比特幣有有數學公式嗎
Ⅰ 比特幣量化交易公式
比特幣量化交易公式:比特率 x 視頻時長 = 文件大小
這是個非常簡單的公式。但要記住,每個變數可能有略有不同的單位。
編碼的比特率會大大影響工作流程的速度和效率。
Ⅱ 比特幣如何算出來的
要想了解bitcoin的技術原理,首先需要了解兩個重要的密碼技術: HASH碼:將一個長字元串轉換成固定長度的字元串,並且其轉換不可逆,即不太可能從HASH碼猜出原字元串。bitcoin協議里使用的主要是SHA256。
公鑰體系:對應一個公鑰和私鑰,在應用中自己保留私鑰,並公開公鑰。當甲向乙傳遞信息時,可使用甲的私鑰加密信息,乙可用甲的公鑰進行解密,這樣可確保第三方無法冒充甲發送信息;同時,甲向乙傳遞信息時,用乙的公鑰加密後發給乙,乙再用自己的私鑰進行解密,這樣可確保第三者無法偷聽兩人之間的通信。最常見的公鑰體系為RSA,但bitcoin協議里使用的是lliptic Curve Digital Signature Algorithm。 和現金、銀行賬戶的區別? bitcoin為電子貨幣,單位為BTC。在這篇文章里也用來指代整個bitcoin系統。 和在銀行開立賬戶一樣,bitcoin里的對應概念為地址。每個人都可以有1個或若干個bitcoin地址,該地址用來付賬和收錢。每個地址都是一串以1開頭的字元串,比如我有兩個bitcoin賬戶,和。一個bitcoin賬戶由一對公鑰和私鑰唯一確定,要保存賬戶,只需要保存好私鑰文件即可。 和銀行賬戶不一樣的地方在於,銀行會保存所有的交易記錄和維護各個賬戶的賬面余額,而bitcoin的交易記錄則由整個P2P網路通過事先約定的協議共同維護。 我的賬戶地址里到底有多少錢? 雖然使用bitcoin的軟體可以看到當前賬戶的余額,但和銀行不一樣,並沒有一個地方維護每個地址的賬面余額。它只能通過所有歷史交易記錄去實時推算賬戶余額。 我如何付賬? 當我從地址A向對方的地址B付賬時,付賬額為e,此時雙方將向各個網路節點公告交易信息,告訴地址A向地址B付賬,付賬額為e。為了防止有第三方偽造該交易信息,該交易信息將使用地址A的私鑰進行加密,此時接受到該交易信息的網路節點可以使用地址A的公鑰進行驗證該交易信息的確由A發出。當然交易軟體會幫我們做這些事情,我們只需要在軟體中輸入相關參數即可。 網路節點後收到交易信息後會做什麼? 這個是整個bitcoin系統里最重要的部分,需要詳細闡述。為了簡單起見,這里只使用目前已經實現的bitcoin協議,在當前版本中,每個網路節點都會通過同步保存所有的交易信息。 歷史上發生過的所有交易信息分為兩類,一類為"驗證過"的交易信息,即已經被驗證過的交易信息,它保存在一連串的「blocks」裡面。每個"block"的信息為前一個"bock"的ID(每個block的ID為該block的HASH碼的HASH碼)和新增的交易信息(參見一個實際的block)。另外一類指那些還"未驗證"的交易信息,上面剛剛付賬的交易信息就屬於此類。 當一個網路節點接收到新的未驗證的交易信息之後(可能不止一條),由於該節點保存了歷史上所有的交易信息,它可以推算中在當時每個地址的賬面余額,從而可以推算出該交易信息是否有效,即付款的賬戶里是否有足夠余額。在剔除掉無效的交易信息後,它首先取出最後一個"block"的ID,然後將這些未驗證的交易信息和該ID組合在一起,再加上一個驗證碼,形成一個新的「block」。 上面構建一個新的block需要大量的計算工作,因為它需要計算驗證碼,使得上面的組合成為一個block,即該block的HASH碼的HASH碼的前若干位為1。目前需要前13位為1(大致如此,不確定具體方式),此意味著如果通過枚舉法生成block的話,平均枚舉次數為16^13次。使用CPU資源生成block被稱為「挖金礦」,因為生產該block將得到一定的獎勵,該獎勵信息已經被包含在這個block裡面。 當一個網路節點生成一個新的block時,它將廣播給其它的網路節點。但這個網路block並不一定會被網路接受,因為有可能有別的網路節點更早生產出了block,只有最早產生的那個block或者後續block最多的那個block有效,其餘block不再作為下一個block的初始block。 對方如何確認支付成功? 當該筆支付信息分發到網路節點後,網路節點開始計算該交易是否有效(即賬戶余額是否足夠支付),並試圖生成包含該筆交易信息的blocks。當累計有6個blocks(1個直接blocks和5個後續blocks)包含該筆交易信息時,該交易信息被認為「驗證過」,從而該交易被正式確認,對方可確認支付成功。 一個可能的問題為,我將地址A裡面的余額都支付給地址B,同時又支付給地址C,如果只驗證單比交易都是有效的。此時,我的作弊的方式為在真相大白之前產生6個僅包括B的block發給B,以及產生6個僅包含C的block發給C。由於我產生block所需要的CPU時間非常長,與全網路相比,我這樣作弊成功的概率微乎其微。 網路節點生產block的動機是什麼? 從上面描述可以看出,為了讓交易信息有效,需要網路節點生成1個和5個後續block包含該交易信息,並且這樣的block生成非常耗費CPU。那怎麼樣讓其它網路節點盡快幫忙生產block呢?答案很簡單,協議規定對生產出block的地址獎勵BTC,以及交易雙方承諾的手續費。目前生產出一個block的獎勵為50BTC,未來每隔四年減半,比如2013年到2016年之間獎勵為25BTC。 交易是匿名的嗎? 是,也不是。所有BITCOIN的交易都是可見的,我們可以查到每個賬戶的所有交易記錄,比如我的。但與銀行貨幣體系不一樣的地方在於,每個人的賬戶本身是匿名的,並且每個人可以開很多個賬戶。總的說來,所謂的匿名性沒有宣稱的那麼好。 但bitcoin用來做黑市交易的還有一個好處,它無法凍結。即便警方追蹤到了某個bitcoin地址,除非根據網路地址追蹤到交易所使用的電腦,否則還是毫無辦法。 如何保證bitcoin不貶值? 一般來說,在交易活動相當的情況下,貨幣的價值反比於貨幣的發行量。不像傳統貨幣市場,央行可以決定貨幣發行量,bitcoin里沒有一個中央的發行機構。只有通過生產block,才能獲得一定數量的BTC貨幣。所以bitcoin貨幣新增量決定於: 1、生產block的速度:bitcoin的協議里規定了生產block的難度固定在平均2016個每兩個星期,大約10分鍾生產一個。CPU速度每18個月速度加倍的摩爾定律,並不會加快生產block的速度。 2、生產block的獎勵數量:目前每生產一個block獎勵50BTC,每四年減半,2013年開始獎勵25BTC,2017年開始獎勵額為12.5BTC。 綜合上面兩個因素,bitcoin貨幣發行速度並不由網路節點中任何單個節點所控制,其協議使得貨幣的存量是事先已知的,並且最高存量只有2100萬BTC
Ⅲ 比特幣機制研究
現今世界的電子支付系統已經十分發達,我們平時的各種消費基本上在支付寶和微信上都可以輕松解決。但是無論是支付寶、微信,其實本質上都依賴於一個中心化的金融系統,即使在大多數情況這個系統運行得很好,但是由於信任模型的存在,還是會存在著仲裁糾紛,有仲裁糾紛就意味著不存在 不可撤銷的交易 ,這樣對於 不可撤銷的服務 來說,一定比例的欺詐是不可避免的。在比特幣出來之前,不存在一個 不引入中心化的可信任方 就能解決在通信通道上支付的方案。
比特幣的強大之處就在於:它是一個基於密碼學原理而不是依賴於中心化機構的電子支付系統,它能夠允許任何有交易意願的雙方能直接交易而不需要一個可信任的第三方。交易在數學計算上的不可撤銷將保護 提供不可撤銷服務 的商家不被欺詐,而用來保護買家的 程序化合約機制 也比較容易實現。
假設網路中有A, B ,C三個人。
A付給B 1比特幣 ,B付給C 2比特幣 ,C付給A 3比特幣 。
如下圖所示:
為了刺激比特幣系統中的用戶進行記賬,記賬是有獎勵的。獎勵來源主要有兩方面:
比特幣中每一筆交易都會有手續費,手續費會給記賬者
記賬會有打包區塊的獎勵,中本聰在08年設計的方案是: 每10分鍾打一個包,每打一個包獎勵50個比特幣,每4年單次打包的獎勵數減半,即4年後每打一個包獎勵25個比特幣,再過四年後就獎勵12.5個比特幣... 這樣我們其實可以算出比特幣的總量:
要說明打包的記錄以誰為準的問題,我們需要引入一個知名的 拜占庭將軍問題 (Byzantine failures)。拜占庭將軍問題是由萊斯利·蘭伯特提出的點對點通信中的基本問題。含義是在存在消息丟失的不可靠信道上試圖通過消息傳遞的方式達到一致性是不可能的。
假設有9個互相遠離的將軍包圍了拜占庭帝國,除非有5個及以上的將軍一起攻打,拜占庭帝國才能被打下來。而這9個將軍之間是互不信任的,他們並不知道這其中是否有叛徒,那麼如何通過遠距離協商來讓他們贏取戰斗呢?
口頭協議有3個默認規則:
1.每個信息都能夠被准確接收
2.接收者知道是誰發送給他的
3.誰沒有發送消息大家都知道
4.接受者不知道轉發信息的轉發者是誰
將軍們遵循口頭規則的話,那就是下面的場景:將軍1對其他8個將軍發送了信息,然後將軍2~9將消息進行轉達(廣播),每個將軍都是消息的接受者和轉發者,這樣一輪下來,總共就會有9×8=72次發送。這樣將軍就可以根據自己手中的信息,選擇多數人的投票結果行動即可,這個時候即便有間諜,因為少數服從多數的原則,只要大部分將軍同意攻打拜占庭,自己就去行動。
這個方案有很多缺點:
1.首先是發送量大,9個將軍之間要發送72次,隨著節點數的增加,工作量呈現幾何增長。
2.再者是無法找出誰是叛徒,因為是口頭協議,接受者不知道轉發信息的轉發者是誰,每個將軍手裡的數據僅僅只是一個數量的對比:
這里我們假設有3個叛徒,在一種最極端的情況下即叛徒轉發信息時總是篡改為「不進攻」,那麼我們最壞的結果就如上圖所示。將軍1根據手裡的信息可以推出要進攻的結論,卻無法獲知將軍裡面誰是叛徒。
這樣我們就有了方案二:書面協議。
書面協議即將軍在接受到信息後可以進行簽字,並且大家都能夠識別出這個簽字是否是本人,換種說法就是如果有人篡改簽字大家可以知道。書面協議相對比口頭協議就是增加了一個認證機制,所有的消息都有記錄。一旦發現有人所給出的信息不一致,就是追查間諜。
有了書面協議,那麼將軍1手裡的信息就是這樣的:
可以很明顯得看出,在最壞的一種情況——叛徒總是轉發「不進攻」的消息之下,將軍7、8、9是團隊里的叛徒。
這個方案解決了口頭協議里歷史信息不可追溯的問題,但是在發送量方面並沒有做到任何改進。
在我們的示例中,比特幣系統里的每個用戶發起了一筆交易,都會通過自己的私鑰進行簽名,用數學公式表示就是:
所以之前的區塊就變成了這樣:
這樣每一筆交易都由交易發起者通過私鑰進行數字簽名,由於私鑰是不公開的,所以交易信息也就無法被偽造了。
如書面協議末尾所說的那樣,書面協議未能解決信息交流過多的問題。當比特幣系統中存在上千萬節點的時候,如果要互相廣播驗證,請求響應的次數那將是一個非常龐大的數字,顯然勢必會造成網路擁堵、節點處理變慢。為了解決這個問題,中本聰乾脆讓整個10分鍾出一個區塊,這個區塊由誰來打包發出呢?這里就採用了工作量證明機制(PoW)。工作量證明,說白了就是解一個數學題,誰先解出來數學題,誰就能有打包區塊的權力。換在拜占庭將軍的例子中就是,誰先做出數學題,誰就成為將軍們裡面的總司令,其他將軍聽從他發號的命令。
首先,礦工會將區塊頭所佔用的128位元組的字元串進行兩次sha256求值,即:
這樣求得一個值Hash,將其與目標值相比對,如果符合條件,則視為工作量證明成功。
工作量證明成功的條件寫在了區塊鏈頭部的 難度數 欄位,它要求了最後進行兩次sha256運算的Hash值必須小於定下的目標值;如果不是的話,那就改變區塊頭的 隨機數 (nonce),通過一次次地重復計算檢驗,直到符合條件為止。
此外, 比特幣有自己的一套難度控制系統,使得比特幣系統要在全網不同的算力條件下,都保持10分鍾生成一個區塊的速率。這也就意味著:難度值必須根據全網算力的變化進行調整。難度調整的策略是由最新2016個區塊的花費時長與期望時長(期望時長為20160分鍾即兩周,是按每10分鍾一個區塊的產生速率計算出的總時長)比較得出的,根據實際時長與期望時長的比值,進行相應調整(或變難或變易)。也就是說,如果區塊產生的速率比10分鍾快則增加難度,比10分鍾慢則降低難度。
PoW其實在比特幣中是做了以下的三件事情。
這樣可以防止一台高性能機器同時跑上萬個節點,因為每完成一個工作都要有足夠的算力。
有經濟獎勵就會加速整個系統的去中心化,也鼓勵大家不要去作惡,要積極地按照協議本來的執行方式去執行。(所以說,無幣區塊鏈其實是不可行的,無幣區塊鏈一定導致中心化。)
也就是說,每個節點都不能以自身硬體條件去控制出快速度。現在的比特幣上平均10分鍾出一個塊,性能再好的機器也無法打破這個規則,這就能夠保證 區塊鏈是可以收斂到共同的主鏈上的 ,也就是我們所說的共識。
綜上,共識只是PoW三個作用中的一點,事實上PoW設計的作用有點至少有這么三種。
默克爾樹的概念其實很簡單,如圖所示
這樣,我們區塊的結構就大致完整了,這里分成了區塊頭和區塊體兩部分。
區塊鏈的每個節點,都保存著區塊鏈從創世到現在的每一區塊,即每一筆交易都被保存在節點上,現在已經有幾百個GB了。
每當比特幣系統中有一筆新的交易生成,就會將新交易廣播到所有的節點。每個節點都把新交易收集起來,並生成對應的默克爾根,拼接完區塊頭後,就開始調整區塊頭里的隨機數值,然後就開始算數學題
將算出的result和網路中的目標值進行比對,如果是結果是小於的話,就全網廣播答案。其他礦工收到了這個信息後,就會立馬放下手裡的運算,開始下一個區塊的計算。
舉個例子,當前A節點在挖38936個區塊,A挖礦節點一旦完成計算,立刻將這個區塊發給它的所有相鄰節點。這些節點在接收並驗證這個新區塊後,也會繼續傳播此區塊。當這個新區塊在網路中擴散時,每個節點都會將它作為第38936個區塊(前一個區塊為38935)加到自身節點的區塊鏈副本中。當挖礦節點收到並驗證了這個新區塊後,它們會放棄之前對構建這個相同高度區塊的計算,並立即開始計算區塊鏈中下一個區塊的工作。
整個流程就像下一張圖所展示的這樣:
簡單來說,雙花問題是一筆錢重復花了兩次。具體來講,雙花問題可分為兩種情況:
1.同一筆錢被多次使用;
2.一筆錢只被使用過一次,但是通過黑客攻擊或造假等方式,將這筆錢復制了一份,再次使用。
在我們生活的數字系統中,由於數據的可復制性,使得系統可能存在同一筆數字資產因不當操作被重復使用的情況,為了解決雙花問題,日常生活中是依賴於第三方的信任機構的。這類機構對數據進行中心化管理,並通過實時修改賬戶余額的方法來防止雙重支付的出現。而作為去中心化的點對點價值傳輸系統,比特幣通過UTXO、時間戳等技術的整合來解決雙花問題。
UTXO的英文全稱是 unspent transaction outputs ,意為 未使用的交易輸出 。UTXO是一種有別於傳統記賬方式的新的記賬模型。
銀行里傳統的記賬方式是基於賬戶的,主要是記錄某個用戶的賬戶余額。而UTXO的交易方式,是基於交易本身的,甚至沒有賬戶的概念。在UTXO的記賬機制里,除了貨幣發行外,所有的資金來源都必須來自於前面某一個或幾個交易。任何一筆的交易總量必須等於交易輸出總量。UTXO的記賬機制使得比特幣網路中的每一筆轉賬,都能夠追溯到它前面一筆交易。
比特幣的挖礦節點獲得新區塊的挖礦獎勵,比如 12.5 個比特幣,這時,它的錢包地址得到的就是一個 UTXO,即這個新區塊的幣基交易(也稱創幣交易)的輸出。幣基交易是一個特殊的交易,它沒有輸入,只有輸出。
當甲要把一筆比特幣轉給乙時,這個過程是把甲的錢包地址中之前的一個 UTXO,用私鑰進行簽名,發送到乙的地址。這個過程是一個新的交易,而乙得到的是一個新的 UTXO。
這就是為什麼有人說在這個世界上根本沒有比特幣,只有 UTXO,你的地址中的比特幣是指沒花掉的交易輸出。
以Alice向Bob進行轉賬的過程舉例的話:
UTXO 與我們熟悉的賬戶概念的差別很大。我們日常接觸最多的是賬戶,比如,我在銀行開設一個賬戶,賬戶里的余額就是我的錢。
但在比特幣網路中沒有賬戶的概念,你可以有多個錢包地址,每個錢包地址中都有著多個 UTXO,你的錢是所有這些地址中的 UTXO 加起來的總和。
中本聰發明比特幣的目標是創建一個點對點的電子現金,UTXO 的設計正可以看成是借鑒了現金的思路:我們可能在這個口袋裡裝點現金,在那個櫃子角落裡放點現金,在這種情況下不存在一個賬戶,你放在各處的現金加起來就是你所有的錢。
採用 UTXO 設計還有一個技術上的理由,這種特別的數據結構可以讓雙重花費更容易驗證。對比一下:
Ⅳ 比特幣挖礦到底在計算什麼
要知道挖礦到底在計算什麼,首先得知道比特幣的本質及產生的過程。比特幣是基於網路的電子貨幣,實際是互聯網的一串代碼,依靠演算法計算得出。挖礦是完成演算法的過程,也是生產比特幣的唯一方式。而且由於演算法規定,比特幣目前只有2100萬個。
1、挖礦既能生產比特幣,又能保障交易信息
類似於,一個數學系統包含2100萬個數學題,需要通過龐大的計算量不斷的去尋求這個每個數學題的特解。另外,特解是唯一的。
下面來具體解釋挖礦,從作用來說,挖礦不僅可以增加比特幣貨幣供應,而且還可以保護比特幣交易安全、防止欺詐交易。從過程來說,比特幣網路是一個點對點的支付系統,任何人都可以通過交易程序進行交易。
為了確保交易過程被如實記錄,就需要「礦工」這個角色來負責記錄比特幣交易信息,這個時間間隔是10分鍾,礦工中記賬最好的交易記錄就會被打包存儲到一個新的區塊中,相應的礦工也會得到一定數量的比特幣獎勵。
2、挖礦過程極其復雜,非人力所能為
具體的流程如下,當某一個礦工監聽到這筆交易時,首先會對交易信息進行驗證。通過驗證的交易則會被礦工記錄下來,保存在自己的資料庫裡面。全世界可能有成千上萬個礦工在進行同一件事,但在每十分鍾內,只有一個礦工有權創建新的區塊,使自己記錄的交易信息被大家所承認並永久地存儲下來。
接下來,礦工們就需要爭奪記賬權,這是一場算力競賽的比拼,其核心是用計算機完成大量的計算任務,找到一個超難的隨機數,這個隨機數就是第一段所說的方程特解,最先算出正確隨機數的礦工勝出。根據游戲規律,一個礦工獲得記賬權的幾率與其算力佔全網算力之和的比例成正比。換句話說,找到該隨機數的概率相當於將一億個骰子扔出,最後骰子總和小於1億零50。因此,挖礦需要大量的計算機,安裝特定的演算法軟體,日夜重復運行,非人力所能為。
3、比特幣挖礦其實就是「村民記賬」
可能還是有網友不懂,那就舉個例子。在一個村裡,村民之間經常會發生借款行為,哪怕寫了字據也有違約的風險。那麼,在每次村裡有借款行為發生的時候,就用村裡的大喇叭告知大家,所有的村民(礦工)就在自己的賬簿里記下所有交易記錄。
Ⅳ 比特幣基礎知識 你絕對想不到
橢圓曲線數字簽名演算法
橢圓曲線數字簽名演算法(ECDSA)是使用橢圓曲線對數字簽名演算法(DSA)的模擬,該演算法是構成比特幣系統的基石。
私鑰
非公開,擁有者需安全保管。通常是由隨機演算法生成的,說白了,就是一個巨大的隨機整數,32位元組,256位。
大小介於1 ~ 0xFFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFE BAAE DCE6 AF48 A03B BFD2 5E8C D036 4141之間的數,都可以認為是一個合法的私鑰。
於是,除了隨機方法外,採用特定演算法由固定的輸入,得到32位元組輸出的演算法就可以成為得到私鑰的方法。於是,便有了迷你私鑰(Mini Privkey),原理很簡單,例如,採用SHA256的一種實現:
private key = SHA256()1
迷你私鑰存在安全問題,因為輸入集合太小,易被構造常見組合的彩虹表暴力破解,所以通常仿輪納還是使用系統隨機生成的比較好,無安全隱患。
公鑰
公鑰與私鑰是相對應的,一把私鑰可以推出唯一的公鑰,但公鑰卻無法推導出私鑰。公鑰有兩種形式:壓縮與非壓縮。
早期比特幣均使用非壓縮公鑰,現大部分客戶端已默認使用壓縮公鑰。
這個貌似是比特幣系統一個長得像feature的bug,早期人少活多代碼寫得不夠精細,openssl庫的文檔又不足夠好,導致Satoshi以為必須使用非壓縮的完整公鑰,後來大家發現其實公鑰的左右兩個32位元組是有關聯的,左側(X)可以推出右側(Y)的平方值,有左側(X)就可以了。
現在系統里兩種方式共存,應該會一直共存下去。兩種公鑰的首個位元組為標識位,壓縮為33位元組,非壓縮為65位元組。以0x04開頭為非壓縮,0x02/0x03開頭為壓縮公鑰,0x02/0x03的選取由右側Y開方後的奇偶決定。
壓縮形式可以減小Tx/Block的體積,每個Tx Input減少32位元組。
簽名
使用私鑰對數據進行簽署(Sign)會得到簽名(Signature)。通常會將數據先生成Hash值,然後對此Hash值進行簽名。簽名(signature)有兩部分組成: R + S。由簽名(signature)與Hash值,便可以推出一個公鑰,驗證此公鑰,便可知道此簽名是否由公鑰對應的私鑰簽名。
通常,每個簽名會有三個長度:73、72、71,符合校驗的概率為25%、50%、25%。所以每次簽署後,需要找出符合校驗的簽名長度,再提供給驗證方。
地址
地址是為了人們交換方便而弄出來的一個方案,因為公鑰太長了(130字元串或66字元串)。地址長度為25位元組,轉為base58編碼後,為34或35個字元。base58是類似base64的編碼,但去掉了易引起視覺混淆的字元,又在地址末尾添加了4個位元組校驗位,保障在人們交換個別字元錯誤時,也能夠因地址校驗失敗而制止了誤操作。
由於存在公鑰有兩種形式,那麼一個公鑰便對應兩個地址。這兩個地址都可由同一私鑰簽署交易。
公鑰生成地址的演算法:
Version = 1 byte of 0 (zero); on the test network, this is 1 byte of 111
Key hash = Version concatenated with RIPEMD-160(SHA-256(public key))
Checksum = 1st 4 bytes of SHA-256(SHA-256(Key hash))
Bitcoin Address = Base58Encode(Key hash concatenated with Checksum)1234
下圖是非壓縮公鑰生成地址的過程:
對於壓縮公鑰生成地址時,則只取公鑰的X部分即可。
推導關系
三者推導關系:私鑰
公鑰
兩個地址。過程均不可逆。擁有私鑰便擁有一切,但通常為了方便,會把對應的公鑰、地址也存儲起來。
交易
比特幣的交易(Transation,縮寫Tx),並不是通常意義的桐散交易,例如一手交錢一手交貨,而是轉賬。交易由N個輸入和M個輸出兩部分組成。交易的每個輸入便是前向交易的某個輸出,那麼追蹤到源頭,必然出現一個沒有輸入的交易,此類交易稱為CoinBase Tx。CoinBase類備沒交易是獎勵挖礦者而產生的交易,該交易總是位於Block塊的第一筆。
擁有一個輸入與輸出的Tx數據:
Input:
Previous tx:
Index: 0
scriptSig:
241501
Output:
Value: 5000000000
scriptPubKey: OP_DUP OP_HASH160
OP_EQUALVERIFY OP_CHECKSIG12345678910
一旦某個Tx的第N個輸出成為另一個Tx的輸入,那麼該筆比特幣即為已花費。每個交易有唯一Hash字元串來標識,通過對交易數據做兩次SHA256哈希運算而來:
Tx Hash ID = SHA256(SHA256(Tx Data))1
礦工費
礦工費(Transaction Fee)是鼓勵礦工將Tx打包進Block的激勵報酬。計算一筆交易的礦工費:
Transaction Fee = SUM(Inputs amount) - SUM(Outputs amount)1
每筆Tx的礦工費必然大於等於零,否則該筆Tx即為非法,不會被網路接收。
數據塊
數據塊(Block)是存儲Block Meta與Tx的地方。Block的第一筆Tx總是CoinBase Tx,因此Block中的交易數量總是大於等於1,隨後是這段時間內網路廣播出來的Tx。
找到合適的Block是一件非常困難的事情,需要通過大量的數學計算才能發現,該計算過程稱為「挖礦」。首個發現者,會得到一些比特幣作為獎勵。
數據鏈
多個Block連接起來成為數據鏈(Block Chain)。
為了引入容錯與競爭機制,比特幣系統允許Block Chain出現分叉,但每個節點總是傾向於選擇最高的、難度最大的鏈,並稱之為Best Chain,節點只認可Best Chain上的數據。
首個Block稱為Genesis Block,並設定高度為零,後續每新增一個Block,高度則遞增一。目前是不允許花費Genesis Block中的比特幣的。
每個Block中的Tx在此Block中均唯一
一個Tx通常只會在一個Block里,也可能會出現在多個Block中,但只會在Best Chain中的某一個Block出現一次
貨幣存儲
比特幣是密碼貨幣、純數字化貨幣,沒有看得見摸得著的硬幣或紙幣。一個人持有比特幣意味著:
其擁有一些地址的私鑰
這些地址是數筆交易的輸出,且未花費
所有貨幣記錄均以交易形式存儲在整個blockchain數據塊中,無交易無貨幣。貨幣不會憑空產生,也不會憑空消失。遺失了某個地址的私鑰,意味著該地址上的Tx無法簽署,無法成為下一個Tx的輸入,便認為該筆比特幣永久消失了。
貨幣發行
既然所有交易的輸入源頭都是來自CoinBase,產生CoinBase時即意味著貨幣發行。比特幣採用衰減發行,每四年產量減半,第一個四年每個block的coinbase獎勵50BTC,隨後是25btc, 12.5btc, 並最終於2140年為零,此時總量達到極限為2100萬個btc。
減半周期,嚴格來說,並不是准確的四年,而是每生成210000個block。之所以俗稱四年減半,是因為比特幣系統會根據全網算力的大小自動調整難度系統,使得大約每兩周產生2016個block,那麼四年約21萬塊block。
該函數GetBlockValue()用於計算挖得Block的獎勵值:
int64 static GetBlockValue(int nHeight, int64 nFees)
{
int64 nSubsidy = 50 * COIN;
// Subsidy is cut in half every 210000 blocks, which will occur approximately every 4 years
nSubsidy = (nHeight / 210000);
return nSubsidy + nFees;
}123456789
當達到2100萬btc以後,不再有來自CoinBase的獎勵了,礦工的收入來源僅剩下交易的礦工費。此時,每個block的收入絕對值btc很低,但此時比特幣應當會非常繁榮,幣值也會相當的高,使得礦工們依然有利可圖。
杜絕多重支付
傳統貨幣存在多重支付(Double Spending)問題,典型的比如非數字時代的支票詐騙、數字時代的信用卡詐騙等。在比特幣系統里,每筆交易的確認均需要得到全網廣播,並收錄進Block後才能得到真正確認。每筆錢的花銷,均需要檢測上次輸入交易的狀態。數據是帶時間戳的、公開的,BlockChain由巨大的算力保障其安全性。所以比特幣系統將貨幣的多重支付的風險極大降低,幾近於零。通過等待多個Block確認,更是從概率上降低至零。一般得到6個確認後,可認為非常安全。但對於能影響你人生的重大支付,建議等待20~30個確認。
匿名性
任何人均可以輕易生成大量的私鑰、公鑰、地址。地址本身是匿名的,通過多個地址交易可進一步提高匿名性。但該匿名性並不像媒體宣傳的那樣,是某種程度上的匿名。因為比特幣的交易數據是公開的,所以任何一筆資金的流向均是可以追蹤的。
不了解比特幣的人為它的匿名性產生一些擔憂,比如擔心更利於從事非法業務;了解比特幣的人卻因為它的偽匿名性而苦惱。傳統貨幣在消費中也是匿名的,且是法律保障的,大部分國家都不允許個人塗畫紙幣。
地址本身是匿名的,但你可以通過地址對應的私鑰簽名消息來向公眾證明你擁有某個比特幣地址。
其他名詞
哈希
哈希(Hash)是一種函數,將一個數映射到另一個集合當中。不同的哈希函數映射的空間不同,反映到計算機上就是生成的值長度不一樣。同一個哈希函數,相同的輸入必然是相同的輸出,但同一個輸出卻可能有不同的輸入,這種情況稱為哈希碰撞。
常見的哈希函數有CRC32, MD5, SHA1, SHA-256, SHA-512, RIPEMD-160等,哈希函數在計算中有著非常廣泛的用途。比特幣里主要採用的是SHA-256和RIPEMD-160。
腦錢包紙錢包
前面提到過的腦錢包與紙錢包,這其實不算是錢包的分類,只是生成、存儲密鑰的方式而已。腦錢包屬於迷你私鑰的產物。腦錢包就是記在腦袋裡的密鑰,紙錢包就是列印到紙上的密鑰,僅此而已。
有同學提到過,以一個計算機文件作為輸入,例如一個數MB大小的照片,通過某種Hash運算後得到私鑰的方法。這個方案的安全性還是不錯的,同時可以防止盜私鑰木馬根據特徵掃描私鑰。文本形式存儲私鑰是有特徵的,而一個照片文件卻難以察覺,即使放在雲盤等第三方存儲空間中都是安全的。
Ⅵ 比特幣原理
比特幣實際上就是一大堆復雜演算法生成的特解,特解就是指方程組所得到無限個解中的一組。用俗話解釋就是相當於人民幣的序列號,只要你知道這個序列號,你就擁有這張人民幣。
而挖礦的過程就是通過龐大的計算量不斷的去尋求這個方程組的特解,這個方程組被設計成了只有2100萬個特解,所以比特幣的上限就是2100萬。
目前主流的演算法一個是BTC,一個是LTC。
BTC演算法為純數字運算,所以只需要定製一顆運算晶元,就可以實現挖礦操作。
LTC演算法則是需要消耗一定內存,機器工作時,除定製一顆運算晶元,還需要配置一定數量的內存設備。目前世面上的挖礦機價格高低層次不齊,這就決定挖礦機在挖礦時的效率。
—— ——
Ⅶ 我想問問1比特幣和1聰的比例是多少啊,剛才中了400聰
在魔豆皮中的吧,一分錢還不值,我有0.0000263比特幣,算下來2000多聰
Ⅷ 比特幣算的是什麼題目
計算的就是比特幣本身。這一計算過程就是比特幣的發行過程。
只要有一台能接入互聯網的計算機,從比特幣網站下 載比特幣程序,首次運行會產生一個數字賬號,然後保持運行,這個程序就會一直不停地計算上一系列「數學題」,當你成功地計算完「一道數學 題」之後,就有可能得到一定數量的比特幣(這里所說的「數學題」只是一個形象)。
Ⅸ 比特幣收益率怎麼算
比特幣收益的計算方法就是賣出的價格減進去成本價格。
比特幣具體的計算公式:比特幣的收益等於(每日數量×價格-每日消電)×挖幣天數-電腦成本。
比特幣合約計算方式:手續費=(成交合約張數*合約面值/成交均價)*費率。
Ⅹ 關於比特幣計算
merkle_root是上一塊區塊計算過程中,此節點記錄下的交易記錄所計算出來的根。此節點在進行新的一塊區塊計算的時候,交易記錄已經是固定不會變化的了(然而merkle_root的值還會變,詳情看3.)。所以說其實某節點在進行一塊區塊的計算時,它接收並承認的交易記錄會用在下一個區塊的計算中。
ntime表示節點記錄下來的交易記錄的打包時間,近似等於節點收到上一個區塊計算完畢廣播的時間(可以有微小差別,ex.前後若干秒),是固定值。
merkle_root對應的交易記錄中,第一筆交易記錄一定是向自己支付挖礦獎勵的創幣交易(coinbase),而創幣交易可以加入一段自定義的附加文字。這個添加的附加文字(也就是說merkle_root會因為不同附加文字而變化)提供了挖礦計算公式中x的所有2^32種可能性以外的更多的組合。