的分红制度,持有股权相对多的人能够获得更多的分红。
DPOS与POS原理相似,只是选了一些“人大代表”。 与PoS的主要区别在于节点选举若干代理人,由代理人验证和记账。
随着技术的发展,未来可能还会诞生更先进的共识机制。

『叁』 区块链的特征包括什么

安全性高。区块链不受任何人和实体的控制,数据在多台计算机上完整的复制。攻击者没有一个单一的入口点,数据安全更有保障。数据不可篡改,一旦进入区块链,任何信息都是无法更改的,甚至管理员也无法修改此信息。无第三方并且可访问。区块链的去中心和帮助对点交易,无论是交易还是交换资金,都无需等三方批准。而且,网络中是有的节点都可以轻松访问信息。
区块链最大的特性是去中心化,去中心化意味着所有操作都部署在分布式账本上,而不再部署在中心化机构的服务器上。
区块链是分布式数据存储,点对点传输,共识机制,加密算法等计算机技术相结合的新型应用。
基本特征包含:去中心化,开放性,自治性,信息不可篡改,匿名性。
1.去中心化
由于区块链使用分布式存储,没有中心硬件和机构,任何节点的权利和责任都是平等的,系统中的数据由所有节点共同维护。
而传统互联网,比如脸书,腾讯,十数亿人的隐私数据由一家公司管理,一个中央服务器维护。
因此,传统互联网数据库,安全性和隐私性欠缺,时常发生黑客盗用,泄露事件。
2.开放性
区块链系统是开放的,公链代码是开源的。除了交易各方的私有信息进行加密,数据是对大众公开的。任何人都能对数据进行查询,系统数据高度透明。
3.自治性
自治性建立在规范和协议的基础之上。区块链技术采用基于协商一致的规范和协议(比如公开透明的算法)。
让系统里所有节点都能在去信任的环境中自由安全地交换数据。
将传统互联网对人的信任,改变成对数学,密码学,计算机等物理机器的信任,
任何人都无法干涉区块链协议信任。
4.数据不可篡改
信息一经所有节点验证并添加到区块链上,就会被永久记录下来。
除非同时控制系统里51%以上的节点,否则,单个节点上对数据库私自篡改是无效的,无法上链记录的。
因此,区块链数据的稳定性和安全性非常高。
反而,传统互联网,中心化机构的中央服务器后台可以随时篡改任何人的数据,封禁你的网址,网页,账户等等,毫无安全性可言。
5.匿名性
区块链节点之间的交换严格按照固定算法执行。
其信息交互是无需信任的,换言之,交易各方是无条件信任的。
传统的信任是人与人之间的信任,或者人对第三方中心化机构的信任。
而区块链技术解决的是人与人彼此之间,完全的信任问题。

『肆』 区块链常见的三大共识机制

区块链是建立在P2P网络,由节点参与的分布式账本系统,最大的特点是“去中心化”。也就是说在区块链系统中,用户与用户之间、用户与机构之间、机构与机构之间,无需建立彼此之间的信任,只需依靠区块链协议系统就能实现交易。

可是,要如何保证账本的准确性,权威性,以及可靠性?区块链网络上的节点为什么要参与记账?节点如果造假怎么办?如何防止账本被篡改?如何保证节点间的数据一致性?……这些都是区块链在建立“去中心化”交易时需要解决的问题,由此产生了共识机制。

所谓“共识机制”,就是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;当出现意见不一致时,在没有中心控制的情况下,若干个节点参与决策达成共识,即在互相没有信任基础的个体之间如何建立信任关系。

区块链技术正是运用一套基于共识的数学算法,在机器之间建立“信任”网络,从而通过技术背书而非中心化信用机构来进行全新的信用创造。

不同的区块链种类需要不同的共识算法来确保区块链上最后的区块能够在任何时候都反应出全网的状态。

目前为止,区块链共识机制主要有以下几种:POW工作量证明、POS股权证明、DPOS授权股权证明、Paxos、PBFT(实用拜占庭容错算法)、dBFT、DAG(有向无环图)

接下来我们主要说说常见的POW、POS、DPOS共识机制的原理及应用场景

概念:

工作量证明机制(Proof of work ),最早是一个经济学名词,指系统为达到某一目标而设置的度量方法。简单理解就是一份证明,用来确认你做过一定量的工作,通过对工作的结果进行认证来证明完成了相应的工作量。

工作量证明机制具有完全去中心化的优点,在以工作量证明机制为共识的区块链中,节点可以自由进出,并通过计算随机哈希散列的数值解争夺记账权,求得正确的数值解以生成区块的能力是节点算力的具体表现。

应用:

POW最著名的应用当属比特币。在比特币网络中,在Block的生成过程中,矿工需要解决复杂的密码数学难题,寻找到一个符合要求的Block Hash由N个前导零构成,零的个数取决于网络的难度值。这期间需要经过大量尝试计算(工作量),计算时间取决于机器的哈希运算速度。

而寻找合理hash是一个概率事件,当节点拥有占全网n%的算力时,该节点即有n/100的概率找到Block Hash。在节点成功找到满足的Hash值之后,会马上对全网进行广播打包区块,网络的节点收到广播打包区块,会立刻对其进行验证。

如果验证通过,则表明已经有节点成功解迷,自己就不再竞争当前区块,而是选择接受这个区块,记录到自己的账本中,然后进行下一个区块的竞争猜谜。网络中只有最快解谜的区块,才会添加的账本中,其他的节点进行复制,以此保证了整个账本的唯一性。

假如节点有任何的作弊行为,都会导致网络的节点验证不通过,直接丢弃其打包的区块,这个区块就无法记录到总账本中,作弊的节点耗费的成本就白费了,因此在巨大的挖矿成本下,也使得矿工自觉自愿的遵守比特币系统的共识协议,也就确保了整个系统的安全。

优缺点

优点:结果能被快速验证,系统承担的节点量大,作恶成本高进而保证矿工的自觉遵守性。

缺点:需要消耗大量的算法,达成共识的周期较长

概念:

权益证明机制(Proof of Stake),要求证明人提供一定数量加密货币的所有权。

权益证明机制的运作方式是,当创造一个新区块时,矿工需要创建一个“币权”交易,交易会按照预先设定的比例把一些币发送给矿工本身。权益证明机制根据每个节点拥有代币的比例和时间,依据算法等比例地降低节点的挖矿难度,从而加快了寻找随机数的速度。

应用:

2012年,化名Sunny King的网友推出了Peercoin(点点币),是权益证明机制在加密电子货币中的首次应用。PPC最大创新是其采矿方式混合了POW及POS两种方式,采用工作量证明机制发行新币,采用权益证明机制维护网络安全。

为了实现POS,Sunny King借鉴于中本聪的Coinbase,专门设计了一种特殊类型交易,叫Coinstake。

上图为Coinstake工作原理,其中币龄指的是货币的持有时间段,假如你拥有10个币,并且持有10天,那你就收集到了100天的币龄。如果你使用了这10个币,币龄被消耗(销毁)了。

优缺点:

优点:缩短达成共识所需的时间,比工作量证明更加节约能源。

缺点:本质上仍然需要网络中的节点进行挖矿运算,转账真实性较难保证

概念:

授权股权证明机制(Delegated Proof of Stake),与董事会投票类似,该机制拥有一个内置的实时股权人投票系统,就像系统随时都在召开一个永不散场的股东大会,所有股东都在这里投票决定公司决策。

授权股权证明在尝试解决传统的PoW机制和PoS机制问题的同时,还能通过实施科技式的民主抵消中心化所带来的负面效应。基于DPoS机制建立的区块链的去中心化依赖于一定数量的代表,而非全体用户。在这样的区块链中,全体节点投票选举出一定数量的节点代表,由他们来代理全体节点确认区块、维持系统有序运行。

同时,区块链中的全体节点具有随时罢免和任命代表的权力。如果必要,全体节点可以通过投票让现任节点代表失去代表资格,重新选举新的代表,实现实时的民主。

应用:

比特股(Bitshare)是一类采用DPOS机制的密码货币。通过引入了见证人这个概念,见证人可以生成区块,每一个持有比特股的人都可以投票选举见证人。得到总同意票数中的前N个(N通常定义为101)候选者可以当选为见证人,当选见证人的个数(N)需满足:至少一半的参与投票者相信N已经充分地去中心化。

见证人的候选名单每个维护周期(1天)更新一次。见证人然后随机排列,每个见证人按序有2秒的权限时间生成区块,若见证人在给定的时间片不能生成区块,区块生成权限交给下一个时间片对应的见证人。DPoS的这种设计使得区块的生成更为快速,也更加节能。

DPOS充分利用了持股人的投票,以公平民主的方式达成共识,他们投票选出的N个见证人,可以视为N个矿池,而这N个矿池彼此的权利是完全相等的。持股人可以随时通过投票更换这些见证人(矿池),只要他们提供的算力不稳定,计算机宕机,或者试图利用手中的权力作恶。

优缺点:

优点:缩小参与验证和记账节点的数量,从而达到秒级的共识验证

缺点:中心程度较弱,安全性相比POW较弱,同时节点代理是人为选出的,公平性相比POS较低,同时整个共识机制还是依赖于代币的增发来维持代理节点的稳定性。

『伍』 区块链的共识机制

一、区块链共识机制的目标

区块链是什么?简单而言,区块链是一种去中心化的数据库,或可以叫作分布式账本(distributed ledger)。传统上所有的数据库都是中心化的,例如一间银行的账本就储存在银行的中心服务器里。中心化数据库的弊端是数据的安全及正确性全系于数据库运营方(即银行),因为任何能够访问中心化数据库的人(如银行职员或黑客)都可以破坏或修改其中的数据。


而区块链技术则容许数据库存放在全球成千上万的电脑上,每个人的账本通过点对点网络进行同步,网络中任何用户一旦增加一笔交易,交易信息将通过网络通知其他用户验证,记录到各自的账本中。区块链之所以得其名是因为它是由一个个包含交易信息的区块(block)从后向前有序链接起来的数据结构。


很多人对区块链的疑问是,如果每一个用户都拥有一个独立的账本,那么是否意味着可以在自己的账本上添加任意的交易信息,而成千上万个账本又如何保证记账的一致性? 解决记账一致性问题正是区块链共识机制的目标 。区块链共识机制旨在保证分布式系统里所有节点中的数据完全相同并且能够对某个提案(proposal)(例如是一项交易纪录)达成一致。然而分布式系统由于引入了多个节点,所以系统中会出现各种非常复杂的情况;随着节点数量的增加,节点失效或故障、节点之间的网络通信受到干扰甚至阻断等就变成了常见的问题,解决分布式系统中的各种边界条件和意外情况也增加了解决分布式一致性问题的难度。


区块链又可分为三种:


公有链:全世界任何人都可以随时进入系统中读取数据、发送可确认交易、竞争记账的区块链。公有链通常被认为是“完全去中心化“的,因为没有任何人或机构可以控制或篡改其中数据的读写。公有链一般会通过代币机制鼓励参与者竞争记账,来确保数据的安全性。


联盟链:联盟链是指有若干个机构共同参与管理的区块链。每个机构都运行着一个或多个节点,其中的数据只允许系统内不同的机构进行读写和发送交易,并且共同来记录交易数据。这类区块链被认为是“部分去中心化”。


私有链:指其写入权限是由某个组织和机构控制的区块链。参与节点的资格会被严格的限制,由于参与的节点是有限和可控的,因此私有链往往可以有极快的交易速度、更好的隐私保护、更低的交易成本、不容易被恶意攻击、并且能够做到身份认证等金融行业必须的要求。相比中心化数据库,私有链能够防止机构内单节点故意隐瞒或篡改数据。即使发生错误,也能够迅速发现来源,因此许多大型金融机构在目前更加倾向于使用私有链技术。

二、区块链共识机制的分类

解决分布式一致性问题的难度催生了数种共识机制,它们各有其优缺点,亦适用于不同的环境及问题。被众人常识的共识机制有:


l PoW(Proof of Work)工作量证明机制

l PoS(Proof of Stake)股权/权益证明机制

l DPoS(Delegated Proof of Stake)股份授权证明机制

l PBFT(Practical Byzantine Fault Tolerance)实用拜占庭容错算法

l DBFT(Delegated Byzantine Fault Tolerance)授权拜占庭容错算法

l SCP (Stellar Consensus Protocol ) 恒星共识协议

l RPCA(Ripple Protocol Consensus Algorithm)Ripple共识算法

l Pool验证池共识机制


(一)PoW(Proof of Work)工作量证明机制


1. 基本介绍


在该机制中,网络上的每一个节点都在使用SHA256哈希函数(hash function) 运算一个不断变化的区块头的哈希值 (hash sum)。 共识要求算出的值必须等于或小于某个给定的值。 在分布式网络中,所有的参与者都需要使用不同的随机数来持续计算该哈希值,直至达到目标为止。当一个节点的算出确切的值,其他所有的节点必须相互确认该值的正确性。之后新区块中的交易将被验证以防欺诈。


在比特币中,以上运算哈希值的节点被称作“矿工”,而PoW的过程被称为“挖矿”。挖矿是一个耗时的过程,所以也提出了相应的激励机制(例如向矿工授予一小部分比特币)。PoW的优点是完全的去中心化,其缺点是消耗大量算力造成了的资源浪费,达成共识的周期也比较长,共识效率低下,因此其不是很适合商业使用。



2. 加密货币的应用实例


比特币(Bitcoin) 及莱特币(Litecoin)。以太坊(Ethereum) 的前三个阶段(Frontier前沿、Homestead家园、Metropolis大都会)皆采用PoW机制,其第四个阶段 (Serenity宁静) 将采用权益证明机制。PoW适用于公有链。


PoW机制虽然已经成功证明了其长期稳定和相对公平,但在现有框架下,采用PoW的“挖矿”形式,将消耗大量的能源。其消耗的能源只是不停的去做SHA256的运算来保证工作量公平,并没有其他的存在意义。而目前BTC所能达到的交易效率为约5TPS(5笔/秒),以太坊目前受到单区块GAS总额的上限,所能达到的交易频率大约是25TPS,与平均千次每秒、峰值能达到万次每秒处理效率的VISA和MASTERCARD相差甚远。


3. 简图理解模式



(ps:其中A、B、C、D计算哈希值的过程即为“挖矿”,为了犒劳时间成本的付出,机制会以一定数量的比特币作为激励。)


(Ps:PoS模式下,你的“挖矿”收益正比于你的币龄(币的数量*天数),而与电脑的计算性能无关。我们可以认为任何具有概率性事件的累计都是工作量证明,如淘金。假设矿石含金量为p% 质量, 当你得到一定量黄金时,我们可以认为你一定挖掘了1/p 质量的矿石。而且得到的黄金数量越多,这个证明越可靠。)


(二)PoS(Proof of Stake)股权/权益证明机制


1.基本介绍


PoS要求人们证明货币数量的所有权,其相信拥有货币数量多的人攻击网络的可能性低。基于账户余额的选择是非常不公平的,因为单一最富有的人势必在网络中占主导地位,所以提出了许多解决方案。


在股权证明机制中,每当创建一个区块时,矿工需要创建一个称为“币权”的交易,这个交易会按照一定比例预先将一些币发给矿工。然后股权证明机制根据每个节点持有代币的比例和时间(币龄), 依据算法等比例地降低节点的挖矿难度,以加快节点寻找随机数的速度,缩短达成共识所需的时间。


与PoW相比,PoS可以节省更多的能源,更有效率。但是由于挖矿成本接近于0,因此可能会遭受攻击。且PoS在本质上仍然需要网络中的节点进行挖矿运算,所以它同样难以应用于商业领域。



2.数字货币的应用实例


PoS机制下较为成熟的数字货币是点点币(Peercoin)和未来币(NXT),相比于PoW,PoS机制节省了能源,引入了" 币天 "这个概念来参与随机运算。PoS机制能够让更多的持币人参与到记账这个工作中去,而不需要额外购买设备(矿机、显卡等)。每个单位代币的运算能力与其持有的时间长成正相关,即持有人持有的代币数量越多、时间越长,其所能签署、生产下一个区块的概率越大。一旦其签署了下一个区块,持币人持有的币天即清零,重新进入新的循环。


PoS适用于公有链。


3.区块签署人的产生方式


在PoS机制下,因为区块的签署人由随机产生,则一些持币人会长期、大额持有代币以获得更大概率地产生区块,尽可能多的去清零他的"币天"。因此整个网络中的流通代币会减少,从而不利于代币在链上的流通,价格也更容易受到波动。由于可能会存在少量大户持有整个网络中大多数代币的情况,整个网络有可能会随着运行时间的增长而越来越趋向于中心化。相对于PoW而言,PoS机制下作恶的成本很低,因此对于分叉或是双重支付的攻击,需要更多的机制来保证共识。稳定情况下,每秒大约能产生12笔交易,但因为网络延迟及共识问题,需要约60秒才能完整广播共识区块。长期来看,生成区块(即清零"币天")的速度远低于网络传播和广播的速度,因此在PoS机制下需要对生成区块进行"限速",来保证主网的稳定运行。


4.简图理解模式




(PS:拥有越多“股份”权益的人越容易获取账权。是指获得多少货币,取决于你挖矿贡献的工作量,电脑性能越好,分给你的矿就会越多。)


(在纯POS体系中,如NXT,没有挖矿过程,初始的股权分配已经固定,之后只是股权在交易者之中流转,非常类似于现实世界的股票。)


(三)DPoS(Delegated Proof of Stake)股份授权证明机制


1.基本介绍


由于PoS的种种弊端,由此比特股首创的权益代表证明机制 DPoS(Delegated Proof of Stake)应运而生。DPoS 机制中的核心的要素是选举,每个系统原生代币的持有者在区块链里面都可以参与选举,所持有的代币余额即为投票权重。通过投票,股东可以选举出理事会成员,也可以就关系平台发展方向的议题表明态度,这一切构成了社区自治的基础。股东除了自己投票参与选举外,还可以通过将自己的选举票数授权给自己信任的其它账户来代表自己投票。


具体来说, DPoS由比特股(Bitshares)项目组发明。股权拥有着选举他们的代表来进行区块的生成和验证。DPoS类似于现代企业董事会制度,比特股系统将代币持有者称为股东,由股东投票选出101名代表, 然后由这些代表负责生成和验证区块。 持币者若想称为一名代表,需先用自己的公钥去区块链注册,获得一个长度为32位的特有身份标识符,股东可以对这个标识符以交易的形式进行投票,得票数前101位被选为代表。

代表们轮流产生区块,收益(交易手续费)平分。DPoS的优点在于大幅减少了参与区块验证和记账的节点数量,从而缩短了共识验证所需要的时间,大幅提高了交易效率。从某种角度来说,DPoS可以理解为多中心系统,兼具去中心化和中心化优势。优点:大幅缩小参与验证和记账节点的数量,可以达到秒级的共识验证。缺点:投票积极性不高,绝大部分代币持有者未参与投票;另整个共识机制还是依赖于代币,很多商业应用是不需要代币存在的。


DPoS机制要求在产生下一个区块之前,必须验证上一个区块已经被受信任节点所签署。相比于PoS的" 全民挖矿 ",DPoS则是利用类似" 代表大会 "的制度来直接选取可信任节点,由这些可信任节点(即见证人)来代替其他持币人行使权力,见证人节点要求长期在线,从而解决了因为PoS签署区块人不是经常在线而可能导致的产块延误等一系列问题。 DPoS机制通常能达到万次每秒的交易速度,在网络延迟低的情况下可以达到十万秒级别,非常适合企业级的应用。 因为公信宝数据交易所对于数据交易频率要求高,更要求长期稳定性,因此DPoS是非常不错的选择。



2. 股份授权证明机制下的机构与系统


理事会是区块链网络的权力机构,理事会的人选由系统股东(即持币人)选举产生,理事会成员有权发起议案和对议案进行投票表决。


理事会的重要职责之一是根据需要调整系统的可变参数,这些参数包括:


l 费用相关:各种交易类型的费率。

l 授权相关:对接入网络的第三方平台收费及补贴相关参数。

l 区块生产相关:区块生产间隔时间,区块奖励。

l 身份审核相关:审核验证异常机构账户的信息情况。

l 同时,关系到理事会利益的事项将不通过理事会设定。


在Finchain系统中,见证人负责收集网络运行时广播出来的各种交易并打包到区块中,其工作类似于比特币网络中的矿工,在采用 PoW(工作量证明)的比特币网络中,由一种获奖概率取决于哈希算力的抽彩票方式来决定哪个矿工节点产生下一个区块。而在采用 DPoS 机制的金融链网络中,通过理事会投票决定见证人的数量,由持币人投票来决定见证人人选。入选的活跃见证人按顺序打包交易并生产区块,在每一轮区块生产之后,见证人会在随机洗牌决定新的顺序后进入下一轮的区块生产。


3. DPoS的应用实例


比特股(bitshares) 采用DPoS。DPoS主要适用于联盟链。


4.简图理解模式





(四)PBFT(Practical Byzantine Fault Tolerance)实用拜占庭容错算法


1. 基本介绍


PBFT是一种基于严格数学证明的算法,需要经过三个阶段的信息交互和局部共识来达成最终的一致输出。三个阶段分别为预备 (pre-prepare)、准备 (prepare)、落实 (commit)。PBFT算法证明系统中只要有2/3比例以上的正常节点,就能保证最终一定可以输出一致的共识结果。换言之,在使用PBFT算法的系统中,至多可以容忍不超过系统全部节点数量1/3的失效节点 (包括有意误导、故意破坏系统、超时、重复发送消息、伪造签名等的节点,又称为”拜占庭”节点)。



2. PBFT的应用实例


著名联盟链Hyperledger Fabric v0.6采用的是PBFT,v1.0又推出PBFT的改进版本SBFT。PBFT主要适用于私有链和联盟链。


3. 简图理解模式




上图显示了一个简化的PBFT的协议通信模式,其中C为客户端,0 – 3表示服务节点,其中0为主节点,3为故障节点。整个协议的基本过程如下:


(1) 客户端发送请求,激活主节点的服务操作;

(2) 当主节点接收请求后,启动三阶段的协议以向各从节点广播请求;

(a) 序号分配阶段,主节点给请求赋值一个序号n,广播序号分配消息和客户端的请求消息m,并将构造pre-prepare消息给各从节点;

(b) 交互阶段,从节点接收pre-prepare消息,向其他服务节点广播prepare消息;

(c) 序号确认阶段,各节点对视图内的请求和次序进行验证后,广播commit消息,执行收到的客户端的请求并给客户端响应。

(3) 客户端等待来自不同节点的响应,若有m+1个响应相同,则该响应即为运算的结果;



(五)DBFT(Delegated Byzantine Fault Tolerance)授权拜占庭容错算法


1. 基本介绍


DBFT建基于PBFT的基础上,在这个机制当中,存在两种参与者,一种是专业记账的“超级节点”,一种是系统当中不参与记账的普通用户。普通用户基于持有权益的比例来投票选出超级节点,当需要通过一项共识(记账)时,在这些超级节点中随机推选出一名发言人拟定方案,然后由其他超级节点根据拜占庭容错算法(见上文),即少数服从多数的原则进行表态。如果超过2/3的超级节点表示同意发言人方案,则共识达成。这个提案就成为最终发布的区块,并且该区块是不可逆的,所有里面的交易都是百分之百确认的。如果在一定时间内还未达成一致的提案,或者发现有非法交易的话,可以由其他超级节点重新发起提案,重复投票过程,直至达成共识。



2. DBFT的应用实例


国内加密货币及区块链平台NEO是 DBFT算法的研发者及采用者。


3. 简图理解模式




假设系统中只有四个由普通用户投票选出的超级节点,当需要通过一项共识时,系统就会从代表中随机选出一名发言人拟定方案。发言人会将拟好的方案交给每位代表,每位代表先判断发言人的计算结果与它们自身纪录的是否一致,再与其它代表商讨验证计算结果是否正确。如果2/3的代表一致表示发言人方案的计算结果是正确的,那么方案就此通过。


如果只有不到2/3的代表达成共识,将随机选出一名新的发言人,再重复上述流程。这个体系旨在保护系统不受无法行使职能的领袖影响。


上图假设全体节点都是诚实的,达成100%共识,将对方案A(区块)进行验证。



鉴于发言人是随机选出的一名代表,因此他可能会不诚实或出现故障。上图假设发言人给3名代表中的2名发送了恶意信息(方案B),同时给1名代表发送了正确信息(方案A)。


在这种情况下该恶意信息(方案B)无法通过。中间与右边的代表自身的计算结果与发言人发送的不一致,因此就不能验证发言人拟定的方案,导致2人拒绝通过方案。左边的代表因接收了正确信息,与自身的计算结果相符,因此能确认方案,继而成功完成1次验证。但本方案仍无法通过,因为不足2/3的代表达成共识。接着将随机选出一名新发言人,重新开始共识流程。




上图假设发言人是诚实的,但其中1名代表出现了异常;右边的代表向其他代表发送了不正确的信息(B)。


在这种情况下发言人拟定的正确信息(A)依然可以获得验证,因为左边与中间诚实的代表都可以验证由诚实的发言人拟定的方案,达成2/3的共识。代表也可以判断到底是发言人向右边的节点说谎还是右边的节点不诚实。


(六)SCP (Stellar Consensus Protocol ) 恒星共识协议


1. 基本介绍


SCP 是 Stellar (一种基于互联网的去中心化全球支付协议) 研发及使用的共识算法,其建基于联邦拜占庭协议 (Federated Byzantine Agreement) 。传统的非联邦拜占庭协议(如上文的PBFT和DBFT)虽然确保可以通过分布式的方法达成共识,并达到拜占庭容错 (至多可以容忍不超过系统全部节点数量1/3的失效节点),它是一个中心化的系统 — 网络中节点的数量和身份必须提前知晓且验证过。而联邦拜占庭协议的不同之处在于它能够去中心化的同时,又可以做到拜占庭容错。


[…]


(七)RPCA(Ripple Protocol Consensus Algorithm)Ripple共识算法


1. 基本介绍


RPCA是Ripple(一种基于互联网的开源支付协议,可以实现去中心化的货币兑换、支付与清算功能)研发及使用的共识算法。在 Ripple 的网络中,交易由客户端(应用)发起,经过追踪节点(tracking node)或验证节点(validating node)把交易广播到整个网络中。追踪节点的主要功能是分发交易信息以及响应客户端的账本请求。验证节点除包含追踪节点的所有功能外,还能够通过共识协议,在账本中增加新的账本实例数据。


Ripple 的共识达成发生在验证节点之间,每个验证节点都预先配置了一份可信任节点名单,称为 UNL(Unique Node List)。在名单上的节点可对交易达成进行投票。共识过程如下:


(1) 每个验证节点会不断收到从网络发送过来的交易,通过与本地账本数据验证后,不合法的交易直接丢弃,合法的交易将汇总成交易候选集(candidate set)。交易候选集里面还包括之前共识过程无法确认而遗留下来的交易。

(2) 每个验证节点把自己的交易候选集作为提案发送给其他验证节点。

(3) 验证节点在收到其他节点发来的提案后,如果不是来自UNL上的节点,则忽略该提案;如果是来自UNL上的节点,就会对比提案中的交易和本地的交易候选集,如果有相同的交易,该交易就获得一票。在一定时间内,当交易获得超过50%的票数时,则该交易进入下一轮。没有超过50%的交易,将留待下一次共识过程去确认。

(4) 验证节点把超过50%票数的交易作为提案发给其他节点,同时提高所需票数的阈值到60%,重复步骤(3)、步骤(4),直到阈值达到80%。

(5) 验证节点把经过80%UNL节点确认的交易正式写入本地的账本数据中,称为最后关闭账本(last closed ledger),即账本最后(最新)的状态。


在Ripple的共识算法中,参与投票节点的身份是事先知道的,因此,算法的效率比PoW等匿名共识算法要高效,交易的确认时间只需几秒钟。这点也决定了该共识算法只适合于联盟链或私有链。Ripple共识算法的拜占庭容错(BFT)能力为(n-1)/5,即可以容忍整个网络中20%的节点出现拜占庭错误而不影响正确的共识。



2. 简图理解模式


共识过程节点交互示意图:



共识算法流程:



(八)POOL验证池共识机制


Pool验证池共识机制是基于传统的分布式一致性算法(Paxos和Raft)的基础上开发的机制。Paxos算法是1990年提出的一种基于消息传递且具有高度容错特性的一致性算法。过去, Paxos一直是分布式协议的标准,但是Paxos难于理解,更难以实现。Raft则是在2013年发布的一个比Paxos简单又能实现Paxos所解决问题的一致性算法。Paxos和Raft达成共识的过程皆如同选举一样,参选者需要说服大多数选民(服务器)投票给他,一旦选定后就跟随其操作。Paxos和Raft的区别在于选举的具体过程不同。而Pool验证池共识机制即是在这两种成熟的分布式一致性算法的基础上,辅之以数据验证的机制。






『陆』 区块链的共识机制

1. 网络上的交易信息如何确认并达成共识? 

虽然经常提到共识机制,但是对于共识机制的含义和理解却并清楚。因此需要就共识机制的相关概念原理和实现方法有所理解。 

区块链的交易信息是通过网络广播传输到网络中各个节点的,在整个网络节点中如何对广播的信息进行确认并达成共识 最终写入区块呢?  如果没有相应的可靠安全的实现机制,那么就难以实现其基本的功能,因此共识机制是整个网络运行下去的一个关键。

共识机制解决了区块链如何在分布式场景下达成一致性的问题。区块链能在众多节点达到一种较为平衡的状态也是因为共识机制。那么共识机制是如何在在去中心化的思想上解决了节点间互相信任的问题呢? 

当分布式的思想被提出来时,人们就开始根据FLP定理和CAP定理设计共识算法。 规范的说,理想的分布式系统的一致性应该满足以下三点:

1.可终止性(Termination):一致性的结果可在有限时间内完成。

2.共识性(Consensus):不同节点最终完成决策的结果应该相同。

3.合法性(Validity):决策的结果必须是其他进程提出的提案。

但是在实际的计算机集群中,可能会存在以下问题:

1.节点处理事务的能力不同,网络节点数据的吞吐量有差异

2.节点间通讯的信道可能不安全

3.可能会有作恶节点出现

4.当异步处理能力达到高度一致时,系统的可扩展性就会变差(容不下新节点的加入)。

科学家认为,在分布式场景下达成 完全一致性 是不可能的。但是工程学家可以牺牲一部分代价来换取分布式场景的一致性,上述的两大定理也是这种思想,所以基于区块链设计的各种公式机制都可以看作牺牲那一部分代价来换取多适合的一致性,我的想法是可以在这种思想上进行一个灵活的变换,即在适当的时间空间牺牲一部分代价换取适应于当时场景的一致性,可以实现灵活的区块链系统,即可插拔式的区块链系统。今天就介绍一下我对各种共识机制的看法和分析,分布式系统中有无作恶节点分为拜占庭容错和非拜占庭容错机制。

FLP定理即FLP不可能性,它证明了在分布式情景下,无论任何算法,即使是只有一个进程挂掉,对于其他非失败进程,都存在着无法达成一致的可能。

FLP基于如下几点假设:

仅可修改一次 :  每个进程初始时都记录一个值(0或1)。进程可以接收消息、改动该值、并发送消息,当进程进入decide state时,其值就不再变化。所有非失败进程都进入decided state时,协议成功结束。这里放宽到有一部分进程进入decided state就算协议成功。

异步通信 :  与同步通信的最大区别是没有时钟、不能时间同步、不能使用超时、不能探测失败、消息可任意延迟、消息可乱序。

通信健壮: 只要进程非失败,消息虽会被无限延迟,但最终会被送达;并且消息仅会被送达一次(无重复)。

Fail-Stop 模型: 进程失败如同宕机,不再处理任何消息。

失败进程数量 : 最多一个进程失败。

CAP是分布式系统、特别是分布式存储领域中被讨论最多的理论。CAP由Eric Brewer在2000年PODC会议上提出,是Eric Brewer在Inktomi期间研发搜索引擎、分布式web缓存时得出的关于数据一致性(consistency)、服务可用性(availability)、分区容错性(partition-tolerance)的猜想:

数据一致性 (consistency):如果系统对一个写操作返回成功,那么之后的读请求都必须读到这个新数据;如果返回失败,那么所有读操作都不能读到这个数据,对调用者而言数据具有强一致性(strong consistency) (又叫原子性 atomic、线性一致性 linearizable consistency)[5]

服务可用性 (availability):所有读写请求在一定时间内得到响应,可终止、不会一直等待

分区容错性 (partition-tolerance):在网络分区的情况下,被分隔的节点仍能正常对外服务

在某时刻如果满足AP,分隔的节点同时对外服务但不能相互通信,将导致状态不一致,即不能满足C;如果满足CP,网络分区的情况下为达成C,请求只能一直等待,即不满足A;如果要满足CA,在一定时间内要达到节点状态一致,要求不能出现网络分区,则不能满足P。

C、A、P三者最多只能满足其中两个,和FLP定理一样,CAP定理也指示了一个不可达的结果(impossibility result)。

『柒』 区块链的共识机制是什么优缺点有哪些

区块链的共识机制有很多,说一个影响力最大的比特币背后的pow共识机制,好处是安全 不可篡改 全球流通 缺点是速度太慢了 一秒钟只能处理7笔交易

『捌』 区块链的共识机制

所谓“共识机制”,是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;对一笔交易,如果利益不相干的若干个节点能够达成共识,我们就可以认为全网对此也能够达成共识。北京木奇移动技术有限公司,专业的区块链外包开发公司,欢迎洽谈合作。下面我们将一下区块链的几种共识机制,希望对大家了解区块链基础技术有帮助。

因为区块链技术的发展, 大家对共识机制这个词也不再陌生,随着技术发展,各种创新的共识机制也在发展。

POW工作量证明

比特币就是使用PoW工作量证明机制,到后来的以太坊都是PoW的共识机制。Pow相当于算出很难的数学难题,就是计算出新区块的hash值,而且计算的难度会每一段时间就会调整。PoW虽然是大家比较认可的共识机制,计算会消耗大量的能源,还有可能会污染环境。

POS权益证明

通过持有Token的数量和时长来决定获得记账权的机率。相比POW,POS避免了挖矿造成大量的资源浪费,缩短了各个节点之间达成共识的时间,网络环境好的话可实现毫秒级,对节点性能要求低。

但POS的缺点同样明显,持有Token多的节点更有机会获得记账权,这将导致“马太效应”,富者越富,破坏了区块链的去中心化。

DPOS权益证明

DPOS委托权益证明与POS原理相同,其主要区别在于,DPOS的Token持有者可以投票选举代理人作为超级节点,负责在网络上生产区块并维护共识规则。如果这些节点未能履行职责,将投票选出新的节点。同样的弊端也是倾向于中心化。

POA权威证明

POA节点之间无需进行通信即可达成共识,因此效率极高。并且它也能很好地对抗算力攻击,安全性较高。但是POA需要一个集中的权威节点来验证身份,这就意味着它会损害区块链的去中心化,这也是在去中心化和提高效率之间的妥协。

『玖』 什么是区块链

区块链是一种带有数据“散列验证”功能的数据库。区块,就是数据块,按照时间顺序将数据区块组合成一种链式结构,并利用密码学算法,以分布式记账的方式,集体维护数据库的可靠性。所有数据块按时间顺序相连,从而形成区块链。
区块链系统由数据层、网络层、共识层、激励层、合约层和应用层组成。 其中,数据层封装了底层数据区块以及相关的数据加密和时间戳等基础数据和基本算法;网络层则包括分布式组网机制、数据传播机制和数据验证机制等;共识层主要封装网络节点的各类共识算法;激励层将经济因素集成到区块链技术体系中来,主要包括经济激励的发行机制和分配机制等;合约层主要封装各类脚本、算法和智能合约,是区块链可编程特性的基础;应用层则封装了区块链的各种应用场景和案例。该模型中,基于时间戳的链式区块结构、分布式节点的共识机制、基于共识算力的经济激励和灵活可编程的智能合约是区块链技术最具代表性的创新点。
区块链主要解决的交易的信任和安全问题,因此它针对这个问题提出了四个技术创新:
(1)分布式账本,就是交易记账由分布在不同地方的多个节点共同完成,而且每一个节点都记录的是完整的账目,因此它们都可以参与监督交易合法性,同时也可以共同为其作证。
跟传统的分布式存储有所不同,区块链的分布式存储的独特性主要体现在两个方面:一是区块链每个节点都按照块链式结构存储完整的数据,传统分布式存储一般是将数据按照一定的规则分成多份进行存储。二是区块链每个节点存储都是独立的、地位等同的,依靠共识机制保证存储的一致性,而传统分布式存储一般是通过中心节点往其他备份节点同步数据。 [8]
没有任何一个节点可以单独记录账本数据,从而避免了单一记账人被控制或者被贿赂而记假账的可能性。也由于记账节点足够多,理论上讲除非所有的节点被破坏,否则账目就不会丢失,从而保证了账目数据的安全性。
(2)非对称加密和授权技术,存储在区块链上的交易信息是公开的,但是账户身份信息是高度加密的,只有在数据拥有者授权的情况下才能访问到,从而保证了数据的安全和个人的隐私。
(3)共识机制,就是所有记账节点之间怎么达成共识,去认定一个记录的有效性,这既是认定的手段,也是防止篡改的手段。区块链提出了四种不同的共识机制,适用于不同的应用场景,在效率和安全性之间取得平衡。
区块链的共识机制具备“少数服从多数”以及“人人平等”的特点,其中“少数服从多数”并不完全指节点个数,也可以是计算能力、股权数或者其他的计算机可以比较的特征量。“人人平等”是当节点满足条件时,所有节点都有权优先提出共识结果、直接被其他节点认同后并最后有可能成为最终共识结果。以比特币为例,采用的是工作量证明,只有在控制了全网超过51%的记账节点的情况下,才有可能伪造出一条不存在的记录。当加入区块链的节点足够多的时候,这基本上不可能,从而杜绝了造假的可能.
(4)智能合约,智能合约是基于这些可信的不可篡改的数据,可以自动化的执行一些预先定义好的规则和条款。以保险为例,如果说每个人的信息(包括医疗信息和风险发生的信息)都是真实可信的,那就很容易的在一些标准化的保险产品中,去进行自动化的理赔
其实个人可以简单理解,其实就是一个金融数据库。

热点内容
bch和btc钱包地址一模一样 发布:2025-09-17 20:30:47 浏览:999
区块链主要负责 发布:2025-09-17 20:29:19 浏览:335
以太坊pos怎么挖矿 发布:2025-09-17 20:10:31 浏览:394
空中比特币俱乐部是否合法 发布:2025-09-17 20:02:58 浏览:80
买入USDT时订单被取消怎么办 发布:2025-09-17 19:52:49 浏览:329
trx在家怎么用 发布:2025-09-17 19:49:46 浏览:83
以太坊如何实现批量转账 发布:2025-09-17 19:20:03 浏览:634
588挖矿算力为0 发布:2025-09-17 19:17:18 浏览:809
用普通电脑挖比特币 发布:2025-09-17 19:03:36 浏览:207
obb数字货币是比特币吗 发布:2025-09-17 18:53:30 浏览:849