當前位置:首頁 » 比特幣問答 » 比特幣sha256演算法輸入

比特幣sha256演算法輸入

發布時間: 2023-06-15 03:21:11

1. 區塊鏈密碼演算法是怎樣的

區塊鏈作為新興技術受到越來越廣泛的關注,是一種傳統技術在互聯網時代下的新的應用,這其中包括分布式數據存儲技術、共識機制和密碼學等。隨著各種區塊鏈研究聯盟的創建,相關研究得到了越來越多的資金和人員支持。區塊鏈使用的Hash演算法、零知識證明、環簽名等密碼演算法:

Hash演算法

哈希演算法作為區塊鏈基礎技術,Hash函數的本質是將任意長度(有限)的一組數據映射到一組已定義長度的數據流中。若此函數同時滿足:

(1)對任意輸入的一組數據Hash值的計算都特別簡單;

(2)想要找到2個不同的擁有相同Hash值的數據是計算困難的。

滿足上述兩條性質的Hash函數也被稱為加密Hash函數,不引起矛盾的情況下,Hash函數通常指的是加密Hash函數。對於Hash函數,找到使得被稱為一次碰撞。當前流行的Hash函數有MD5,SHA1,SHA2,SHA3。

比特幣使用的是SHA256,大多區塊鏈系統使用的都是SHA256演算法。所以這里先介紹一下SHA256。

1、 SHA256演算法步驟

STEP1:附加填充比特。對報文進行填充使報文長度與448模512同餘(長度=448mod512),填充的比特數范圍是1到512,填充比特串的最高位為1,其餘位為0。

STEP2:附加長度值。將用64-bit表示的初始報文(填充前)的位長度附加在步驟1的結果後(低位位元組優先)。

STEP3:初始化緩存。使用一個256-bit的緩存來存放該散列函數的中間及最終結果。

STEP4:處理512-bit(16個字)報文分組序列。該演算法使用了六種基本邏輯函數,由64 步迭代運算組成。每步都以256-bit緩存值為輸入,然後更新緩存內容。每步使用一個32-bit 常數值Kt和一個32-bit Wt。其中Wt是分組之後的報文,t=1,2,...,16 。

STEP5:所有的512-bit分組處理完畢後,對於SHA256演算法最後一個分組產生的輸出便是256-bit的報文。

2、環簽名

2001年,Rivest, shamir和Tauman三位密碼學家首次提出了環簽名。是一種簡化的群簽名,只有環成員沒有管理者,不需要環成員間的合作。環簽名方案中簽名者首先選定一個臨時的簽名者集合,集合中包括簽名者。然後簽名者利用自己的私鑰和簽名集合中其他人的公鑰就可以獨立的產生簽名,而無需他人的幫助。簽名者集合中的成員可能並不知道自己被包含在其中。

環簽名方案由以下幾部分構成:

(1)密鑰生成。為環中每個成員產生一個密鑰對(公鑰PKi,私鑰SKi)。

(2)簽名。簽名者用自己的私鑰和任意n個環成員(包括自己)的公鑰為消息m生成簽名a。

(3)簽名驗證。驗證者根據環簽名和消息m,驗證簽名是否為環中成員所簽,如果有效就接收,否則丟棄。

環簽名滿足的性質:

(1)無條件匿名性:攻擊者無法確定簽名是由環中哪個成員生成,即使在獲得環成員私鑰的情況下,概率也不超過1/n。

(2)正確性:簽名必需能被所有其他人驗證。

(3)不可偽造性:環中其他成員不能偽造真實簽名者簽名,外部攻擊者即使在獲得某個有效環簽名的基礎上,也不能為消息m偽造一個簽名。

3、環簽名和群簽名的比較

(1)匿名性。都是一種個體代表群體簽名的體制,驗證者能驗證簽名為群體中某個成員所簽,但並不能知道為哪個成員,以達到簽名者匿名的作用。

(2)可追蹤性。群簽名中,群管理員的存在保證了簽名的可追蹤性。群管理員可以撤銷簽名,揭露真正的簽名者。環簽名本身無法揭示簽名者,除非簽名者本身想暴露或者在簽名中添加額外的信息。提出了一個可驗證的環簽名方案,方案中真實簽名者希望驗證者知道自己的身份,此時真實簽名者可以通過透露自己掌握的秘密信息來證實自己的身份。

(3)管理系統。群簽名由群管理員管理,環簽名不需要管理,簽名者只有選擇一個可能的簽名者集合,獲得其公鑰,然後公布這個集合即可,所有成員平等。

鏈喬教育在線旗下學碩創新區塊鏈技術工作站是中國教育部學校規劃建設發展中心開展的「智慧學習工場2020-學碩創新工作站 」唯一獲準的「區塊鏈技術專業」試點工作站。專業站立足為學生提供多樣化成長路徑,推進專業學位研究生產學研結合培養模式改革,構建應用型、復合型人才培養體系。

2. 哈希函數的本質及生成方式

哈希表與哈希函數

說到哈希表,其實本質上是一個數組。通過前面的學習我們知道了,如果要訪問一個數組中某個特定的元素,那麼需要知道這個元素的索引。例如,我們可以用數組來記錄自己好友的電話號碼,索引 0 指向的元素記錄著 A 的電話號碼,索引 1 指向的元素記錄著 B 的電話號碼,以此類推。

而當這個數組非常大的時候,全憑記憶去記住哪個索引記錄著哪個好友的號碼是非常困難的。這時候如果有一個函數,可以將我們好友的姓名作為一個輸入,然後輸出這個好友的號碼在數組中對應的索引,是不是就方便了很多呢?這樣的一種函數,其實就是哈希函數。哈希函數的定義是將任意長度的一個對象映射到一個固定長度的值上,而這個值我們可以稱作是哈希值(Hash Value)。

哈希函數一般會有以下三個特性:

任何對象作為哈希函數的輸入都可以得到一個相應的哈希值;

兩個相同的對象作為哈希函數的輸入,它們總會得到一樣的哈希值;

兩個不同的對象作為哈希函數的輸入,它們不一定會得到不同的哈希值。

對於哈希函數的前兩個特性,比較好理解,但是對於第三種特性,我們應該如何解讀呢?那下面就通過一個例子來說明。

我們按照 Java String 類里的哈希函數公式(即下面的公式)來計算出不同字元串的哈希值。String 類里的哈希函數是通過 hashCode 函數來實現的,這里假設哈希函數的字元串輸入為 s,所有的字元串都會通過以下公式來生成一個哈希值:



這里為什麼是「31」?下面會講到哦~

注意:下面所有字元的數值都是按照 ASCII 表獲得的,具體的數值可以在這里查閱。

如果我們輸入「ABC」這個字元串,那根據上面的哈希函數公式,它的哈希值則為:



在什麼樣的情況下會體現出哈希函數的第三種特性呢?我們再來看看下面這個例子。現在我們想要計算字元串 "Aa" 和 "BB" 的哈希值,還是繼續套用上面的的公式。

"Aa" 的哈希值為:

"Aa" = 'A' * 31 + 'a' = 65 * 31 + 97 = 2112

"BB" 的哈希值為:

"BB" = 'B' * 31 + 'B' = 66 * 31 + 66 = 2112

可以看到,不同的兩個字元串其實是會輸出相同的哈希值出來的,這時候就會造成哈希碰撞,具體的解決方法將會在第 07 講中詳細討論。

需要注意的是,雖然 hashCode 的演算法里都是加法,但是算出來的哈希值有可能會是一個負數。

我們都知道,在計算機里,一個 32 位 int 類型的整數里最高位如果是 0 則表示這個數是非負數,如果是 1 則表示是負數。

如果當字元串通過計算算出的哈希值大於 232-1 時,也就是大於 32 位整數所能表達的最大正整數了,則會造成溢出,此時哈希值就變為負數了。感興趣的小夥伴可以按照上面的公式,自行計算一下「19999999999999999」這個字元串的哈希值會是多少。

hashCode 函數中的「魔數」(Magic Number)

細心的你一定發現了,上面所講到的 Java String 類里的 hashCode 函數,一直在使用一個 31 這樣的正整數來進行計算,這是為什麼呢?下面一起來研究一下 Java Openjdk-jdk11 中 String.java 的源碼(源碼鏈接),看看這么做有什麼好處。

public int hashCode() {
int h = hash;
if (h == 0 && value.length > 0) {
hash = h = isLatin1() ? StringLatin1.hashCode(value)
: StringUTF16.hashCode(value);
}
return

可以看到,String 類的 hashCode 函數依賴於 StringLatin1 和 StringUTF16 類的具體實現。而 StringLatin1 類中的 hashCode 函數(源碼鏈接)和 StringUTF16 類中的 hashCode 函數(源碼鏈接)所表達的演算法其實是一致的。

StringLatin1 類中的 hashCode 函數如下面所示:

public static int hashCode(byte[] value) {
int h = 0;
for (byte v : value) {
h = 31 * h + (v & 0xff);
}
return h

StringUTF16 類中的 hashCode 函數如下面所示:

public static int hashCode(byte[] value) {
int h = 0;
int length = value.length >> 1;
for (int i = 0; i < length; i++) {
h = 31 * h + getChar(value, i);
}
return h

一個好的哈希函數演算法都希望盡可能地減少生成出來的哈希值會造成哈希碰撞的情況。

Goodrich 和 Tamassia 這兩位計算機科學家曾經做過一個實驗,他們對超過 50000 個英文單詞進行了哈希值運算,並使用常數 31、33、37、39 和 41 作為乘數因子,每個常數所算出的哈希值碰撞的次數都小於 7 個。但是最終選擇 31 還是有著另外幾個原因。

從數學的角度來說,選擇一個質數(Prime Number)作為乘數因子可以讓哈希碰撞減少。其次,我們可以看到在上面的兩個 hashCode 源碼中,都有著一條 31 * h 的語句,這條語句在 JVM 中其實都可以被自動優化成「(h << 5) - h」這樣一條位運算加上一個減法指令,而不必執行乘法指令了,這樣可以大大提高運算哈希函數的效率。

所以最終 31 這個乘數因子就被一直保留下來了。

區塊鏈挖礦的本質

通過上面的學習,相信你已經對哈希函數有了一個比較好的了解了。可能也發現了,哈希函數從輸入到輸出,我們可以按照函數的公式演算法,很快地計算出哈希值。但是如果告訴你一個哈希值,即便給出了哈希函數的公式也很難算得出原來的輸入到底是什麼。例如,還是按照上面 String 類的 hashCode 函數的計算公式:



如果告訴了你哈希值是 123456789 這個值,那輸入的字元串是什麼呢?我們想要知道答案的話,只能採用暴力破解法,也就是一個一個的字元串去嘗試,直到嘗試出這個哈希值為止。

對於區塊鏈挖礦來說,這個「礦」其實就是一個字元串。「礦工」,也就是進行運算的計算機,必須在規定的時間內找到一個字元串,使得在進行了哈希函數運算之後得到一個滿足要求的值。

我們以比特幣為例,它採用了 SHA256 的哈希函數來進行運算,無論輸入的是什麼,SHA256 哈希函數的哈希值永遠都會是一個 256 位的值。而比特幣的獎勵機制簡單來說是通過每 10 分鍾放出一個哈希值,讓「礦工們」利用 SHA256(SHA256(x)) 這樣兩次的哈希運算,來找出滿足一定規則的字元串出來。

比方說,比特幣會要求找出通過上面 SHA256(SHA256(x)) 計算之後的哈希值,這個 256 位的哈希值中的前 50 位都必須為 0 ,誰先找到滿足這個要求的輸入值 x,就等於「挖礦」成功,給予獎勵一個比特幣。我們知道,即便知道了哈希值,也很難算出這個 x 是什麼,所以只能一個一個地去嘗試。而市面上所說的挖礦機,其原理是希望能提高運算的速度,讓「礦工」盡快地找到這個 x 出來。

3. 比特幣演算法原理

比特幣演算法主要有兩種,分別是橢圓曲線數字簽名演算法和SHA256哈希演算法。

橢圓曲線數字簽名演算法主要運用在比特幣公鑰和私鑰的生成過程中,該演算法是構成比特幣系統的基石。SHA-256哈希演算法主要是運用在比特幣的工作量證明機制中。

比特幣產生的原理是經過復雜的運演算法產生的特解,挖礦就是尋找特解的過程。不過比特幣的總數量只有2100萬個,而且隨著比特幣不斷被挖掘,越往後產生比特幣的難度會增加,可能獲得比特幣的成本要比比特幣本身的價格高。

比特幣的區塊由區塊頭及該區塊所包含的交易列表組成,區塊頭的大小為80位元組,由4位元組的版本號、32位元組的上一個區塊的散列值、32位元組的 Merkle Root Hash、4位元組的時間戳(當前時間)、4位元組的當前難度值、4位元組的隨機數組成。擁有80位元組固定長度的區塊頭,就是用於比特幣工作量證明的輸入字元串。不停的變更區塊頭中的隨機數即 nonce 的數值,並對每次變更後的的區塊頭做雙重 SHA256運算,將結果值與當前網路的目標值做對比,如果小於目標值,則解題成功,工作量證明完成。

比特幣的本質其實是一堆復雜演算法所生成的一組方程組的特解(該解具有唯一性)。比特幣是世界上第一種分布式的虛擬貨幣,其沒有特定的發行中心,比特幣的網路由所有用戶構成,因為沒有中心的存在能夠保證了數據的安全性。

4. 小白如何秒懂區塊鏈中的哈希計算

​ 小白如何秒懂區塊鏈中的哈希計算

當我在區塊鏈的學習過程中,發現有一個詞像幽靈一樣反復出現,「哈希」,英文寫作「HASH」。

那位說「拉稀」同學你給我出去!!

這個「哈希」據說是來源於密碼學的一個函數,嘗試搜一搜,論文出來一堆一堆的,不是橫式就是豎式,不是表格就是圖片,還有一堆看不懂得xyzabc。大哥,我就是想了解一下區塊鏈的基礎知識,給我弄那麼難幹啥呀?!我最長的密碼就是123456,復雜一點的就是654321,最復雜的時候在最後加個a,你給我寫的那麼復雜明顯感覺腦力被榨乾,僅有的腦細胞成批成批的死亡!為了讓和我一樣的小白同學了解這點,我就勉為其難,努力用傻瓜式的語言講解一下哈希計算,不求最准確但求最簡單最易懂。下面我們開始:

# 一、什麼是哈希演算法

## 1、定義:哈希演算法是將任意長度的字元串變換為固定長度的字元串。

從這里可以看出,可以理解為給**「哈希運算」輸入一串數字,它會輸出一串數字**。

如果我們自己定義 「增一演算法」,那麼輸入1,就輸出2;輸入100就輸出101。

如果我我們自己定義「變大寫演算法」,那麼輸入「abc」輸出「ABC」。

呵呵,先別打我啊!這確實就只是一個函數的概念。

## 2、特點:

這個哈希演算法和我的「增一演算法」和「變大寫演算法」相比有什麼特點呢?

1)**確定性,算得快**:咋算結果都一樣,算起來效率高。

2)**不可逆**:就是知道輸出推不出輸入的值。

3)**結果不可測**:就是輸入變一點,結果天翻地覆毫無規律。

總之,這個哈希運算就是個黑箱,是加密的好幫手!你說「11111」,它給你加密成「」,你說「11112」它給你弄成「」。反正輸入和輸出一個天上一個地下,即使輸入相關但兩個輸出毫不相關。

# 二、哈希運算在區塊鏈中的使用

## 1、數據加密

**交易數據是通過哈希運算進行加密,並把相應的哈希值寫入區塊頭**。如下圖所示,一個區塊頭包含了上一個區塊的hash值,還包含下一個區塊的hash值。

1)、**識別區塊數據是否被篡改**:區塊鏈的哈希值能夠唯一而精準地標識一個區塊,區塊鏈中任意節點通過簡單的哈希計算都可以獲得這個區塊的哈希值,計算出的哈希值沒有變化也就意味著區塊鏈中的信息沒有被篡改。

2)、**把各個區塊串聯成區塊鏈**:每個區塊都包含上一個區塊的哈希值和下一個區塊的值,就相當於通過上一個區塊的哈希值掛鉤到上一個區塊尾,通過下一個區塊的哈希值掛鉤到下一個區塊鏈的頭,就自然而然形成一個鏈式結構的區塊鏈。

## 2、加密交易地址及哈希

在上圖的區塊頭中,有一個Merkle root(默克爾根)的哈希值,它是用來做什麼的呢?

首先了解啥叫Merkle root? 它就是個二叉樹結構的根。啥叫二叉樹?啥叫根?看看下面的圖就知道了。一分二,二分四,四分八可以一直分下去就叫二叉樹。根就是最上面的節點就叫 根。

這個根的數據是怎麼來的呢?是把一個區塊中的每筆交易的哈希值得出後,再兩兩哈希值再哈希,再哈希,再哈希,直到最頂層的數值。

這么哈希了半天,搞什麼事情?有啥作用呢?

1)、**快速定位每筆交易**:由於交易在存儲上是線性存儲,定位到某筆交易會需要遍歷,效率低時間慢,通過這樣的二叉樹可以快速定位到想要找的交易。

舉個不恰當的例子:怎麼找到0-100之間的一個任意整數?(假設答案是88)那比較好的一個方法就是問:1、比50大還是小?2、比75大還是小?3、比88大還是小? 僅僅通過幾個問題就可以快速定位到答案。

2)、**核實交易數據是否被篡改**:從交易到每個二叉樹的哈希值,有任何一個數字有變化都會導致Merkle root值的變化。同時,如果有錯誤發生的情況,也可以快速定位錯誤的地方。

## 3、挖礦

  在我們的區塊頭中有個參數叫**隨機數Nonce,尋找這個隨機數的過程就叫做「挖礦」**!網路上任何一台機器只要找到一個合適的數字填到自己的這個區塊的Nonce位置,使得區塊頭這6個欄位(80個位元組)的數據的哈希值的哈希值以18個以上的0開頭,誰就找到了「挖到了那個金子」!既然我們沒有辦法事先寫好一個滿足18個0的數字然後反推Nounce,唯一的做法就是從0開始一個一個的嘗試,看結果是不是滿足要求,不滿足就再試下一個,直到找到。

找這個數字是弄啥呢?做這個有什麼作用呢?

1)、**公平的找到計算能力最強的計算機**:這個有點像我這里有個沙子,再告訴你它也那一個沙灘的中的一粒相同,你把相同的那粒找出來一樣。那可行的辦法就是把每一粒都拿起來都比較一下!那麼比較速度最快的那個人是最有可能先早到那個沙子。這就是所謂的「工作量證明pow」,你先找到這個沙子,我就認為你比較的次數最多,乾的工作最多。

2)、**動態調整難度**:比特幣為了保證10分鍾出一個區塊,就會每2016個塊(2周)的時間計算一下找到這個nonce數字的難度,如果這2016個塊平均時間低於10分鍾則調高難度,如高於十分鍾則調低難度。這樣,不管全網的挖礦算力是怎麼變化,都可以保證10分鍾的算出這個隨機數nonce。

# 三、哈希運算有哪些?

說了這么多哈希運算,好像哈希運算就是一種似的,其實不是!作為密碼學中的哈希運算在不斷的發展中衍生出很多流派。我看了」滿頭包」還是覺得內在機理也太復雜了,暫時羅列如下,小白們有印象知道是怎麼回事就好。

從下表中也可以看得出,哈希運算也在不斷的發展中,有著各種各樣的演算法,各種不同的應用也在靈活應用著單個或者多個演算法。比特幣系統中,哈希運算基本都是使用的SHA256演算法,而萊特幣是使用SCRYPT演算法,誇克幣(Quark)達世幣(DASH)是把很多演算法一層層串聯上使用,Heavycoin(HAV)卻又是把一下演算法並聯起來,各取部分混起來使用。以太坊的POW階段使用ETHASH演算法,ZCASH使用EQUIHASH。

需要說明的是,哈希運算的各種演算法都是在不斷升級完善中,而各種幣種使用的演算法也並非一成不變,也在不斷地優化中。

**總結**:哈希運算在區塊鏈的各個項目中都有著廣泛的應用,我們以比特幣為例就能看到在**數據加密、交易數據定位、挖礦等等各個方面都有著極其重要的作用**。而哈希運算作為加密學的一門方向不斷的發展和延伸,身為普通小白的我們,想理解區塊鏈的一些基礎概念,了解到這個層面也已經足夠。

5. 比特幣計算

比特幣計算需要以下參數:
1、block的版本 version
2、上一個block的hash值: prev_hash
3、需要寫入的交易記錄的hash樹的值: merkle_root
4、更新時間: ntime
5、當前難度: nbits

挖礦的過程就是找到x使得
SHA256(SHA256(version + prev_hash + merkle_root + ntime + nbits + x )) < TARGET

上式的x的范圍是0~2^32, TARGET可以根據當前難度求出的。除了x之外,還可以嘗試改動merkle_root和ntime。由於hash的特性,找這樣一個x只能暴力搜索。
一旦計算者A找到了x,就可以廣播一個新的block,其他客戶端會驗證計算者A發布的block是否合法。
如果發布的block被接受,由於每個block中的第一筆交易必須是將新產生25個比特幣發送到某個地址,當然計算者A會把這個地址設為計算者A所擁有的地址來得到這25個比特幣。

6. 比特幣挖礦到底是在計算什麼

專業的說,是在算哈希值SHA-256。如果不懂計算機的話,簡單地說,就是算一些沒有意義的隨機數,誰的隨機數被比特幣區塊鏈接受了,誰就有錢拿。所以比特幣計算除了賺錢之外,其實並沒有任何實際作用。如果這些算力用來做科學計算,真的可以做很多事情,但是沒辦法,誰讓比特幣賺錢啊

7. 數字貨幣挖礦,什麼是算力挖礦算力單位怎麼換算

數字貨幣挖礦 我們經常提到的一個詞就是 礦機的算力,
比如:挖BTC比特幣的螞蟻礦機T9+ 算力10.5TH/S,
挖LTC萊特幣的螞蟻礦機L3+ 算力504MH/S,
挖LCC數字鏈的好礦機Ubuntu×64 算力180KH/S.

那究竟算力是什麼意思呢? 算力代表了什麼 算力單位是怎麼定義的呢?

其實算力的意思很簡單,他就是代表礦機的計算能力、計算性能的衡量 他具體代表的是每秒礦機的整體hash演算法運算次數。
我們先要知道挖礦的本質就是解決一個數學計算,誰先算出來誰就獲得獎勵(幣),這個數學計算方式也很簡單,就是一直不斷的嘗試碰撞結果![什麼是礦機算力?挖礦算力單位怎麼換算?
就類似於你暴力破解一個手機密碼 (假設嘗試多次手機不會被鎖),
你不斷的嘗試密碼 從 000000 ~ 999999 一個一個的嘗試直到你解鎖成功,
如果你1秒內能嘗試一次 你的算力就是1次/s ,1秒內能嘗試兩次 你的算力就是2次/s
你1秒內嘗試的次數越多你的算力就越大, 你解鎖的時間也就越短 。

礦機也是一樣, 礦機1秒內能計算的hash演算法次數越多算力越大,挖的幣越多。
最開始比特幣使用 CPU挖礦, 後來使用顯卡GPU挖礦,到現在的使用ASIC專業定製晶元挖礦,計算速度一直不斷提升

算力單位:
算力每隔千位劃為一個單位,
最小單位 H=1次 1000H = 1K 1000K = 1G 1000G = 1T 1000T = 1P 1000P=1E
S9+ 10.5T 也等於 10500G / 0.0105P
比特幣全網算力現在 24.42 EH/s 相當於232萬台S9的算力

不同幣種的算力
不同的幣種的挖礦演算法可能會不一樣
比如比特幣是sha256演算法,萊特幣是scrypt演算法, 以太坊是Ethash演算法,數字鏈是SHA-2演算法。
這就像 手機1的密碼4位隨便輸入, 手機2的密碼6位, 輸一次後 隔1s才能再次輸入, 實際比這個要復雜的多,
解鎖這兩種不同的手機的方式是不一樣的, 那我嘗試解鎖的速度也不一樣, 解鎖手機1 我會更快一點。
不用的幣種之間的算力 是沒有任何關系的, 比特幣礦機是不能挖萊特, 因為演算法不一樣, 他不會解萊特幣的題。

8. 比特幣基礎知識 你絕對想不到


橢圓曲線數字簽名演算法
橢圓曲線數字簽名演算法(ECDSA)是使用橢圓曲線對數字簽名演算法(DSA)的模擬,該演算法是構成比特幣系統的基石。
私鑰
非公開,擁有者需安全保管。通常是由隨機演算法生成的,說白了,就是一個巨大的隨機整數,32位元組,256位。
大小介於1 ~ 0xFFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFE BAAE DCE6 AF48 A03B BFD2 5E8C D036 4141之間的數,都可以認為是一個合法的私鑰。
於是,除了隨機方法外,採用特定演算法由固定的輸入,得到32位元組輸出的演算法就可以成為得到私鑰的方法。於是,便有了迷你私鑰(Mini Privkey),原理很簡單,例如,採用SHA256的一種實現:
private key = SHA256()1
迷你私鑰存在安全問題,因為輸入集合太小,易被構造常見組合的彩虹表暴力破解,所以通常仿輪納還是使用系統隨機生成的比較好,無安全隱患。
公鑰
公鑰與私鑰是相對應的,一把私鑰可以推出唯一的公鑰,但公鑰卻無法推導出私鑰。公鑰有兩種形式:壓縮與非壓縮。
早期比特幣均使用非壓縮公鑰,現大部分客戶端已默認使用壓縮公鑰。
這個貌似是比特幣系統一個長得像feature的bug,早期人少活多代碼寫得不夠精細,openssl庫的文檔又不足夠好,導致Satoshi以為必須使用非壓縮的完整公鑰,後來大家發現其實公鑰的左右兩個32位元組是有關聯的,左側(X)可以推出右側(Y)的平方值,有左側(X)就可以了。
現在系統里兩種方式共存,應該會一直共存下去。兩種公鑰的首個位元組為標識位,壓縮為33位元組,非壓縮為65位元組。以0x04開頭為非壓縮,0x02/0x03開頭為壓縮公鑰,0x02/0x03的選取由右側Y開方後的奇偶決定。
壓縮形式可以減小Tx/Block的體積,每個Tx Input減少32位元組。
簽名
使用私鑰對數據進行簽署(Sign)會得到簽名(Signature)。通常會將數據先生成Hash值,然後對此Hash值進行簽名。簽名(signature)有兩部分組成: R + S。由簽名(signature)與Hash值,便可以推出一個公鑰,驗證此公鑰,便可知道此簽名是否由公鑰對應的私鑰簽名。
通常,每個簽名會有三個長度:73、72、71,符合校驗的概率為25%、50%、25%。所以每次簽署後,需要找出符合校驗的簽名長度,再提供給驗證方。
地址
地址是為了人們交換方便而弄出來的一個方案,因為公鑰太長了(130字元串或66字元串)。地址長度為25位元組,轉為base58編碼後,為34或35個字元。base58是類似base64的編碼,但去掉了易引起視覺混淆的字元,又在地址末尾添加了4個位元組校驗位,保障在人們交換個別字元錯誤時,也能夠因地址校驗失敗而制止了誤操作。
由於存在公鑰有兩種形式,那麼一個公鑰便對應兩個地址。這兩個地址都可由同一私鑰簽署交易。
公鑰生成地址的演算法:
Version = 1 byte of 0 (zero); on the test network, this is 1 byte of 111
Key hash = Version concatenated with RIPEMD-160(SHA-256(public key))
Checksum = 1st 4 bytes of SHA-256(SHA-256(Key hash))
Bitcoin Address = Base58Encode(Key hash concatenated with Checksum)1234
下圖是非壓縮公鑰生成地址的過程:
對於壓縮公鑰生成地址時,則只取公鑰的X部分即可。
推導關系
三者推導關系:私鑰
公鑰
兩個地址。過程均不可逆。擁有私鑰便擁有一切,但通常為了方便,會把對應的公鑰、地址也存儲起來。
交易
比特幣的交易(Transation,縮寫Tx),並不是通常意義的桐散交易,例如一手交錢一手交貨,而是轉賬。交易由N個輸入和M個輸出兩部分組成。交易的每個輸入便是前向交易的某個輸出,那麼追蹤到源頭,必然出現一個沒有輸入的交易,此類交易稱為CoinBase Tx。CoinBase類備沒交易是獎勵挖礦者而產生的交易,該交易總是位於Block塊的第一筆。
擁有一個輸入與輸出的Tx數據:
Input:
Previous tx:
Index: 0
scriptSig:
241501
Output:
Value: 5000000000
scriptPubKey: OP_DUP OP_HASH160
OP_EQUALVERIFY OP_CHECKSIG12345678910
一旦某個Tx的第N個輸出成為另一個Tx的輸入,那麼該筆比特幣即為已花費。每個交易有唯一Hash字元串來標識,通過對交易數據做兩次SHA256哈希運算而來:
Tx Hash ID = SHA256(SHA256(Tx Data))1
礦工費
礦工費(Transaction Fee)是鼓勵礦工將Tx打包進Block的激勵報酬。計算一筆交易的礦工費:
Transaction Fee = SUM(Inputs amount) - SUM(Outputs amount)1
每筆Tx的礦工費必然大於等於零,否則該筆Tx即為非法,不會被網路接收。
數據塊
數據塊(Block)是存儲Block Meta與Tx的地方。Block的第一筆Tx總是CoinBase Tx,因此Block中的交易數量總是大於等於1,隨後是這段時間內網路廣播出來的Tx。
找到合適的Block是一件非常困難的事情,需要通過大量的數學計算才能發現,該計算過程稱為「挖礦」。首個發現者,會得到一些比特幣作為獎勵。
數據鏈
多個Block連接起來成為數據鏈(Block Chain)。
為了引入容錯與競爭機制,比特幣系統允許Block Chain出現分叉,但每個節點總是傾向於選擇最高的、難度最大的鏈,並稱之為Best Chain,節點只認可Best Chain上的數據。
首個Block稱為Genesis Block,並設定高度為零,後續每新增一個Block,高度則遞增一。目前是不允許花費Genesis Block中的比特幣的。
每個Block中的Tx在此Block中均唯一
一個Tx通常只會在一個Block里,也可能會出現在多個Block中,但只會在Best Chain中的某一個Block出現一次
貨幣存儲
比特幣是密碼貨幣、純數字化貨幣,沒有看得見摸得著的硬幣或紙幣。一個人持有比特幣意味著:
其擁有一些地址的私鑰
這些地址是數筆交易的輸出,且未花費
所有貨幣記錄均以交易形式存儲在整個blockchain數據塊中,無交易無貨幣。貨幣不會憑空產生,也不會憑空消失。遺失了某個地址的私鑰,意味著該地址上的Tx無法簽署,無法成為下一個Tx的輸入,便認為該筆比特幣永久消失了。
貨幣發行
既然所有交易的輸入源頭都是來自CoinBase,產生CoinBase時即意味著貨幣發行。比特幣採用衰減發行,每四年產量減半,第一個四年每個block的coinbase獎勵50BTC,隨後是25btc, 12.5btc, 並最終於2140年為零,此時總量達到極限為2100萬個btc。
減半周期,嚴格來說,並不是准確的四年,而是每生成210000個block。之所以俗稱四年減半,是因為比特幣系統會根據全網算力的大小自動調整難度系統,使得大約每兩周產生2016個block,那麼四年約21萬塊block。
該函數GetBlockValue()用於計算挖得Block的獎勵值:
int64 static GetBlockValue(int nHeight, int64 nFees)
{
int64 nSubsidy = 50 * COIN;
// Subsidy is cut in half every 210000 blocks, which will occur approximately every 4 years
nSubsidy = (nHeight / 210000);
return nSubsidy + nFees;
}123456789
當達到2100萬btc以後,不再有來自CoinBase的獎勵了,礦工的收入來源僅剩下交易的礦工費。此時,每個block的收入絕對值btc很低,但此時比特幣應當會非常繁榮,幣值也會相當的高,使得礦工們依然有利可圖。
杜絕多重支付
傳統貨幣存在多重支付(Double Spending)問題,典型的比如非數字時代的支票詐騙、數字時代的信用卡詐騙等。在比特幣系統里,每筆交易的確認均需要得到全網廣播,並收錄進Block後才能得到真正確認。每筆錢的花銷,均需要檢測上次輸入交易的狀態。數據是帶時間戳的、公開的,BlockChain由巨大的算力保障其安全性。所以比特幣系統將貨幣的多重支付的風險極大降低,幾近於零。通過等待多個Block確認,更是從概率上降低至零。一般得到6個確認後,可認為非常安全。但對於能影響你人生的重大支付,建議等待20~30個確認。
匿名性
任何人均可以輕易生成大量的私鑰、公鑰、地址。地址本身是匿名的,通過多個地址交易可進一步提高匿名性。但該匿名性並不像媒體宣傳的那樣,是某種程度上的匿名。因為比特幣的交易數據是公開的,所以任何一筆資金的流向均是可以追蹤的。
不了解比特幣的人為它的匿名性產生一些擔憂,比如擔心更利於從事非法業務;了解比特幣的人卻因為它的偽匿名性而苦惱。傳統貨幣在消費中也是匿名的,且是法律保障的,大部分國家都不允許個人塗畫紙幣。
地址本身是匿名的,但你可以通過地址對應的私鑰簽名消息來向公眾證明你擁有某個比特幣地址。
其他名詞
哈希
哈希(Hash)是一種函數,將一個數映射到另一個集合當中。不同的哈希函數映射的空間不同,反映到計算機上就是生成的值長度不一樣。同一個哈希函數,相同的輸入必然是相同的輸出,但同一個輸出卻可能有不同的輸入,這種情況稱為哈希碰撞。
常見的哈希函數有CRC32, MD5, SHA1, SHA-256, SHA-512, RIPEMD-160等,哈希函數在計算中有著非常廣泛的用途。比特幣里主要採用的是SHA-256和RIPEMD-160。
腦錢包紙錢包
前面提到過的腦錢包與紙錢包,這其實不算是錢包的分類,只是生成、存儲密鑰的方式而已。腦錢包屬於迷你私鑰的產物。腦錢包就是記在腦袋裡的密鑰,紙錢包就是列印到紙上的密鑰,僅此而已。
有同學提到過,以一個計算機文件作為輸入,例如一個數MB大小的照片,通過某種Hash運算後得到私鑰的方法。這個方案的安全性還是不錯的,同時可以防止盜私鑰木馬根據特徵掃描私鑰。文本形式存儲私鑰是有特徵的,而一個照片文件卻難以察覺,即使放在雲盤等第三方存儲空間中都是安全的。

9. 詳解比特幣挖礦原理

可以將區塊鏈看作一本記錄所有交易的公開總帳簿(列表),比特幣網路中的每個參與者都把它看作一本所有權的權威記錄。

比特幣沒有中心機構,幾乎所有的完整節點都有一份公共總帳的備份,這份總帳可以被視為認證過的記錄。

至今為止,在主幹區塊鏈上,沒有發生一起成功的攻擊,一次都沒有。

通過創造出新區塊,比特幣以一個確定的但不斷減慢的速率被鑄造出來。大約每十分鍾產生一個新區塊,每一個新區塊都伴隨著一定數量從無到有的全新比特幣。每開采210,000個塊,大約耗時4年,貨幣發行速率降低50%。

在2016年的某個時刻,在第420,000個區塊被「挖掘」出來之後降低到12.5比特幣/區塊。在第13,230,000個區塊(大概在2137年被挖出)之前,新幣的發行速度會以指數形式進行64次「二等分」。到那時每區塊發行比特幣數量變為比特幣的最小貨幣單位——1聰。最終,在經過1,344萬個區塊之後,所有的共20,999,999.9769億聰比特幣將全部發行完畢。換句話說, 到2140年左右,會存在接近2,100萬比特幣。在那之後,新的區塊不再包含比特幣獎勵,礦工的收益全部來自交易費。

在收到交易後,每一個節點都會在全網廣播前對這些交易進行校驗,並以接收時的相應順序,為有效的新交易建立一個池(交易池)。

每一個節點在校驗每一筆交易時,都需要對照一個長長的標准列表:

交易的語法和數據結構必須正確。

輸入與輸出列表都不能為空。

交易的位元組大小是小於MAX_BLOCK_SIZE的。

每一個輸出值,以及總量,必須在規定值的范圍內 (小於2,100萬個幣,大於0)。

沒有哈希等於0,N等於-1的輸入(coinbase交易不應當被中繼)。

nLockTime是小於或等於INT_MAX的。

交易的位元組大小是大於或等於100的。

交易中的簽名數量應小於簽名操作數量上限。

解鎖腳本(Sig)只能夠將數字壓入棧中,並且鎖定腳本(Pubkey)必須要符合isStandard的格式 (該格式將會拒絕非標准交易)。

池中或位於主分支區塊中的一個匹配交易必須是存在的。

對於每一個輸入,如果引用的輸出存在於池中任何的交易,該交易將被拒絕。

對於每一個輸入,在主分支和交易池中尋找引用的輸出交易。如果輸出交易缺少任何一個輸入,該交易將成為一個孤立的交易。如果與其匹配的交易還沒有出現在池中,那麼將被加入到孤立交易池中。

對於每一個輸入,如果引用的輸出交易是一個coinbase輸出,該輸入必須至少獲得COINBASE_MATURITY (100)個確認。

對於每一個輸入,引用的輸出是必須存在的,並且沒有被花費。

使用引用的輸出交易獲得輸入值,並檢查每一個輸入值和總值是否在規定值的范圍內 (小於2100萬個幣,大於0)。

如果輸入值的總和小於輸出值的總和,交易將被中止。

如果交易費用太低以至於無法進入一個空的區塊,交易將被拒絕。

每一個輸入的解鎖腳本必須依據相應輸出的鎖定腳本來驗證。

以下挖礦節點取名為 A挖礦節點

挖礦節點時刻監聽著傳播到比特幣網路的新區塊。而這些新加入的區塊對挖礦節點有著特殊的意義。礦工間的競爭以新區塊的傳播而結束,如同宣布誰是最後的贏家。對於礦工們來說,獲得一個新區塊意味著某個參與者贏了,而他們則輸了這場競爭。然而,一輪競爭的結束也代表著下一輪競爭的開始。

驗證交易後,比特幣節點會將這些交易添加到自己的內存池中。內存池也稱作交易池,用來暫存尚未被加入到區塊的交易記錄。

A節點需要為內存池中的每筆交易分配一個優先順序,並選擇較高優先順序的交易記錄來構建候選區塊。

一個交易想要成為「較高優先順序」,需滿足的條件:優先值大於57,600,000,這個值的生成依賴於3個參數:一個比特幣(即1億聰),年齡為一天(144個區塊),交易的大小為250個位元組:

High Priority > 100,000,000 satoshis * 144 blocks / 250 bytes = 57,600,000

區塊中用來存儲交易的前50K位元組是保留給較高優先順序交易的。 節點在填充這50K位元組的時候,會優先考慮這些最高優先順序的交易,不管它們是否包含了礦工費。這種機制使得高優先順序交易即便是零礦工費,也可以優先被處理。

然後,A挖礦節點會選出那些包含最小礦工費的交易,並按照「每千位元組礦工費」進行排序,優先選擇礦工費高的交易來填充剩下的區塊。

如區塊中仍有剩餘空間,A挖礦節點可以選擇那些不含礦工費的交易。有些礦工會竭盡全力將那些不含礦工費的交易整合到區塊中,而其他礦工也許會選擇忽略這些交易。

在區塊被填滿後,內存池中的剩餘交易會成為下一個區塊的候選交易。因為這些交易還留在內存池中,所以隨著新的區塊被加到鏈上,這些交易輸入時所引用UTXO的深度(即交易「塊齡」)也會隨著變大。由於交易的優先值取決於它交易輸入的「塊齡」,所以這個交易的優先值也就隨之增長了。最後,一個零礦工費交易的優先值就有可能會滿足高優先順序的門檻,被免費地打包進區塊。

UTXO(Unspent Transaction Output) : 每筆交易都有若干交易輸入,也就是資金來源,也都有若干筆交易輸出,也就是資金去向。一般來說,每一筆交易都要花費(spend)一筆輸入,產生一筆輸出,而其所產生的輸出,就是「未花費過的交易輸出」,也就是 UTXO。

塊齡:UTXO的「塊齡」是自該UTXO被記錄到區塊鏈為止所經歷過的區塊數,即這個UTXO在區塊鏈中的深度。

區塊中的第一筆交易是筆特殊交易,稱為創幣交易或者coinbase交易。這個交易是由挖礦節點構造並用來獎勵礦工們所做的貢獻的。假設此時一個區塊的獎勵是25比特幣,A挖礦的節點會創建「向A的地址支付25.1個比特幣(包含礦工費0.1個比特幣)」這樣一個交易,把生成交易的獎勵發送到自己的錢包。A挖出區塊獲得的獎勵金額是coinbase獎勵(25個全新的比特幣)和區塊中全部交易礦工費的總和。

A節點已經構建了一個候選區塊,那麼就輪到A的礦機對這個新區塊進行「挖掘」,求解工作量證明演算法以使這個區塊有效。比特幣挖礦過程使用的是SHA256哈希函數。

用最簡單的術語來說, 挖礦節點不斷重復進行嘗試,直到它找到的隨機調整數使得產生的哈希值低於某個特定的目標。 哈希函數的結果無法提前得知,也沒有能得到一個特定哈希值的模式。舉個例子,你一個人在屋裡打檯球,白球從A點到達B點,但是一個人推門進來看到白球在B點,卻無論如何是不知道如何從A到B的。哈希函數的這個特性意味著:得到哈希值的唯一方法是不斷的嘗試,每次隨機修改輸入,直到出現適當的哈希值。

需要以下參數

• block的版本 version

• 上一個block的hash值: prev_hash

• 需要寫入的交易記錄的hash樹的值: merkle_root

• 更新時間: ntime

• 當前難度: nbits

挖礦的過程就是找到x使得

SHA256(SHA256(version + prev_hash + merkle_root + ntime + nbits + x )) < TARGET

上式的x的范圍是0~2^32, TARGET可以根據當前難度求出的。

簡單打個比方,想像人們不斷扔一對色子以得到小於一個特定點數的游戲。第一局,目標是12。只要你不扔出兩個6,你就會贏。然後下一局目標為11。玩家只能扔10或更小的點數才能贏,不過也很簡單。假如幾局之後目標降低為了5。現在有一半機率以上扔出來的色子加起來點數會超過5,因此無效。隨著目標越來越小,要想贏的話,扔色子的次數會指數級的上升。最終當目標為2時(最小可能點數),只有一個人平均扔36次或2%扔的次數中,他才能贏。

如前所述,目標決定了難度,進而影響求解工作量證明演算法所需要的時間。那麼問題來了:為什麼這個難度值是可調整的?由誰來調整?如何調整?

比特幣的區塊平均每10分鍾生成一個。這就是比特幣的心跳,是貨幣發行速率和交易達成速度的基礎。不僅是在短期內,而是在幾十年內它都必須要保持恆定。在此期間,計算機性能將飛速提升。此外,參與挖礦的人和計算機也會不斷變化。為了能讓新區塊的保持10分鍾一個的產生速率,挖礦的難度必須根據這些變化進行調整。事實上,難度是一個動態的參數,會定期調整以達到每10分鍾一個新區塊的目標。簡單地說,難度被設定在,無論挖礦能力如何,新區塊產生速率都保持在10分鍾一個。

那麼,在一個完全去中心化的網路中,這樣的調整是如何做到的呢?難度的調整是在每個完整節點中獨立自動發生的。每2,016個區塊(2周產生的區塊)中的所有節點都會調整難度。難度的調整公式是由最新2,016個區塊的花費時長與20,160分鍾(兩周,即這些區塊以10分鍾一個速率所期望花費的時長)比較得出的。難度是根據實際時長與期望時長的比值進行相應調整的(或變難或變易)。簡單來說,如果網路發現區塊產生速率比10分鍾要快時會增加難度。如果發現比10分鍾慢時則降低難度。

為了防止難度的變化過快,每個周期的調整幅度必須小於一個因子(值為4)。如果要調整的幅度大於4倍,則按4倍調整。由於在下一個2,016區塊的周期不平衡的情況會繼續存在,所以進一步的難度調整會在下一周期進行。因此平衡哈希計算能力和難度的巨大差異有可能需要花費幾個2,016區塊周期才會完成。

舉個例子,當前A節點在挖277,316個區塊,A挖礦節點一旦完成計算,立刻將這個區塊發給它的所有相鄰節點。這些節點在接收並驗證這個新區塊後,也會繼續傳播此區塊。當這個新區塊在網路中擴散時,每個節點都會將它作為第277,316個區塊(父區塊為277,315)加到自身節點的區塊鏈副本中。當挖礦節點收到並驗證了這個新區塊後,它們會放棄之前對構建這個相同高度區塊的計算,並立即開始計算區塊鏈中下一個區塊的工作。

比特幣共識機制的第三步是通過網路中的每個節點獨立校驗每個新區塊。當新區塊在網路中傳播時,每一個節點在將它轉發到其節點之前,會進行一系列的測試去驗證它。這確保了只有有效的區塊會在網路中傳播。

每一個節點對每一個新區塊的獨立校驗,確保了礦工無法欺詐。在前面的章節中,我們看到了礦工們如何去記錄一筆交易,以獲得在此區塊中創造的新比特幣和交易費。為什麼礦工不為他們自己記錄一筆交易去獲得數以千計的比特幣?這是因為每一個節點根據相同的規則對區塊進行校驗。一個無效的coinbase交易將使整個區塊無效,這將導致該區塊被拒絕,因此,該交易就不會成為總賬的一部分。

比特幣去中心化的共識機制的最後一步是將區塊集合至有最大工作量證明的鏈中。一旦一個節點驗證了一個新的區塊,它將嘗試將新的區塊連接到到現存的區塊鏈,將它們組裝起來。

節點維護三種區塊:

· 第一種是連接到主鏈上的,

· 第二種是從主鏈上產生分支的(備用鏈),

· 第三種是在已知鏈中沒有找到已知父區塊的。

有時候,新區塊所延長的區塊鏈並不是主鏈,這一點我們將在下面「 區塊鏈分叉」中看到。

如果節點收到了一個有效的區塊,而在現有的區塊鏈中卻未找到它的父區塊,那麼這個區塊被認為是「孤塊」。孤塊會被保存在孤塊池中,直到它們的父區塊被節點收到。一旦收到了父區塊並且將其連接到現有區塊鏈上,節點就會將孤塊從孤塊池中取出,並且連接到它的父區塊,讓它作為區塊鏈的一部分。當兩個區塊在很短的時間間隔內被挖出來,節點有可能會以相反的順序接收到它們,這個時候孤塊現象就會出現。

選擇了最大難度的區塊鏈後,所有的節點最終在全網范圍內達成共識。隨著更多的工作量證明被添加到鏈中,鏈的暫時性差異最終會得到解決。挖礦節點通過「投票」來選擇它們想要延長的區塊鏈,當它們挖出一個新塊並且延長了一個鏈,新塊本身就代表它們的投票。

因為區塊鏈是去中心化的數據結構,所以不同副本之間不能總是保持一致。區塊有可能在不同時間到達不同節點,導致節點有不同的區塊鏈視角。解決的辦法是, 每一個節點總是選擇並嘗試延長代表累計了最大工作量證明的區塊鏈,也就是最長的或最大累計難度的鏈。

當有兩個候選區塊同時想要延長最長區塊鏈時,分叉事件就會發生。正常情況下,分叉發生在兩名礦工在較短的時間內,各自都算得了工作量證明解的時候。兩個礦工在各自的候選區塊一發現解,便立即傳播自己的「獲勝」區塊到網路中,先是傳播給鄰近的節點而後傳播到整個網路。每個收到有效區塊的節點都會將其並入並延長區塊鏈。如果該節點在隨後又收到了另一個候選區塊,而這個區塊又擁有同樣父區塊,那麼節點會將這個區塊連接到候選鏈上。其結果是,一些節點收到了一個候選區塊,而另一些節點收到了另一個候選區塊,這時兩個不同版本的區塊鏈就出現了。

分叉之前

分叉開始

我們看到兩個礦工幾乎同時挖到了兩個不同的區塊。為了便於跟蹤這個分叉事件,我們設定有一個被標記為紅色的、來自加拿大的區塊,還有一個被標記為綠色的、來自澳大利亞的區塊。

假設有這樣一種情況,一個在加拿大的礦工發現了「紅色」區塊的工作量證明解,在「藍色」的父區塊上延長了塊鏈。幾乎同一時刻,一個澳大利亞的礦工找到了「綠色」區塊的解,也延長了「藍色」區塊。那麼現在我們就有了兩個區塊:一個是源於加拿大的「紅色」區塊;另一個是源於澳大利亞的「綠色」。這兩個區塊都是有效的,均包含有效的工作量證明解並延長同一個父區塊。這個兩個區塊可能包含了幾乎相同的交易,只是在交易的排序上有些許不同。

比特幣網路中鄰近(網路拓撲上的鄰近,而非地理上的)加拿大的節點會首先收到「紅色」區塊,並建立一個最大累計難度的區塊,「紅色」區塊為這個鏈的最後一個區塊(藍色-紅色),同時忽略晚一些到達的「綠色」區塊。相比之下,離澳大利亞更近的節點會判定「綠色」區塊勝出,並以它為最後一個區塊來延長區塊鏈(藍色-綠色),忽略晚幾秒到達的「紅色」區塊。那些首先收到「紅色」區塊的節點,會即刻以這個區塊為父區塊來產生新的候選區塊,並嘗試尋找這個候選區塊的工作量證明解。同樣地,接受「綠色」區塊的節點會以這個區塊為鏈的頂點開始生成新塊,延長這個鏈。

分叉問題幾乎總是在一個區塊內就被解決了。網路中的一部分算力專注於「紅色」區塊為父區塊,在其之上建立新的區塊;另一部分算力則專注在「綠色」區塊上。即便算力在這兩個陣營中平均分配,也總有一個陣營搶在另一個陣營前發現工作量證明解並將其傳播出去。在這個例子中我們可以打個比方,假如工作在「綠色」區塊上的礦工找到了一個「粉色」區塊延長了區塊鏈(藍色-綠色-粉色),他們會立刻傳播這個新區塊,整個網路會都會認為這個區塊是有效的,如上圖所示。

所有在上一輪選擇「綠色」區塊為勝出者的節點會直接將這條鏈延長一個區塊。然而,那些選擇「紅色」區塊為勝出者的節點現在會看到兩個鏈: 「藍色-綠色-粉色」和「藍色-紅色」。 如上圖所示,這些節點會根據結果將 「藍色-綠色-粉色」 這條鏈設置為主鏈,將 「藍色-紅色」 這條鏈設置為備用鏈。 這些節點接納了新的更長的鏈,被迫改變了原有對區塊鏈的觀點,這就叫做鏈的重新共識 。因為「紅」區塊做為父區塊已經不在最長鏈上,導致了他們的候選區塊已經成為了「孤塊」,所以現在任何原本想要在「藍色-紅色」鏈上延長區塊鏈的礦工都會停下來。全網將 「藍色-綠色-粉色」 這條鏈識別為主鏈,「粉色」區塊為這條鏈的最後一個區塊。全部礦工立刻將他們產生的候選區塊的父區塊切換為「粉色」,來延長「藍色-綠色-粉色」這條鏈。

從理論上來說,兩個區塊的分叉是有可能的,這種情況發生在因先前分叉而相互對立起來的礦工,又幾乎同時發現了兩個不同區塊的解。然而,這種情況發生的幾率是很低的。單區塊分叉每周都會發生,而雙塊分叉則非常罕見。

比特幣將區塊間隔設計為10分鍾,是在更快速的交易確認和更低的分叉概率間作出的妥協。更短的區塊產生間隔會讓交易清算更快地完成,也會導致更加頻繁地區塊鏈分叉。與之相對地,更長的間隔會減少分叉數量,卻會導致更長的清算時間。

熱點內容
萊特幣作弊軟體 發布:2025-07-14 19:20:44 瀏覽:907
數字貨幣錢包腳本 發布:2025-07-14 19:09:40 瀏覽:597
xrpxml 發布:2025-07-14 18:52:03 瀏覽:224
比特幣勒索微軟補丁 發布:2025-07-14 18:47:56 瀏覽:510
數字貨幣什麼平台搬磚好 發布:2025-07-14 18:43:03 瀏覽:980
比特幣有關股票 發布:2025-07-14 18:41:31 瀏覽:879
對於冷錢包的疑問 發布:2025-07-14 18:16:22 瀏覽:494
幣圈熊市山寨幣能建倉嗎 發布:2025-07-14 18:16:21 瀏覽:657
人工智慧大數據雲計算區塊鏈互有聯系答案 發布:2025-07-14 18:13:08 瀏覽:785
區塊鏈項目群名 發布:2025-07-14 17:55:07 瀏覽:429