當前位置:首頁 » 比特幣問答 » 比特幣演算法波及私鑰安全

比特幣演算法波及私鑰安全

發布時間: 2023-06-05 12:22:31

1. 比特幣交易在資金安全方面怎麼樣

國家不承認比特幣的合法性。因此,在安全性方面,是不可能有保證的。即使黑客黑了你,也不能報案,不受理。

2. 比特幣基礎教學之:怎樣保護你的私鑰

私鑰安全問題的重要性對比特幣玩家來說不言而喻。對於比特幣的重量級玩家或者比特幣商家而言,如何保護好私鑰更是需要仔細考慮和反復斟酌的。今天編者就和大家探討一下如何保護比特幣私鑰的問題。對於bitcoin-qt客戶端來說,比特幣私鑰一般儲存在客戶端的wallet.dat文件中。對於Blockchain這樣的在線錢包用戶來說,比特幣私鑰是儲存在在線錢包的網路伺服器上,用戶也可以將私鑰下載到本地。對於紙錢包的用戶來說,私鑰可以被列印出來。但是,怎樣保護私鑰的安全性呢?編者列出了幾種方法供大家參考。
用對稱加密的方法保管私鑰 對稱加密(Symmetric-key algorithm)是指加密和解密都用一個密鑰。我們平時用到的加密方法一般都是對稱加密,比如 winrar 中的加密,bitcoin-qt中對私鑰文件的加密也是用的對稱型加密演算法。常用的對稱加密演算法有:AES、DES、RC4、RC5等等。對稱加密需要用戶設置相對比較復雜的密鑰,以防止被暴力破解。Go to top方法一,用bitcoin-qt對私鑰錢包進行加密。我們在命令模式下可以用encryptwallet命令來對錢包進行加密。命令模式的使用方法可以參見比特幣基礎教學之:怎樣使用紙錢包私鑰。這是私鑰加密的最簡易有效的方法。但是在使用walletpassphrase命令進行解密錢包時,密鑰會被讀入計算機內存中,所以存在攻擊者獲取密鑰的可能性。加密命令: encryptwallet YOURPASSWORD解密錢包命令: walletpassphrase YOURPASSWORDTIMEOUT更改密碼命令: walletpassphrasechange OLDPASSWORDNEWPASSWORDGo to top方法二,使用blockchain提供的AES加密。Blockchain為用戶提供基於AES演算法的私鑰文件加密服務。用戶可以將加密好的文件下載下來,並妥善保存。
Go to top方法三,用第三方軟體Truecrypt對密鑰文件加密,這也是編者比較推薦的方法。Truecrypt開源免費,軟體成熟度很高,而且支持雙因素認證和整個硬碟加密。另外,FBI人員在Truecrypt上面吃過虧,因此口碑很不錯。Truecrypt的口碑FBI hackers fail to crack TrueCrypt The FBI has admitted defeat in attempts to break the open source encryption used to secure hard drives seized by Brazilian police ring a 2008 investigation.
The Bureau had been called in by the Brazilian authorities after the country』s own National Institute of Criminology (INC) had been unable to crack the passphrases used to secure the drives by suspect banker, Daniel Dantas.Brazilian reports state that two programs were used to encrypt the drives, one of which was the popular and widely-used free open source program TrueCrypt. Experts in both countries apparently spent months trying to discover the passphrases using a dictionary attack, a technique that involves trying out large numbers of possible character combinations until the correct sequence is found.
完整文章點擊這里Truecrypt只支持對稱加密演算法。使用它的用戶必須要將密鑰牢記,如果你忘記密鑰,那麼沒有人能夠恢復你加密的文件。
Truecrypt官方網站Truecrypt使用文檔 用非對稱加密的方法保管私鑰 非對稱加密方法所採用公鑰和私鑰的形式來對文件進行加密。用戶可以用公鑰來對文件進行加密,用私鑰對文件解密。常見的非對稱加密演算法有RSA、Elgamal、ECC等等。非對稱加密的好處是密鑰的復雜度一般很高,可以很有效的防止被暴力破解。缺點是有一定的使用門檻,不太適合普通級用戶。Go to top 方法一、個人用戶可以考慮使用RSA來進行加密。首先,可以創建公鑰和私鑰,點擊這里生成密鑰。將公鑰私鑰妥善保管後,便可以用公鑰加密和私鑰解密了,點擊這里進行加密和解密。RSA公鑰和私鑰的產生過程RSA公鑰和私鑰的產生過程隨意選擇兩個大的素數p和q,p不等於q,計算N=pq。根據歐拉函數,求得r= φ(N) = φ(p)φ(q) = (p-1)(q-1)選擇一個小於r的整數e,求得e關於模r的模反元素,命名為d。(模反元素存在,當且僅當e與r互質)將p和q的記錄銷毀。(N,e)是公鑰,(N,d)是私鑰。Go to top方法二、比較成熟的非對稱加密軟體有我們可以採用PGP(Pretty Good Privacy)工具來對文件進行加密。PGP加密可以讓每個公鑰邦定到一個用戶的所有信息。相比RSA來講,PGP的功能更加完善可靠。但是隨著PGP的升級,新的加密消息有可能不被舊的PGP系統解密,所以用戶在使用PGP之前應該首先熟悉PGP的設置。PGP加密工具網上有很多,編者就不列舉了。
wiki中關於PGP的介紹PGP在線加解密系統PGP命令FAQ 高級方法保管私鑰 上述保管私鑰的方式都很常見,有經驗的攻擊者依然可能得到用戶的私鑰文件。關於更加高級隱秘的私鑰保管方式,參見以後的比特幣高級教學內容。

3. 比特幣的安全性到底有多高,你有懷疑比特幣的安全性嗎

近期,比特幣突破新高,一枚比特幣價值近26萬人民幣,一枚比特幣換一輛特斯拉。對於剛入圈的新人來說,你肯定很關心比特幣的安全問題。

那麼,比特幣安全嗎?換句話說, 錢包里的比特幣,容易被黑客盜走嗎?

01
私鑰、公鑰、地址

就像銀行取款、網銀轉賬需要輸入密碼一樣, 動用錢包里的比特幣也需要密碼,這個密碼被稱之為「私鑰」。

與「私鑰」對應的是「公鑰」,「公鑰」就像你的銀行賬戶。 每個銀行賬戶都有唯一的賬戶編號,也就是銀行卡號。 在比特幣網路中,這個銀行卡號就是「地址」。 別人只要知道你的「銀行卡號」(即地址),就可以給你轉比特幣了。

在銀行,開戶流程基本是「開設銀行賬戶——給銀行卡號——設置銀行卡密碼——開戶成功」。但在區塊鏈世界裡,是先設置「密碼」(私鑰),再開設「銀行賬戶」(公鑰),最後給「銀行卡號」(地址)。

如果你路上撿到了一張紙條,上面只寫著銀行卡密碼,但沒寫銀行卡號,即便這個銀行卡密碼是真的,你也無法取走相關賬戶里的錢。

但在區塊鏈世界,你只要知道了別人的「銀行卡密碼」(私鑰),就可以知道別人的「銀行賬戶」(公鑰)和「銀行卡號」(地址),可以取走裡面的幣。

為什麼會這樣呢?

這是因為在區塊鏈中,私鑰通過加密生成公鑰,公鑰轉換一下格式生成地址。也就是說, 私鑰可以推導出公鑰,公鑰可以推導出地址。


02
反向推導?沒門!

既然「私鑰可以推導出公鑰,公鑰可以推導出地址」,動用賬戶里的比特幣又必須輸入「密碼(私鑰)」, 那黑客要竊取你錢包里的比特幣,必須、也只需拿到「私鑰」即可。

理論上,黑客有2種方法竊取你的私鑰:

第一種方法並不可行,因為比特幣採用的加密演算法,「失之毫釐,差之千里!」。 輸入的內容,稍稍變動哪怕一丁點的東西,加密後輸出的結果和之前輸出的結果也有 天壤之別 ,而且這些結果沒有規律可循。

所以,這種加密演算法是「單向的」、「不可逆的」,黑客無法通過輸出(地址/公鑰)推導出輸入(私鑰)。


03
暴力破解比特幣私鑰有多難?

既然第一種方法不可行,那第二種方法如何?在回答這個問題之前,我們先看下私鑰是怎麼產生的。

假設你拋硬幣,正面朝上為1,反面朝上為0,連續拋256次,把每次拋的結果記錄下來,再轉換成十六進制數,就是一個比特幣私鑰。

What? 這么簡單?這么任性?

沒錯,比特幣的私鑰就是通過程序「拋256次硬幣」,隨機生成的。所以, 比特幣私鑰的本質是256位二進制數

每次拋硬幣,都有正反2面,所以拋256次,一共可以出現「2 x 2 x2 x 2……2 x 2x2」,即256個2相乘,也就是「2的256次方」種結果。 所以,比特幣的私鑰總數,理論上有「2的256次方」個。

註: 私鑰總數的實際值比上面的理論值略低,因為有一小部分私鑰不可用,但對總數影響微乎其微。

「2的256次方」是多大呢?它約等於「10的77次方」。那「10的77次方」又是多大呢?

如果我們居住的這個地球,海洋、岩石、地底下的岩漿全部用沙子來填充的話,整個地球的沙子數量大概是「10的30次方」。也就是說, 一個和地球一樣大,全部由沙子組成的星球,需要用到「10的30次方」粒沙子。

「10的77次方」比「10的30次方」大「10的47次方」倍,整整47個0。在比一個地球的沙子數量還要多「10的47次方」倍的比特幣私鑰集里,一個一個地試,破解出某個地址對應的私鑰,簡直比大海撈針還難。

所以,即便黑客有超級計算機,都無法暴力破解比特幣私鑰。

這就是為什麼很多人說 , 「比特幣第一次通過技術手段,保證了個人的私有財產神聖不可侵犯」。

04
如果比超級計算機還要厲害?

雖然未來的 科技 如何發展誰都無法准確預測,但如果有一天,人類發明了比超級計算機、量子計算機還要厲害的計算機,比特幣私鑰不就不安全了嗎?

確實,很多人想知道量子計算機到底對比特幣的安全性有沒有威脅,如果有威脅,比特幣有哪些措施可以應對。

鑒於這個問題不是三言兩語能解釋清楚,後面我們會單獨開一篇文章,探討這個問題,敬請期待。

05
結語

當然,安全問題不僅僅牽涉到技術問題,也牽涉到私鑰的保存問題。 如果是因為自己私鑰保存不當,或是電腦中了病毒,或是使用的錢包軟體有漏洞或是有後門,導致私鑰被黑客竊走,那錢包里的比特幣安全性就無從談起了。

但是,因為自己的失誤導致私鑰被盜,這鍋不能讓比特幣背,不是嗎?

所以,如果有人拿比特幣被盜事件來質疑比特幣的安全性,你會怎麼回答他呢?

4. 比特幣演算法原理

比特幣演算法主要有兩種,分別是橢圓曲線數字簽名演算法和SHA256哈希演算法。

橢圓曲線數字簽名演算法主要運用在比特幣公鑰和私鑰的生成過程中,該演算法是構成比特幣系統的基石。SHA-256哈希演算法主要是運用在比特幣的工作量證明機制中。

比特幣產生的原理是經過復雜的運演算法產生的特解,挖礦就是尋找特解的過程。不過比特幣的總數量只有2100萬個,而且隨著比特幣不斷被挖掘,越往後產生比特幣的難度會增加,可能獲得比特幣的成本要比比特幣本身的價格高。

比特幣的區塊由區塊頭及該區塊所包含的交易列表組成,區塊頭的大小為80位元組,由4位元組的版本號、32位元組的上一個區塊的散列值、32位元組的 Merkle Root Hash、4位元組的時間戳(當前時間)、4位元組的當前難度值、4位元組的隨機數組成。擁有80位元組固定長度的區塊頭,就是用於比特幣工作量證明的輸入字元串。不停的變更區塊頭中的隨機數即 nonce 的數值,並對每次變更後的的區塊頭做雙重 SHA256運算,將結果值與當前網路的目標值做對比,如果小於目標值,則解題成功,工作量證明完成。

比特幣的本質其實是一堆復雜演算法所生成的一組方程組的特解(該解具有唯一性)。比特幣是世界上第一種分布式的虛擬貨幣,其沒有特定的發行中心,比特幣的網路由所有用戶構成,因為沒有中心的存在能夠保證了數據的安全性。

5. 高中生如何理解比特幣加密演算法

加密演算法是數字貨幣的基石,比特幣的公鑰體系採用橢圓曲線演算法來保證交易的安全性。這是因為要攻破橢圓曲線加密就要面對離散對數難題,目前為止還沒有找到在多項式時間內解決的辦法,在演算法所用的空間足夠大的情況下,被認為是安全的。本文不涉及高深的數學理論,希望高中生都能看懂。

密碼學具有久遠的歷史,幾乎人人都可以構造出加解密的方法,比如說簡單地循環移位。古老或簡單的方法需要保密加密演算法和秘鑰。但是從歷史上長期的攻防斗爭來看,基於加密方式的保密並不可靠,同時,長期以來,秘鑰的傳遞也是一個很大的問題,往往面臨秘鑰泄漏或遭遇中間人攻擊的風險。

上世紀70年代,密碼學迎來了突破。Ralph C. Merkle在1974年首先提出非對稱加密的思想,兩年以後,Whitfield Diffie和Whitfield Diffie兩位學者以單向函數和單向暗門函數為基礎提出了具體的思路。隨後,大量的研究和演算法涌現,其中最為著名的就是RSA演算法和一系列的橢圓曲線演算法。

無論哪一種演算法,都是站在前人的肩膀之上,主要以素數為研究對象的數論的發展,群論和有限域理論為基礎。內容加密的秘鑰不再需要傳遞,而是通過運算產生,這樣,即使在不安全的網路中進行通信也是安全的。密文的破解依賴於秘鑰的破解,但秘鑰的破解面臨難題,對於RSA演算法,這個難題是大數因式分解,對於橢圓曲線演算法,這個難題是類離散對數求解。兩者在目前都沒有多項式時間內的解決辦法,也就是說,當位數增多時,難度差不多時指數級上升的。

那麼加解密如何在公私鑰體系中進行的呢?一句話,通過在一個有限域內的運算進行,這是因為加解密都必須是精確的。一個有限域就是一個具有有限個元素的集合。加密就是在把其中一個元素映射到另一個元素,而解密就是再做一次映射。而有限域的構成與素數的性質有關。

前段時間,黎曼猜想(與素數定理關系密切)被熱炒的時候,有一位區塊鏈項目的技術總監說橢圓曲線演算法與素數無關,不受黎曼猜想證明的影響,就完全是瞎說了。可見區塊鏈項目內魚龍混雜,確實需要好好洗洗。

比特幣及多數區塊鏈項目採用的公鑰體系都是橢圓曲線演算法,而非RSA。而介紹橢圓曲線演算法之前,了解一下離散對數問題對其安全性的理解很有幫助。

先來看一下 費馬小定理

原根 定義:
設(a, p)=1 (a與p互素),滿足

的最下正整數 l,叫作a模p的階,模p階為(最大值)p-1的整數a叫作模p的原根。

兩個定理:

基於此,我們可以看到,{1, 2, 3, … p-1} 就是一個有限域,而且定義運算 gi (mod p), 落在這個有限域內,同時,當i取0~p-2的不同數時,運算結果不同。這和我們在高中學到的求冪基本上是一樣的,只不過加了一層求模運算而已。

另一點需要說明的是,g的指數可以不限於0~p-2, 其實可以是所有自然數,但是由於

所以,所有的函數值都是在有限域內,而且是連續循環的。

離散對數定義:
設g為模p的原根,(a,p) = 1,

我們稱 i 為a(對於模p的原根g)的指數,表示成:

這里ind 就是 index的前3個字母。
這個定義是不是和log的定義很像?其實這也就是我們高中學到的對數定義的擴展,只不過現在應用到一個有限域上。

但是,這與實數域上的對數計算不同,實數域是一個連續空間,其上的對數計算有公式和規律可循,但往往很難做到精確。我們的加密體系裡需要精確,但是在一個有限域上的運算極為困難,當你知道冪值a和對數底g,求其離散對數值i非常困難。

當選擇的素數P足夠大時,求i在時間上和運算量上變得不可能。因此我們可以說i是不能被計算出來的,也就是說是安全的,不能被破解的。

比特幣的橢圓曲線演算法具體而言採用的是 secp256k1演算法。網上關於橢圓曲線演算法的介紹很多,這里不做詳細闡述,大家只要知道其實它是一個三次曲線(不是一個橢圓函數),定義如下:

那麼這里有參數a, b;取值不同,橢圓曲線也就不同,當然x, y 這里定義在實數域上,在密碼體系裡是行不通的,真正採用的時候,x, y要定義在一個有限域上,都是自然數,而且小於一個素數P。那麼當這個橢圓曲線定義好後,它反應在坐標系中就是一些離散的點,一點也不像曲線。但是,在設定的有限域上,其各種運算是完備的。也就是說,能夠通過加密運算找到對應的點,通過解密運算得到加密前的點。

同時,與前面講到的離散對數問題一樣,我們希望在這個橢圓曲線的離散點陣中找到一個有限的子群,其具有我們前面提到的遍歷和循環性質。而我們的所有計算將使用這個子群。這樣就建立好了我們需要的一個有限域。那麼這里就需要子群的階(一個素數n)和在子群中的基點G(一個坐標,它通過加法運算可以遍歷n階子群)。

根據上面的描述,我們知道橢圓曲線的定義包含一個五元祖(P, a, b, G, n, h);具體的定義和概念如下:

P: 一個大素數,用來定義橢圓曲線的有限域(群)
a, b: 橢圓曲線的參數,定義橢圓曲線函數
G: 循環子群中的基點,運算的基礎
n: 循環子群的階(另一個大素數,< P )
h:子群的相關因子,也即群的階除以子群的階的整數部分。

好了,是時候來看一下比特幣的橢圓曲線演算法是一個怎樣的橢圓曲線了。簡單地說,就是上述參數取以下值的橢圓曲線:

橢圓曲線定義了加法,其定義是兩個點相連,交與圖像的第三點的關於x軸的對稱點為兩個點的和。網上這部分內容已經有很多,這里不就其細節進行闡述。

但細心的同學可能有個疑問,離散對數問題的難題表現在求冪容易,但求其指數非常難,然而,橢圓曲線演算法中,沒有求冪,只有求乘積。這怎麼體現的是離散對數問題呢?

其實,這是一個定義問題,最初橢圓曲線演算法定義的時候把這種運算定義為求和,但是,你只要把這種運算定義為求積,整個體系也是沒有問題的。而且如果定義為求積,你會發現所有的操作形式上和離散對數問題一致,在有限域的選擇的原則上也是一致的。所以,本質上這還是一個離散對數問題。但又不完全是簡單的離散對數問題,實際上比一般的離散對數問題要難,因為這里不是簡單地求數的離散對數,而是在一個自定義的計算上求類似於離散對數的值。這也是為什麼橢圓曲線演算法採用比RSA所需要的(一般2048位)少得多的私鑰位數(256位)就非常安全了。

6. 比特幣的地址、公鑰、私鑰,你都了解了嗎

了解比特幣,就不可避免地要掌握什麼是比特幣的地址、公鑰、私鑰,下面我們一個一個來解釋。

地址,就好比是銀行賬(卡)號,在創建數字錢包後就會自動生成,簡單來說,就是創建錢包的時候,先產生一對私鑰和公鑰,然後公鑰通過一套演算法生成地址,這個地址實質上是一串字元,比如。

像銀行賬(卡)號可以用來收款一樣,比特幣地址也可以用來接收比特幣。

這個比特幣地址不單單給你轉幣的人知道,連整個比特幣網路的人都能查看,可以說,全球所有用戶的地址都可以被任何人知道。為什麼這樣說呢?因為比特幣本質就是一個大型的公開賬本,所有交易對所有人都是可見的。而交易記錄中包括了交易流水單號、發幣人的發幣地址、收幣人地址、發幣人的找零地址。

私鑰,可以看作是銀行密碼,是一串很長的由錢包生成的隨機數,比如, LBB9ZXMCJ。私鑰是唯一能夠證明你擁有的比特幣是屬於你的,也只有用私鑰才能轉賬、交易和使用數字錢包里的比特幣。

我們都知道了,銀行密碼絕對不能泄露給別人,私鑰也一樣,打死也不要告訴他人,否則你的比特幣很容易就被轉走。銀行的錢被盜了,因為有國家監管和第三方信用,還有可能被追回,但比特幣是去中心化的,沒有第三方,自己的幣只能自己負責看管,丟了,或被他人轉走了,就永遠拿不回來了。所以千萬千萬不要把私鑰告訴他人,不要把私鑰保存在手機或者電腦上,不要通過網路傳輸你的私鑰,那怎麼辦?記住了,要用筆寫在紙上,寫兩到三份分別放在不同的地方,保管好。

公鑰,顧名思義,是可以公開的,也是像地址和私鑰一樣,是一串長長的字元。公鑰由私鑰通過橢圓曲線加密演算法生成,通過私鑰可以算出唯一一個公鑰,但公鑰不能逆向推導出私鑰。

那到底比特幣地址、公鑰、私鑰在交易中起什麼作用的呢?

首先,錢包通過加密演算法把私鑰加密成字元串(也叫作簽名),然後把這個字元串,和公鑰一起寫到交易信息里,再發給礦工。礦工收到信息後,就會將簽名、公鑰寫入一個驗證函數,如果得出的結果為「true」,那麼這個交易會被確認為真實有效,就能被驗證通過。而結果為「false」,則說明這筆交易存在問題,不能被驗證通過。

通過以上淺顯的文字,希望能幫到你對比特幣的地址、公鑰和私鑰有一個初步的了解吧!感謝你的閱讀!

7. 比特幣基礎教學之:怎樣保護你的私鑰

比特幣挖礦是利用計算機硬體為比特幣網路做數學計算進行交易確認和提高安全性的過程。作為對他們服務的獎勵,礦工可以得到他們所確認的交易中包含的手續費,以及新創建的比特幣。挖礦是一個專業的、競爭激烈的市場,獎金按照完成的計算量分割。並非所有的比特幣用戶都挖礦,挖礦賺錢也並不容易。

通俗點就是利用你的挖礦設備的算力解決數學難題,確認交易,根據貢獻算力的大小獲得不等的比特幣獎勵。目前,挖礦需要專業的ASIC礦機,例如,搭乘阿瓦隆三代晶元的礦機。

8. 干貨:暫時不用的比特幣應該怎樣存放才安全

最近加了不少微信群,跟著大傢伙們學了不少。其中我看到最多的建議是 ,如果你的幣暫時不用,最好存冷錢包,安全。

這個很好理解,放在交易平台的幣,實際上就是不屬於你。當你把幣放在交易平台,平台給你打了一個欠條。如果平台拿你的幣去干一些偷雞摸狗的事情,你十有八九是不知道的。

那假如你放在平台的資產是不受監管的,那麼這個平台很有可能會挪用你的法幣或者比特幣去做其他事情。

極端地想一想, 倘若平台捲款逃跑,很有可能是你人財兩空,甚至傾家盪產,白白花了這么多時間精力,為他人做了嫁衣,所以這也是我們之前為什麼要挑選一些比較靠譜安全的交易所的一個原因。

那麼問題來了,怎麼著?錢包還有分冷的熱的?我趕緊掏出錢包捂在臉上,嗯,這個天氣,確實是挺冷的。

開個玩笑, 其實這里的錢包可能指的是錢包客戶端, 例如QT錢包,multibit輕錢包,在線錢包等等; 也有可能指的是存儲私鑰的介質, 例如錢包文件.wallet,紙錢包。

而比特幣里的冷熱錢包指的是私鑰的存儲方式。

冷錢包是指網路不能訪問到你私鑰的錢包。 冷錢包往往依靠「冷」設備確保比特幣私鑰的安全,比如不聯網的電腦、手機、寫著私鑰地址的小本本等。

冷錢包的電腦之所以離線,第一是病毒木馬進不來,最重要的是第二點,即使電腦有木馬,離線的電腦私鑰不會被木馬發出去。

盡管冷錢包避免了被黑客盜取私鑰的風險,但是可能面臨物理安全風險 ,比如電腦不小心進水了,被老婆砸壞了,被熊孩子刪除了等等風險。

相反,熱錢包是指互聯網能直接訪問你私鑰的錢包。

使用熱錢包時,最好在不同平台設置不同密碼,且開啟二次認證,以確保自己的資產安全。

平台為了資產的安全,會做很多措施防止黑客攻擊,比如冷熱錢包分離。平台只留5%的資產用於提現充值,剩下的部分用冷錢包儲存。

無論是使用冷錢包還是熱錢包,只要其他人知道了你的比特幣私鑰,就能轉走你的比特幣。 記住,誰手握私鑰,誰才是比特幣真正的主人。

問題又來了,什麼是公鑰私鑰?

公鑰是密碼學上的一個概念,是通過一種演算法得到的,一般公鑰和私鑰是成對出現的。

例如,你要傳送一個信息給我,而這份信的內容是機密的。你用我的的公開的鑰匙(簡稱公鑰)來加密來送信,而只有用我的私有的鑰匙(簡稱私鑰)才能夠看到這封信的內容。也就是說你僅僅充當了一個郵遞員的角色,只有保管私鑰的人才能看到這封信的內容。

根據地址,公鑰的概念,就很容易理解什麼是私鑰。你可以把它看成是你的銀行卡密碼。

注意:一定要保管好自己的私鑰,因為一旦丟失,你手裡的比特幣就真的沒了,永遠也找不回來。前幾年有很多人屯過許多比特幣,但是因為私鑰沒有,就和好幾個億錯過了,好氣啊!

那麼除了這些,我們在購買比特幣的時候還需要注意些什麼問題呢?

9. 比特幣如何防止篡改

比特幣網路主要會通過以下兩種技術保證用戶簽發的交易和歷史上發生的交易不會被攻擊者篡改:

  • 非對稱加密可以保證攻擊者無法偽造賬戶所有者的簽名;

  • 共識演算法可以保證網路中的歷史交易不會被攻擊者替換;

  • 非對稱加密


  • 非對稱加密演算法3是目前廣泛應用的加密技術,TLS 證書和電子簽名等場景都使用了非對稱的加密演算法保證安全。非對稱加密演算法同時包含一個公鑰(Public Key)和一個私鑰(Secret Key),使用私鑰加密的數據只能用公鑰解密,而使用公鑰解密的數據也只能用私鑰解密。

  • 圖 4 - 51% 攻擊


  • 1使用如下所示的代碼可以計算在無限長的時間中,攻擊者持有 51% 算力時,改寫歷史 0 ~ 9 個區塊的概率9:

  • #include

  • #include


  • double attackerSuccessProbability(double q, int z) {

  • double p = 1.0 - q;

  • double lambda = z * (q / p);

  • double sum = 1.0;

  • int i, k;

  • for (k = 0; k <= z; k++) {

  • double poisson = exp(-lambda);

  • for (i = 1; i <= k; i++)

  • poisson *= lambda / i;

  • sum -= poisson * (1 - pow(q / p, z - k));

  • }

  • return sum;

  • }


  • int main() {

  • for (int i = 0; i < 10; i++) {

  • printf("z=%d, p=%f\n", i, attackerSuccessProbability(0.51, i));

  • }

  • return 0;

  • }


  • 通過上述的計算我們會發現,在無限長的時間中,佔有全網算力的節點能夠發起 51% 攻擊修改歷史的概率是 100%;但是在有限長的時間中,因為比特幣中的算力是相對動態的,比特幣網路的節點也在避免出現單節點佔有 51% 以上算力的情況,所以想要篡改比特幣的歷史還是比較困難的,不過在一些小眾的、算力沒有保證的一些區塊鏈網路中,51% 攻擊還是極其常見的10。


  • 防範 51% 攻擊方法也很簡單,在多數的區塊鏈網路中,剛剛加入區塊鏈網路中的交易都是未確認的,只要這些區塊後面追加了數量足夠的區塊,區塊中的交易才會被確認。比特幣中的交易確認數就是 6 個,而比特幣平均 10 分鍾生成一個塊,所以一次交易的確認時間大概為 60 分鍾,這也是為了保證安全性不得不做出的犧牲。不過,這種增加確認數的做法也不能保證 100% 的安全,我們也只能在不影響用戶體驗的情況下,盡可能增加攻擊者的成本。

  • 總結


  • 研究比特幣這樣的區塊鏈技術還是非常有趣的,作為一個分布式的資料庫,它也會遇到分布式系統經常會遇到的問題,例如節點不可靠等問題;同時作為一個金融系統和賬本,它也會面對更加復雜的交易確認和驗證場景。比特幣網路的設計非常有趣,它是技術和金融兩個交叉領域結合後的產物,非常值得我們花時間研究背後的原理。


  • 比特幣並不能 100% 防止交易和數據的篡改,文中提到的兩種技術都只能從一定概率上保證安全,而降低攻擊者成功的可能性也是安全領域需要面對的永恆問題。我們可以換一個更嚴謹的方式闡述今天的問題 — 比特幣使用了哪些技術來增加攻擊者的成本、降低交易被篡改的概率:

  • 比特幣使用了非對稱加密演算法,保證攻擊者在有限時間內無法偽造賬戶所有者的簽名;

  • 比特幣使用了工作量證明的共識演算法並引入了記賬的激勵,保證網路中的歷史交易不會被攻擊者快速替換;


  • 通過上述的兩種方式,比特幣才能保證歷史的交易不會被篡改和所有賬戶中資金的安全。

10. 什麼是比特幣加密技術

比特幣和區塊鏈的誕生需要依賴於很多核心技術的突破:一是拜占庭容錯技術;二是非對稱加密技術;三是點對點支付技術。下面會依次介紹。
拜占庭容錯技術
比特幣和區塊鏈誕生的首要難點在於如何創建分布式共識機制,也就是菜斯利·蘭伯特等人1982年提出的拜占庭將軍問題。所謂拜占庭將軍問題是指,把戰爭中互不信任的各城邦軍隊如何達成共識並決定是否出兵的決策過程。延伸至計算機領域,試圖創建具有容錯性的分布式系統,即使部分節點失效仍可確保系統正常運行,也可讓多個基於零信任基礎的節點達成共識,並確保信息傳遞的一致性。
中本聰所提到的「拜占庭將軍問題」解決方法起始於亞當﹒拜克在1997年發明的哈希現金演算法機制,起初該設計是用於限制垃圾郵件發送與拒絕服務攻擊。2004年,密碼朋克運動早期和重要成員哈爾·芬尼將亞當﹒拜克的哈希現金演算法改進為可復用的工作量證明機制。他們的研究又是基於達利亞·馬凱與邁克爾·瑞特的學術成果:拜占庭容錯機制。正是哈爾·芬尼的可復用的工作量證明機制後來成為比特幣的核心要素之一。哈爾·芬尼是中本聰的最早支持者,同時也是第一筆比特幣轉賬的接受者,在比特幣發展的早期與中本聰有大量互動與交流。
非對稱加密技術
比特幣的非對稱加密技術來源於以下幾項密碼學的技術創新:1976年,Sun公司前首席安全官Whitfield Diffie與斯坦福大學教授Martin Hell,在開創性論文《密碼學的新方向》首次提出公開鑰匙密碼學的概念,發明了非對稱加密演算法。1978年省理工學院的倫納德·阿德曼、羅納德·李維斯特、阿迪·薩莫爾三名研究人員,共同發明了公開鑰匙系統「RSA」可用於數據加密和簽名,率先開發第一個具備商業實用性的非對稱RSA加密演算法。1985年,Neal Koblitz和Victor Miller倆人,首次提出將橢圓曲線演算法(ECC),應用於密碼學,並建立公鑰加密的演算法,公鑰密碼演算法的原理是利用信息的不對稱性,公鑰對應的是私鑰,私鑰是解開所有信息的鑰匙,公鑰可以由私鑰反推算出。ECC能夠提供比RSA更高級別的安全。比特幣使用的就是橢圓曲線演算法公鑰用於接收比特幣,而私鑰則是比特幣支付時的交易簽名。這些加密演算法奠定了當前非對稱加密理論的基礎,被廣泛應用於網路通信領域。但是,當時這些加密技術發明均在NSA嚴密監視的視野之內。NSA最初認為它們對國家安全構成威脅,並將其視為軍用技術。直到20世紀90年代末,NSA才放棄對這些非對稱加密技術的控制,RSA演算法、ECC演算法等非對稱加密技術最終得以走進公眾領域。
不過,中本聰並不信任NSA公布的加密技術,在比特幣系統中沒有使用RSA公鑰系統,原因除了ECC能夠提供比RSA更高級別的安全性能外,還擔心美國安全部門在RSA留有技術後門。2013年9月,斯諾登就曾爆料NSA採用秘密方法控制加密國際標准,比特幣採用的RSA可能留有後門,NSA能以不為人知的方法弱化這條曲線。所幸的是,中本聰神一般走位避開了RSA的陷阱,使用的加密技術不是NSA的標准,而是另一條鮮為人知的橢圓曲線,這條曲線並不在美國RSA的掌握之下。全世界只有極少數程序躲過了這一漏洞,比特幣便是其中之一。

熱點內容
幣圈潮鞋交易平台 發布:2025-07-19 21:04:02 瀏覽:997
買比特幣殺死親生女兒 發布:2025-07-19 20:55:20 瀏覽:110
幣圈交易平台注冊 發布:2025-07-19 20:55:14 瀏覽:244
數字貨幣算p2p嗎 發布:2025-07-19 20:38:49 瀏覽:433
安全的萊特幣交易 發布:2025-07-19 20:36:14 瀏覽:14
顯卡礦機挖狗狗幣 發布:2025-07-19 20:19:23 瀏覽:906
比特幣礦區是誰創造的 發布:2025-07-19 20:19:08 瀏覽:493
比特幣中文骰子娛樂網 發布:2025-07-19 20:01:52 瀏覽:37
比特幣美股股票 發布:2025-07-19 19:56:11 瀏覽:663
比特幣與BD通證有何不同 發布:2025-07-19 19:52:57 瀏覽:297