當前位置:首頁 » 幣種行情 » ltc4356浪涌抑制器工作原理詳解

ltc4356浪涌抑制器工作原理詳解

發布時間: 2022-06-01 06:55:29

㈠ 浪涌保護器工作原理

浪涌保護器設計原理、特性、運用范疇
 設計原理
在最常見的浪涌保護器中,都有一個稱為金屬氧化物變阻器(Metal Oxide Varistor,MOV)的元件,用來轉移多餘的電壓。如下圖所示,MOV將火線和地線連接在一起。
MOV由三部分組成:中間是一根金屬氧化物材料,由兩個半導體連接著電源和地線。
這些半導體具有隨著電壓變化而改變的可變電阻。當電壓低於某個特定值時,半導體中的電子運動將產生極高的電阻。反之,當電壓超過該特定值時,電子運動會發生變化,半導體電阻會大幅降低。如果電壓正常,MOV會閑在一旁。而當電壓過高時,MOV可以傳導大量電流,消除多餘的電壓。隨著多餘的電流經MOV轉移到地線,火線電壓會恢復正常,從而導致MOV的電阻再次迅速增大。按照這種方式,MOV僅轉移電涌電流,同時允許標准電流繼續為與浪涌保護器連接的設備供電。打個比方說,MOV的作用就類似一個壓敏閥門,只有在壓力過高時才會打開。
另一種常見的浪涌保護裝置是氣體放電管。這些氣體放電管的作用與MOV相同 ——它們將多餘的電流從火線轉移到地線,通過在兩根電線之間使用惰性氣體作為導體實現此功能。當電壓處於某一特定范圍時,該氣體的組成決定了它是不良導體。如果電壓出現浪涌並超過這一范圍,電流的強度將足以使氣體電離,從而使氣體放電管成為非常良好的導體。它會將電流傳導至地線,直到電壓恢復正常水平,隨後它又會變成不良導體。
這兩種方法都是採用並聯電路設計——多餘的電壓從標准電路流入另一個電路。有幾種浪涌保護器產品使用串聯電路設計抑制電涌——它們不是將多餘的電流分流到另一條線路,而是通過降低流過火線的電量。基本上說,這些抑制器在檢測到高電壓時會儲存電能,隨後再逐漸釋放它們。製造這種保護器的公司解釋說該方法可以提供更好的保護,因為它反應速度更快,並且不會向地線分流,但另一方面,這種分流可能會干擾建築物的電力系統。
抑制二極體:抑制二極體具有箝位限壓功能,它是工作在反向擊穿區,由於它具有箝位電壓低和動作響應快的優點,特別適合用作多級保護電路中的最末幾級保護元件。抑制二極體在擊穿區內的伏安特性可用下式表示:I=CUα,上式中α為非線性系數,對於齊納二極體α=7~9,在雪崩二極體α=5~7.
 抑制二極體的技術參數主要有 :
(1)額定擊穿電壓,它是指在指定反向擊穿電流(常為lma)下的擊穿電壓,這於齊納二極體額定擊穿電壓一般在2.9V~4.7V范圍內,而雪崩二極體的額定擊穿電壓常在5.6V~200V范圍內。
(2)最大箝位電壓:它是指管子在通過規定波形的大電流時,其兩端出現的最高電壓。
(3)脈沖功率:它是指在規定的電流波形(如10/1000μs)下,管子兩端的最大箝位電壓與管子中電流等值之積。
(4)反向變位電壓:它是指管子在反向泄漏區,其兩端所能施加的最大電壓,在此電壓下管子不應擊穿。此反向變位電壓應明顯高於被保護電子系統的最高運行電壓峰值,也即不能在系統正常運行時處於弱導通狀態。
(5)最大泄漏電流:它是指在反向變位電壓作用下,管子中流過的最大反向電流。
(6)響應時間:10-11us
作為輔助元件,有些浪涌保護器還配有內置保險絲。保險絲是一種電阻器,當電流低於某個標准時,它的導電性能非常好。反之,當電流超過了可接受的標准,電阻產生的熱量會燒斷保險絲,從而切斷電路。如果MOV不能抑制電涌,過高的電流將燒斷保險絲,保護連接的設備。該保險絲只能使用一次,一旦燒斷就需要更換。
 SPD前端熔斷器應根據避雷器廠家的參數安裝。
如廠家沒有規定,一般選用原則:
根據(浪涌保護器的最大保險絲強度A)和(所接入配電線路最大供電電流B)來確定(開關或熔斷器的斷路電流C)。
確定方法:
當:B>A時 C小於等於A
當:B=A時 C小於A或不安裝C
當:B<A時 C小於B或不安裝C
有些浪涌保護器具有線路調節系統,用於濾除「線路雜訊」,減小電流波動。這種基本浪涌保護器的系統結構非常簡單。火線通過環形扼流線圈接到電源板插座上。扼流線圈只是一個用磁性材料做成的環,外面纏繞著導線——基本的電磁鐵。火線中所流經電流的上下波動會給電磁鐵充電,使其發出電磁能量,從而消除電流的微小波動。這種「經過調節」的電流更加穩定,可使計算機(或其他電子設備)的供電電流更加平緩。
在電子設計中,浪涌主要指的是電源(只是主要指電源)剛開通的那一瞬息產生的強力脈沖,由於電路本身的非線性有可能有高於電源本身的脈沖;或者由於電源或電路中其它部分受到本身或外來尖脈沖干擾叫做浪涌。它很可能使電路在浪涌的一瞬間燒壞,如PN結電容擊穿,電阻燒斷等等。 而浪涌保護就是利用非線性元器件對高頻(浪涌)的敏感設計的保護電路,簡單而常用的是並聯大小電容和串聯電感。
 浪涌保護器(SPD)的分類
按工作原理分:
(1)開關型:其工作原理是當沒有瞬時過電壓時呈現為高阻抗,但一旦響應雷電瞬時過電壓時,其阻抗就突變為低值,允許雷電流通過。用作此類裝置時器件有:放電間隙、氣體放電管、閘流晶體管等。
(2)限壓型:其工作原理是當沒有瞬時過電壓時為高阻擾,但隨電涌電流和電壓的增加其阻抗會不斷減小,其電流電壓特性為強烈非線性。用作此類裝置的器件有:氧化鋅、壓敏電阻、抑制二極體、雪崩二極體等。
(3)分流型或扼流型
分流型:與被保護的設備並聯,對雷電脈沖呈現為低阻抗,而對正常工作頻率呈現為高阻抗。
扼流型:與被保護的設備串聯,對雷電脈沖呈現為高阻抗,而對正常的工作頻率呈現為低阻抗。 用作此類裝置的器件有:扼流線圈、高通濾波器、低通濾波器、1/4波長短路器等。
按用途分:
(1)電源保護器:交流電源保護器、直流電源保護器、開關電源保護器等。
(2)信號保護器:低頻信號保護器、高頻信號保護器、天饋保護器等。
 浪涌保護器及其應用
1、浪涌電壓
電路在遭雷擊和在接通、斷開電感負載或大型負載時常常會產生很高的操作過電壓,這種瞬時過電壓(或過電流)稱為浪涌電壓(或浪涌電流),是一種瞬變干擾:例如直流6V繼電器線圈斷開時會出現300V~600V的浪涌電壓;接通白熾燈時會出現8~10倍額定電流的浪涌電流;當接通大型容性負載如補償電容器組時,常會出現大的浪涌電流沖擊,使得電源電壓突然降低;當切斷空載變壓器時也會出現高達額定電壓8~10倍的操作過電壓。浪涌電壓現象日趨嚴重地危及自動化設備安全工作,消除浪涌雜訊干擾、防止浪涌損害一直是關繫到自動化設備安全可靠運行的核心問題。現代電子設備集成化程度在不斷提高,但是它們的抗禦浪涌電壓能力卻在下降。在多數情況下,浪涌電壓會損壞電路及其部件,其損壞程度與元器件的耐壓強度密切相關,並且與電路中可以轉換的能量相關。
為了避免浪涌電壓擊毀敏感的自動化設備,必須使出現這種浪涌電壓的導體在非常短的時間內同電位均衡系統短接(引入大地)。在其放電過程中,放電電流可以高達幾千安,與此同時,人們往往期待保護單元在放電電流很大時也能將輸出電壓限定在盡可能低的數值上。因此,空氣火花間隙、充氣式過電壓放電器、壓敏電阻、雪崩二極體、TVS(Transientvoltagesuppressor)、FLASHTRAB、VALETRAB、SOCKETTRAB、MAINTRAB等元器件,是單獨或以組合電路形式被應用到被保護電路中,因為每個元器件有其各自不同的特性,並且具有不同的性能:放電能力;響應特性;滅弧性能;限壓精度。根據不同的應用場合以及設備對浪涌電壓保護的要求,可根據各類產品的特性來組合出符合應用要求的過電壓保護系統。

2、浪涌電壓吸收器
浪涌雜訊常用浪涌吸收器進行抑制,常用的浪涌吸收器有:
(1)氧化鋅壓敏電阻
氧化鋅壓敏電阻是以氧化鋅為主體材料製成的壓敏電阻,其電壓非線性系數高,容量大、殘壓低、漏電流小、無續流、伏安特性對稱、電壓范圍寬、響應速度快、電壓溫度系數小,且具有工藝簡單、成本低廉等優點,是目前廣泛使用的浪涌電壓保護器件。適用於交流電源電壓的浪涌吸收、各種線圈、接點間浪涌電壓吸收及滅弧,三極體、晶閘管等電力電子器件的浪涌電壓保護。
(2)R、C、D組合浪涌吸收器
R、C、D組合浪涌吸收器比較適用於直流電路,可根據電路的特性對器件進行不同的組合,如圖1(a)適用於高電平直流控制系統,而圖1(b)中採用齊納穩壓管或雙向二極體,適用於正反向需要保護的電路。
圖1R、C、D浪涌保護器 (a)單向保護(b)雙向保護

圖2TVS電壓(電流)時間特性
(3)瞬態電壓抑制器(TVS)
當TVS兩極受到反向高能量沖擊時,它能以10-12s級的速度,將其兩極間的阻抗由高變低,吸收高達數kW的浪涌功率,使兩極的電位箝位於預定值,有效地保護自動化設備中的元器件免受浪涌脈沖的損害。TVS具有響應時間快、瞬態功率大、漏電流低、擊穿電壓偏差小、箝位電壓容易控制、體積小等優點,目前被廣泛應用於電子設備等領域。
①TVS的特性
其正向特性與普通二極體相同,反向特性為典型的PN結雪崩器件。圖2是TVS的電流-時間和電壓-時間曲線。在浪涌電壓的作用下,TVS兩極間的電壓由額定反向關斷電壓VWM上升到擊穿電壓Vbr而被擊穿。隨著擊穿電流的出現,流過TVS的電流將達到峰值脈沖電流IPP,同時在其兩端的電壓被箝位到預定的最大箝位電壓VC以下。其後,隨著脈沖電流按指數衰減,TVS兩極間的電壓也不斷下降,最後恢復到初態,這就是TVS抑制可能出現的浪涌脈沖功率,保護電子元器件的過程。
②TVS與壓敏電阻的比較
目前,國內不少需要進行浪涌保護的設備上應用壓敏電阻較為普遍,TVS與壓敏電阻性能比較如表1所示:
表1TVS與壓敏電阻的比較
參數 TVS 壓敏電阻
反應速度 10-12s 50×10-9s
是否老化 否 是
最高使用溫度 175℃ 115℃
器件極性 單雙極性 單極性
反向漏電流 5μA 200μA
箝位因子VC/Vbr 不大於15 最大7~8
封閉性質 密封 透氣
價格 較貴 便宜
3、綜合浪涌保護系統組合
3.1三級保護
自動控制系統所需的浪涌保護應在系統設計中進行綜合考慮,針對自動控制裝置的特性,應用於該系統的浪涌保護器基本上可以分為三級,對於自動控制系統的供電設備來說,需要雷擊電流放電器、過壓放電器以及終端設備保護器。數據通信和測控技術的介面電路,比各終端的供電系統電路顯然要靈敏得多,所以必須對數據介面電路進行細保護。
自動化裝置的供電設備的第一級保護採用的是雷擊電流放電器,它們不是安裝在建築物的進口處,就是在總配電箱里。為保證後續設備不承受太高的殘壓,必須根據被保護范圍的性質,在下級配電設施中安裝過電壓放電器,作為二級保護措施。第三級保護是為了保護儀器設備,採取的方法是,把過電壓放電器直接安裝在儀器的前端。自動控制系統三級保護布置如圖3所示。在不同等級的放電器之間,必須遵守導線的最小長度規定。供電系統中雷擊電流放電器與過壓放電器之間的距離不得小於10m,過壓放電器同儀器設備保護裝置之間的導線距離則不應小於5m(即一級SPD與二級SPD連接線路間距至少10米,二級SPD與三級SPD連接線路間距至少5米)。
3.2三級保護器件
(1)充有惰性氣體的過電壓放電器是自動控制系統中應用較廣泛的一級浪涌保護器件。充有惰性氣體過電壓放電器,一般構造的這類放電器可以排放20kA(8/20μs)或者2.5kA(10/350μs)以內的瞬變電流。氣體放電器的響應時間處於ns范圍,被廣泛地應用於遠程通信范疇。該器件的一個缺點是它的觸發特性與時間相關,其上升時間的瞬變數同觸發特性曲線在幾乎與時間軸平行的范圍里相交。因此保護電平將同氣體放電器額定電壓相近。而特別快的瞬變數將同觸發曲線在十倍於氣體放電器額定電壓的工作點相交,也就是說,如果某個氣體放電器的最小額定電壓90V,那麼線路中的殘壓可高達900V。它的另一個缺點是可能會產生後續電流。在氣體放電器被觸發的情況下,尤其是在阻抗低、電壓超過24V的電路中會出現下列情況:即原來希望維持幾個ms的短路狀態,會因為該氣體放電器繼續保持下去,由此引起的後果可能是該放電器在幾分之一秒的時間內爆碎。所以在應用氣體放電器的過電壓保護電路中應該串聯一個熔斷器,使得這種電路中的電流很快地被中斷。

圖3放電器分布圖
(2)壓敏電阻被廣泛作為系統中的二級保護器件,因壓敏電阻在ns時間范圍內具有更快的響應時間,不會產生後續電流的問題。在測控設備的保護電路中,壓敏電阻可用於放電電流為2.5kA~5kA(8/20μs)的中級保護裝置。壓敏電阻的缺點是老化和較高的電容問題,老化是指壓敏電阻中二極體的PN部分,在通常過載情況下,PN結會造成短路,其漏電流將因此而增大,其值的大小取決於承載的頻繁程度。其應用於靈敏的測量電路中將造成測量失真,並且器件易發熱。壓敏電阻大電容問題使它在許多場合不能應用於高頻信息傳輸線路,這些電容將同導線的電感一起形成低通環節,從而對信號產生嚴重的阻尼作用。不過,在30kHz以下的頻率范圍內,這一阻尼作用是可以忽略的。
(3)抑制二極體一般用於高靈敏的電子電路,其響應時間可達ps級,而器件的限壓值可達額定電壓的1.8倍。其主要缺點是電流負荷能力很弱、電容相對較高,器件自身的電容隨著器件額定電壓變化,即器件額定電壓越低,電容則越大,這個電容也會同相連的導線中的電感構成低通環節,而對數據傳輸產生阻尼作用,阻尼程度與電路中的信號頻率相關。

㈡ 浪涌抑制器

這個應該沒問題,可以裝在新型號的接觸器上。

㈢ 電磁閥過壓抑制器是什麼意思,工作原理又是怎麼樣

主要目的是為了消除電磁閥線圈的反電動勢。

電磁閥是用電磁原理控制的閥門,是用來控制流體的自動化基礎元件。

㈣ 浪涌抑制器是什麼

浪涌抑制器實質上是高導磁率的磁環。使用時將需要防浪用的線纜直接從磁環中穿過或繞上幾圈就可以了。這種對瞬間脈沖電流有很強的抑製作用。

㈤ 浪涌抑制器的原理是什麼

應該是浪涌保護器吧,原理就是一壓敏電阻,當作用在其兩邊的電壓達到一定數值後,電阻對電壓十分敏感。形成瞬間放電了

㈥ 浪涌吸收器的作用及原理

你的問題分類錯誤,難怪沒有人能幫到你啊。
浪涌吸收器的作用是防止瞬間高壓損壞設備。
原理大多采樣壓敏電阻,壓敏電阻在通常呈現高阻抗,但在瞬間浪涌電壓出現時就會導通,吸收有害的脈沖電壓,從而起到保護設備的作用。

㈦ 浪涌保護器的原理和構造

電涌保護器(Surge protection Device)是電子設備雷電防護中不可缺少的一種裝置,過去常稱為「避雷器」或「過電壓保護器」英文簡寫為SPD。電涌保護器的作用是把竄入電力線、信號傳輸線的瞬時過電壓限制在設備或系統所能承受的電壓范圍內,或將強大的雷電流泄流入地,保護被保護的設備或系統不受沖擊而損壞。 電涌保護器的類型和結構按不同的用途有所不同,但它至少應包含一個非線性電壓限制元件。用於電涌保護器的基本元器件有:放電間隙、充氣放電管、壓敏電阻、抑制二極體和扼流線圈等。

另一類為箝位保護器,即保護器件在擊穿後,其兩端電壓維持在擊穿電壓上不再上升,以箝位的方式起到保護作用。常用的箝位保護器是氧化鋅壓敏電阻 MOV ,瞬態電壓抑制器(TVS)等。 保護器分過電壓保護元件和過電流保護元件。我們通常所稱的「避雷器」和隨著國外防雷器件引入的「浪涌抑制器」、「過電壓限制器」、放電管、齊納二極體等都屬於電壓限制元件。它們的工作原理差不多,但它們之間的通流容量、動作速度、殘壓等有很大差別。而正溫度系數PTC、電感、電阻、保險絲則屬於過電流保護元件。 二極體型防護器件包括開關二極體、齊納二極體、瞬態二極體等。它們的保護性能大致相同,在承受沖擊能力和限制電壓等級方面稍有不同。正常情況下,管子呈高阻,當外加電壓達到其門限值時,電流迅速增加。它是響應速度非常快的保護元件,限幅電壓低,管子兩端壓降基本不受沖擊電壓和沖擊電流的影響,保護精密設備中半導體電路非它莫屬。近年來正在發展的瞬態二極體,在通流能力方面有了較大的突破,可用在第二級甚至第一級保護。 二極體型防護器件是利用硅PN結正向壓降(VF)和反向雪崩擊穿電壓(VZ)的特性製成的,如瞬變電壓抑制二極體(TVS)。二極體型防護器件有兩種形式:一是齊納型單向雪崩擊穿,二是雙向的硅壓敏電阻。TVS器件在規定的反向應用條件下,承受到高能量的瞬時過壓脈沖時,其工作阻抗能立即降至很低以允許大電流通過,並將電壓箝制在預定水平,從而有效地保護電子產品中的精密元器件免受損壞。雙向TVS可在正反兩個方向吸收瞬時大脈沖功率,並把電壓箝制在預定水平,雙向TVS適用於交流電路。TVS的最大優點是箝位系數小,所謂箝位系數就是指TVS上流過的電流在最大時的端電壓與流過的電流為最小時的端電壓的比值,箝位系數越小,抑制瞬變電壓的效果越好。TVS器件的其它優點是體積小、響應速度快(小於1ns)、可靠性高、每次經受瞬變電壓後其性能不會下降等。缺點是電容大、耐電流量小。現在,國外TVS器件已經採用氣密性附殼封裝,外形為DO-41,而一般的民用器件則採用有引線或無引線的塑封形式,典型的有美國General Instrument公司生產400W、600W、1500W無引線扁平塑封,其400W的工作電壓為5.5~162V,型號為TSMA6.8~TSMA200,外形為SMA/D0214AC;600W的工作電壓為5.5~162V,型號為TSMB6.8~TSMB200,外形為SMB/D0214AA;1500W工作電壓5.5~162V,型號為TSMC6.8~TSMC200,外形為SMC/D0214AB。該公司也生產無引線圓柱形產品,型號為TGL41-6.8~TGL41-200,外形為MELF GL41。該公司還生產5000W的TVS,其工作電壓為5.0~110V,型號為5KP5.0~5KP110,外形為P600。TVS的另一發展方向是開發低電壓產品,目前正在開發的產品電壓范圍為2.8~3.8V,以滿足低壓微處理器和IC的需要。 3 硅瞬變吸收二極體
硅瞬變吸收二極體的工作有點象普通的穩壓管,是箝位型的干擾吸收器件,其應用是與被保護設備並聯使用。硅瞬變電壓吸收二極體具有極快的響應速度(亞納秒級)、相當高的浪涌吸收能力和極多的電壓檔次。能保護設備或電路免受靜電、電感性負載切換時產生的瞬變電壓,以及感應雷所產生的過電壓。 TVS管有單方向(單個二極體)和雙方向(兩個背對背連接的二極體)兩種,它們的主要參數是擊穿電壓、漏電流和電容。使用中,TVS管的擊穿電壓要比被保護電路工作電壓高10%左右,以防止因線路工作電壓接近TVS擊穿電壓,使TVS漏電流影響電路正常工作;也避免因環境溫度變化導致的TVS管擊穿電壓落入線路正常工作電壓的范圍。TVS管有多種封裝形式,如,軸向引線產品可用在電源饋線上,雙列直插的和表面貼裝的適合於在印刷板上作為邏輯電路、I/O匯流排及數據匯流排的保護。 3.1 TVS的特性 TVS的電路符號和普通的穩壓管相同。其電壓-電流特性曲線如圖1所示。其正向特性與普通二極體相同,反向特性為典型的PN結雪崩器件。圖2是TVS的電流-時間和電壓-時間曲線。在浪涌電壓的作用下,TVS兩極間的電壓由額定反向關斷電壓VWM上升到擊穿電壓VBR,而被擊穿。隨著擊穿電流的出現,流過TVS的電流將達到峰值脈沖電流IPP,同時在其兩端的電壓被箝位到預定的最大箝位電壓VC以下。其後,隨著脈沖電流按指數衰減,TVS兩極間的電壓也不斷下降,最後恢復到初態,這就是TVS抑制可能出現的浪涌脈沖功率,保護電子元器件的過程。當TVS兩極受到反向高能量沖擊時,它能以10~12S級的速度,將其兩極間的阻抗由高變低,吸收高達數千瓦的浪涌功率,使兩極間的電位箝位於預定值,有效地保護電子設備中的元器件免受浪涌脈沖的損害。TVS具有響應時間快、瞬態功率大、漏電流低、擊穿電壓偏差小、箝位電壓容易控制、體積小等優點,目前已廣泛應用於家用電器、電子儀表、通訊設備、電源、計算機系統等各個領域。 3.2 TVS的主要參數 (1)最大反向漏電流ID和額定反向關斷電壓VWM。VWM是TVS最大連續工作的直流或脈沖電壓,當這個反向電壓加於TVS的兩極間時它處於反向關斷狀態,流過它的電流應小於或等於其最大反向漏電流ID; (2)最小擊穿電壓VBR和擊穿電流IR。VBR是TVS最小的擊穿電壓。在25℃時,低於這個電壓TVS是不會發生雪崩的。當TVS流過規定的1mA電流(IR)時,加於TVS兩極的電壓為其最小擊穿電壓VBR。按TVS的VBR與標准值的離散程度,可把VBR分為5%和10%兩種。對於5%的VBR來說,VWM=0.85VBR;對於10%的VBR來說,VWM=0.81VBR; (3)最大箝位電壓VC和最大峰值脈沖電流IPP。當持續時間為20mS的脈沖峰值電流IPP流過TVS時,在其兩端出現的最大峰值電壓為VC。VC、
IPP反映了TVS的浪涌抑制能力。VC與VBR之比稱為箝位因子,一般在1.2~1.4之間; (4)電容量C。電容量C是由TVS雪崩結截面決定的,是在特定的1MHz頻率下測得的。C的大小與TVS的電流承受能力成正比,C太大將使信號衰減。因此,C是數據介面電路選用TVS的重要參數; (5)最大峰值脈沖功耗PM。PM是TVS能承受的最大峰值脈沖功率耗散值。在給定的最大箝位電壓下,功耗PM越大,其浪涌電流的承受能力越大;在給定的功耗PM下,箝位電壓VC越低,其浪涌電流的承受能力越大。另外,峰值脈沖功耗還與脈沖波形、持續時間和環境溫度有關。而且,TVS所能承受的瞬態脈沖是不重復的,器件規定的脈沖重復頻率(持續時間與間歇時間之比)為0.01%。如果電路內出現重復性脈沖,應考慮脈沖功率的累積,有可能損壞TVS; (6)箝位時間TC。TC是從零到最小擊穿電壓VBR的時間。對單極性TVS小於1×10-12S;對雙極性TVS小於10×10-12S。 3.3 TVS的分類 TVS器件按極性可分為單極性和雙極性兩種;按用途可分為通用型和專用型;按封裝和內部結構可分為:軸向引線二極體、雙列直插TVS陣列、貼片式和大功率模塊等。軸向引線的產品峰值功率可以達到400W、500W、600W、1500W和5000W。其中大功率的產品主要用在電源饋線上,低功率產品主要用在高密度安裝的場合。對於高密度安裝的場合還可以選擇雙列直插和表面貼裝的封裝形式。 3.4 TVS的選用 (1)確定被保護電路的最大直流或連續工作電壓,電路的額定標准電壓和最大可承受電壓; (2)TVS的額定反向關斷電壓VWM應大於或等於被保護電路的最大工作電壓。若選用的VWM太低,器件可能進入雪崩或因反向漏電流太大影響電路的正常工作; (3)TVS的最大反向箝位電壓VC應小於被保護電路的損壞電壓 (4)在規定的脈沖持續時間內,TVS的最大峰值脈沖功率PM必須大於被保護電路可能出現的峰值脈沖功率。在確定了最大箝位電壓後,其峰值脈沖電流應大於瞬態浪涌電流。一般,TVS的最大峰值脈沖功率是以10/1000mS的非重復脈沖給出的,而實際的脈沖寬度是由脈沖源決定的,當脈沖寬度不同時,其峰值功率也不同。如某600WTVS,對1000mS脈寬最大吸收功率為600W,但是對50mS脈寬吸收功率就可達到2100W,而對10mS的脈寬最大吸收功率就只有200W了。而且吸收功率還和脈沖波形有關,如
果是半個正弦波形式的脈沖,吸收功率就要減到75%;若是方波形式的脈沖,吸收功率就要減到66%; (5)平均穩態功率的匹配對於需要承受有規律的、短暫的脈沖群沖擊的TVS,如應用在繼電器、功率開關或電機控制等場合,有必要引入平均穩態功率的概念。例如,在一功率開關電路中會產生120Hz,寬度為4mS,峰值電流為25A的脈沖群。選用的TVS可以將單個脈沖的電壓箝位到11.2V。此中平均穩態功率的計算為:脈沖時間間隔等於頻率的倒數1/120=0.0083S,峰值吸收功率是箝位電壓與脈沖電流的乘積11.2V×25A=280W,平均功率則為峰值功率與脈沖寬度對脈沖間隔比值的乘積,即280×(0.000004S/0.0083S)=0.134W。也就是說,選用的TVS平均穩態功率必須大於0.134W; (6)對於數據介面電路的保護,還必須注意選取具有合適電容C的TVS器件; (7)根據用途選用TVS的極性及封裝結構。交流電路選用雙極性TVS較為合理,多線保護選用TVS陣列更為有利。

㈧ DC/DC電源浪涌抑制電路的原理是什麼

DC/DC電源浪涌抑制電路的原理,簡單的說就是此電路相當於一隻功率型可變電阻,上電時電阻大抑制浪涌電流,工作時電阻小,保證電源正常工作。

㈨ 浪涌抑制器的作用

它的作用是當電氣迴路或者通信線路中因為外界的干擾突然產生尖峰電流或者電壓時,浪涌保護器能在極短的時間內導通分流,從而避免浪涌對迴路中其他設備的損害。

雷電放電可能發生在雲層之間或雲層內部,或雲層對地之間;另外許多大容量電氣設備的使用帶來的內部浪涌,對供電系統(中國低壓供電系統標准:AC 50Hz 220/380V)和用電設備的影響以及防雷和防浪涌的保護,已成為人們關注的焦點。

雲層與地之間的雷擊放電,由一次或若干次單獨的閃電組成,每次閃電都攜帶若干幅值很高、持續時間很短的電流。一個典型的雷電放電將包括二次或三次的閃電,每次閃電之間大約相隔二十分之一秒的時間。大多數閃電電流在10,000至100,000安培的范圍之間降落,其持續時間一般小於100微秒。

供電系統內部由於大容量設備和變頻設備等的使用,帶來日益嚴重的內部浪涌問題。我們將其歸結為瞬態過電壓(TVS)的影響。任何用電設備都存在供電電源電壓的允許范圍。

有時即便是很窄的過電壓沖擊也會造成設備的電源或全部損壞。瞬態過電壓(TVS)破壞作用就是這樣。特別是對一些敏感的微電子設備,有時很小的浪涌沖擊就可能造成致命的損壞。

(9)ltc4356浪涌抑制器工作原理詳解擴展閱讀:

第一級防雷器可以對於直接雷擊電流進行泄放,或者當電源傳輸線路遭受直接雷擊時傳導的巨大能量進行泄放,對於有可能發生直接雷擊的地方,必須進行CLASS—I的防雷。

第二級防雷器是針對前級防雷器的殘余電壓以及區內感應雷擊的防護設備,對於前級發生較大雷擊能量吸收時,仍有一部分對設備或第三級防雷器而言是相當巨大的能量會傳導過來,需要第二級防雷器進一步吸收。

同時,經過第一級防雷器的傳輸線路也會感應雷擊電磁脈沖輻射LEMP,當線路足夠長感應雷的能量就變得足夠大,需要第二級防雷器進一步對雷擊能量實施泄放。第三級防雷器是對LEMP和通過第二級防雷器的殘余雷擊能量進行保護。

熱點內容
以太坊錢包教程手機 發布:2025-05-22 15:56:22 瀏覽:132
比特幣cx 發布:2025-05-22 15:20:21 瀏覽:485
人工智慧虛擬現實區塊鏈 發布:2025-05-22 15:08:43 瀏覽:915
很多人做數字貨幣賺了很多錢 發布:2025-05-22 14:59:09 瀏覽:712
張健數字貨幣被判刑了嗎 發布:2025-05-22 14:57:52 瀏覽:104
idex數字貨幣交易所 發布:2025-05-22 14:52:34 瀏覽:914
btc加密文件解密 發布:2025-05-22 14:50:23 瀏覽:293
韓國的比特幣平台注冊教程 發布:2025-05-22 14:35:44 瀏覽:789
區塊鏈養殖熊貓 發布:2025-05-22 14:20:51 瀏覽:177
狼世界相似區塊鏈 發布:2025-05-22 14:20:41 瀏覽:876