促進eth生物合成的外界因素
① 關於植物激素的很傻的問題
普遍有效
生長素(AuXIns)是發現最早、研究最多、在植物體內存在最普遍的一種植物激素。早在1880年達爾文(CHArles DArWIn)父子進行向光性實驗時,首次發現植物幼苗尖端的胚芽鞘在單方向的光照下向光彎麴生長,但如果把尖端切除或用黑罩遮住光線,即使單向照光,幼苗也不會向光彎曲(圖6-1)。他們當時因此而推測:當胚芽鞘受到單側光照射時,在頂端可能產生一種物質傳遞到下部,引起苗的向光性彎曲。後來,在達爾文試驗的啟示下,很多學者都相繼進行了這方面的研究,並證實了這種物質的存在。其中最成功的是荷蘭人溫特(F�W�WenT),他在1928年首次成功地將生長素收集在瓊脂小塊中,證明這種物質同植物的向光性彎麴生長相關(圖6-2)。他建立的生長素生物鑒定法——燕麥試驗法,至今仍被應用。直到1946年,才從高等植物中首次分離,提取出與生長有關的活性物質,經過鑒定它是一種結構較簡單的有機化合物——吲哚乙酸(Indole ACeTIC ACId,簡稱IAA),其分子式為C10H9O2N,分子量為175.19。
二、生長素在植物體內的分布與運輸
植物體內生長素的含量雖然微少,但分布甚廣,植物的根、莖、葉、花、果實、種子及胚芽鞘中均有。但主要集中在胚芽鞘、幼嫩的莖尖、根尖、葉片和未成熟的種子及禾穀類的居間分生組織等生長旺盛的部位,生長緩慢或趨於衰老的組織中圖6-3黃化的燕麥幼苗中生長素的分布較少。生長素在胚芽鞘的尖端和根尖中含量最多,一般距頂端越遠,含量越少,而根尖中的含量普遍低於胚芽鞘尖端(圖6-3)。
生長素主要是在植物莖尖的營養芽和幼嫩的葉片中合成,然後運輸到作用部位。生長素在植物體內的傳導具有典型的極性運輸(PolAr TrAnsPorT)特性,即生長素只能從植物體形態學的上端向下端運輸,而不能倒轉過來運輸。以莖尖和胚芽鞘的極性運輸最為明顯,這可通過實驗證明。把含有生長素的瓊脂塊放在一段胚芽鞘的形態學上端,把另一塊不含生長素的瓊脂塊放在胚芽鞘的形態學下端,經過一段時間,下端的瓊脂塊中就含有生長素。但若把這一段芽鞘倒過來,其形態學的上端朝下,而下端朝上,作同樣的試驗,生長素則不能向上運輸(圖6-4)。
三、生長素的生物合成、分解及其在植物體內的存在狀態
(一)生長素的生物合成
色氨酸是植物體內生長素生物合成重要的前體物質,其結構與IAA相似,在高等植物中普遍存在。通過色氨酸合成生長素有兩條途徑:(1)色氨酸首先氧化脫氨形成吲哚丙酮,再脫羧形成吲哚乙醛;(2)色氨酸先脫羧形成色胺,然後再由色胺氧化脫氨形成吲哚乙酸。吲哚乙醛在相應酶的催化下最終氧化為吲哚乙酸。可見,吲哚乙醛是兩種途徑的共同中間產物(圖6-5)。至於生長素的生物合成究竟走哪條途徑,因植物的種類及器官不同而異,大多數研究者認為,第一條途徑是高等植物體內生長素生物合成的主要途徑。此外在十字花科植物中存在較多的吲哚乙腈,在酶的作用下也可轉變成為吲哚乙酸。這些合成生長素的途徑的存在,可以保證不同的植物類型以及植物在不同的生育期、不同的環境下維持體內生長素的正常水平。
(二)生長素的分解
生長素和其他物質一樣,在植物體內不斷合成也不斷分解,植株體內天然生長素的含量,實際上是合成反應與降解反應兩者動態平衡的結果。生長素的分解有兩條途徑,即酶氧化與光氧化。廣泛存在於植物體內的吲哚乙酸氧化酶和某些過氧化物酶能夠將吲哚乙酸氧化分解,酶氧化是IAA的主要降解過程。
IAA氧化酶是含鐵的血紅蛋白,它需要兩個輔助因子,即Mn2+和酚。IAA氧化酶的活性為一些一元酚(如2,4-二氯苯酚、阿魏酸等)加速,受一些二元酚(如:綠原酸、兒茶酚等)的抑制。酚類物質很可能是IAA降解的調節劑。IAA氧化酶的活性與植物器官的生長速率有負相關關系。衰老器官中IAA氧化酶活性比幼嫩器官中高得多,距根尖或莖尖越遠,IAA氧化酶活性越高。矮生植物體內IAA氧化酶活性比正常植物高,因此,矮生植物體內的生長素含量減少,從而限制了莖和根的伸長生長,表現出矮生特性。在實踐中,常常可通過對胚芽鞘或某些器官中IAA氧化酶、過氧化物酶活性的分析測定,早期預測植物的高度。
(三)生長素在植物體內的存在狀態
植物組織中的生長素有兩種不同的存在狀態:一種是自由型(游離態)生長素,易於提取,具有生理活性;另一種是束縛型(結合態)生長素,即一部分的吲哚乙酸與其他物質結合形成復合物而暫時失去生理活性(又稱之為鈍化)。如吲哚乙酸與葡萄糖結合為吲哚乙酸葡萄糖甙(葡萄糖甙),與蛋白質結合為吲哚乙酸——蛋白質復合物等,這類生長素常可占植物體中吲哚乙酸總量的50%~90%,它們可能是植物解除過量吲哚乙酸毒性或避免吲哚乙酸(IAA)氧化酶破壞的一種運輸及貯藏形式。結合態生長素在種子等貯藏器官中較多,在適當的條件下,它們又能被分解、轉化為具有活性的游離生長素而調節生長。如種子胚乳中存在的結合生長素是幼苗生長所需IAA的主要來源,當干種子吸水萌動時,其結合態生長素轉化為活性很強的游離態生長素而促進幼苗生長。
四、生長素的生理效應
(一)對植物生長的影響
生長素能促進細胞的縱向伸長,從而對植物或營養器官的伸長生長表現出明顯的促進作用,這是其基本的生理效應。
生長素對植物生長的影響隨濃度、物種和器官種類及細胞年齡而異,並具有顯著的正、負雙重效應。在一定條件下它既能促進生長,又能抑制生長;既能促進發芽,又能抑制發芽;既能保花,保果,也能疏花疏果。一般較低濃度促進生長,高濃度則抑制生長,濃度再高甚至會殺死植物。
不同器官對外加生長素不同濃度的反應有很大差異。以根、莖、芽三種不同器官為例,三者的最適濃度為莖>芽>根。根對生長素最敏感,極低濃度即可促進生長(10-10Mol/L左右),在較高濃度下生長受抑制;莖對生長素的敏感程度較差,其促進生長的最適濃度約為10-5Mol/L,達10-3Mol/L以上莖生長才受抑制;芽的反應則介於莖與根之間。因此,促進莖生長的濃度足以抑制根的生長(圖6-6)。
(二)促進細胞分裂與分化
生長素除對伸長生長具有明顯的促進效應外,對細胞分裂與分化及形態建成也有一定的作用。如用一定濃度的生長素處理一些植物枝條切段基部,則可刺激該部位的細胞分裂,誘導根原基的發生,促進生根,這是其他激素所不能代替的。因此,常常又將生長素稱之為「成根激素」。此外,生長素還能引起頂端優勢,促進某些植物開花,控制性別分化,促進單性結實產生無籽果實,誘導植物的向性生長等,這些將在本書有關章節中詳述。
五、生長素的作用機理
(一)植物激素的受體
當任何一種植物激素作用於植物時,必須首先和細胞內的某些物質結合成復合物,才能產生有效的調節作用。細胞內這種能與植物激素進行特異結合的物質稱為激素受體。激素受體分子同相應的植物激素結合並直接相互作用,識別激素的信號,由此觸發了植物體內的一系列生理生化反應,最終導致形態上的變化,從而表現出不同的生物學效應。因此,植物激素與其受體的結合是參與生理生化代謝反應的第一步。
激素+受體→激素—受體→生理生化反應→形態變化
(二)生長素的作用方式
細胞的縱向伸長即意味著細胞體積的擴大,而細胞體積的擴大依賴於原生質和其他細胞內含物的增加。但由於植物細胞的最外部被一層半硬性的細胞壁所包圍,細胞體積若要增大,細胞壁也必須相應擴大。細胞壁的擴大是通過增加其可塑性(PlAsTIsITy)來實現的。所謂可塑性,是指細胞壁的不可逆的伸展能力,它與彈性不同,彈性是指可逆的伸展能力。試驗證明,用生長素處理可以使細胞壁的結構鬆弛、軟化,因而增加了它的可塑性。而且在不同濃度的生長素影響下,其可塑性變化和生長的增加幅度接近,這說明生長素所誘導的生長是通過細胞壁可塑性的增加而實現的(圖6-7)。生長素促進細胞壁可塑性增加,並非單純的物理變化,而是代謝活動的結果,因為,生長素對死細胞的可塑性變化無效;缺氧或呼吸抑制劑存在的條件下,可以抑制生長素誘導細胞壁可塑性的變化。
對於生長素影響細胞壁的可塑性並導致細胞伸長生長的作用方式,目前主要存在以下兩種假說:
1.酸—生長學說(ACIdgroWTH THeory) 由於細胞膜上存在質子泵(可能是ATP酶),在生長素的作用下,生長素與質子泵結合而使之活化,質子泵便將質子(H+)從細胞質中不斷地泵到細胞壁,使細胞壁環境酸化。一方面減弱了胞壁的主要結構成分纖維素分子間氫鍵的結合力,另一方面也促進了一些適宜於酸性環境的水解酶活性增強(如纖維素酶等),導致細胞壁纖維素結構間交織點破裂,連接鬆弛,細胞壁可塑性增大,壓力勢降低,細胞水勢下降,原生質的粘度降低,透性增高,促進了更多的水分和營養物質進入細胞內,從而使細胞體積擴大,達到伸長生長的目的(圖6-8)。由於生長素和其他酸性溶液都可同樣促進細胞的伸長(圖6-9),而且生長素促進H+分泌的速度和細胞伸長速率是一致的,所以,把生長素能誘導細胞壁酸化並使其可塑性增大而導致細胞伸長的理論稱為酸—生長學說。
2.基因活化學說(gene ACTIVATIon THeory) 生長素誘導細胞的持續生長不僅要依賴於細胞壁可塑性的增大,而且在細胞擴大時還要增加新的細胞壁成分如纖維素等(因為細胞伸長時胞壁並不變薄)。同時,細胞壁組成成分之間還需要重新相互連接,蛋白質等細胞內含物也需要不斷地合成,這都需要形成有關的酶(蛋白質)。
20世紀60年代以來的許多試驗表明,生長素促進生長是與其增強核酸和蛋白質的生物合成密切相關的。因為當蛋白質合成的專一抑制劑環己亞胺(CyCloHeXIMIde)和核酸合成的專一抑制劑放線菌素D(ACTInoMyCIn D)存在時,也能抑制生長素對生長的誘導作用,而且核酸和蛋白質合成被抑制量,恰好相當於這兩種抑制劑降低生長素對生長誘導的量,這兩者間呈平行關系(圖6-10),說明生長素促進生長也依賴於核酸和蛋白質的合成。這些發現,把對生長素作用機理的認識提高到了分子水平。
六、人工合成的生長素類及其應用
(一)人工合成的生長素類
科技工作者在對吲哚乙酸化學結構和生理活性相互關系進行深入研究的基礎上,又人工合成了一批與生長素的化學結構及生理效應相類似的有機化合物,將它們統稱為人工合成生長素。常用的人工合成的生長素類葯劑,按其化學結構,大致可分為三大類:
1.吲哚衍生物類 如吲哚丙酸(IPA)、吲哚丁酸(IBA)。
2.萘酸類 如α-萘乙酸(NAA)、萘乙酸鈉、萘乙酸醯胺(DAN)等,其中萘乙酸生產容易,價格低廉,活性強,是使用最廣泛的植物生長調節劑。
3.苯氧酸類 主要有2,4-二氯苯氧乙酸(2,4-D)、2,4,5-三氯苯氧乙酸(2,4,5-T)、4-碘苯氧乙酸(4-CPA、增產靈)等,其中以2,4-D和2,4,5-T的活性較強。
(二)人工合成生長素的應用
1.促進插枝生根生長實踐早已證明,如果在插枝上適當保留一些芽或幼葉,就能促進插枝生根,這是因為芽和葉中產生的生長素,通過極性運輸並積累在插枝基部,使之得到足夠的生長從而恢復細胞分裂機能並誘導生根。因此,在插條基部外施生長素,能使一些不易生根的植物插條迅速生根,提高成活率。例如,葡萄插枝在300Mg/L的NAA溶液中快速浸沾1Min;桃樹綠枝基部在750~1500Mg/L的NAA溶液中浸沾5~10s;獼猴桃插枝用5000Mg/L的IBA溶液浸沾5~10s;小葉黃楊插枝用5000Mg/L的IBA粉劑處理;均能顯著地促進插條生根。目前常用的促進生根葯劑主要是IBA和NAA�IBA的效應強,維持時間長,誘發的不定根多而長,但價格較貴;NAA價廉,促進生根較少但粗壯�因此,二者混用效果最佳。
2.防止器官脫落生長素含量多的器官或組織能夠吸引更多的營養物質向此轉移,抑制離層的形成,防止因營養失調或其他原因引起的器官脫落。生產上用10~50Mg/L NAA或1Mg/L的2,4-D噴灑植株或樹冠,可以防止花、果和蕾鈴的脫落,對番茄、棉花、蘋果和柑桔等都有效。
3.引起單性結實、形成無籽果實用生長素處理未授粉的雌蕊柱頭,子房就能發育成無籽果實,這種不經授粉而子房直接發育成果實的現象稱為單性結實。用10~15Mg/L的2,4-D溶液蘸花或噴花簇,既可促進產果,還可引起單性結實,形成無籽瓜果,提高果實品質。對茄子、草莓、番茄、西瓜、葡萄等處理都有同樣效果。
4.疏花疏果應用5~20Mg/L的萘乙酸、25~50Mg/L的萘乙醯胺噴施蘋果樹冠;40Mg/L的萘乙酸鈉噴雪花梨,能有效地疏除部分花、果,省工、經濟,並能克服果樹大小年現象。
參考資料:"植物生長物質"
例如低濃度的生長素有促進器官伸長的作用。從而可減少蒸騰失水。可是超過最適濃度時由於會導致乙烯產生,生長的促進作用下降,甚至反會轉為抑制。即乙烯的存在對生長素的作用起結抗作用。
在植物生長發育過程中,任何一種生理反應都不是單一激素作用的結果,而是各種激素相互作用的結果,各種激素間的相互作用是很復雜的,有時表現為增效作用,有時表現為拮抗作用。你的試劑中赤黴素受體拮抗劑,可以使赤黴素/生長素比例降低,生長 素水平相對升高,則促進生根;可以使細胞分裂素/赤黴素比例升高,細胞分裂素相對升高.
在植物的生長發育過程中,除了需要水分和營養物質的供應,還要受到一些生理活性物質的調節和控制。這些調節和控制植物生長發育的物質,稱為植物生長物質。植物生長物質包括兩大類:一是植物體自身代謝過程中產生的,稱為植物激素。二是人工合成的,具有植物激素活性的有機物,稱為植物生長調節劑。
一、植物激素
植物激素有四個重要特性:內源性,它是植物生命活動中細胞內部的產物,並廣泛存在於植物界。調控性,可通過自身生命活動調節和控制植物生長發育。移動性,可從植物的合成位點運輸到作用位點。顯效性,在植物體內含量甚微,多以微克計算,但可起到明顯增效的作用。國際公認的植物激素有五大類:生長素、赤黴素、細胞分裂素、脫落酸和乙烯。
1.生長素
生長素的特性:生長素即吲哚乙酸,簡稱IAA(圖12-1)。因生長素在植物體內易被破壞,生產上一般不用吲哚乙酸來處理植物,而多採用與其類似的生長調節劑如吲哚丁酸、萘乙酸等處理植物。
生長素的作用:促進植物的伸長生長、促進插枝生根、誘導單性結實 控制雌雄性別。生長素最基本的生理作用是促進生長,但是與生長素的濃度、植物的種類與器官、細胞的年齡等因素有關。生長素濃度較低時可促進生長,較高濃度時則抑制生長。雙子葉植物一般比單子葉植物敏感。根比芽敏感,芽比莖敏感,幼嫩細胞比成熟細胞敏感。
2.赤黴素
赤黴素的特性:赤黴素簡稱GA(圖12-2)。配成溶液易失效,適於在低溫乾燥條件下以粉末形式保存。
赤黴素的生理作用:促進莖和葉的生長、誘導抽苔開花、促進性別分化、打破休眠、防止脫落、誘導單性結實,促進無籽果實的形成。
3.細胞分裂素
細胞分裂素的特性:細胞分裂素簡稱CTK(圖12-3)。主要包括激動素、玉米素等。性質較穩定。
細胞分裂素的生理作用:促進細胞擴大生長、誘導芽的分化、防止衰老、促進腋芽生長。
4.脫落酸
脫落酸的特性:脫落酸簡稱ABA(圖12-4)。是植物體內存在的一種強有力的天然抑制劑,含量極微,活性很高,作用巨大。
脫落酸的生理作用:抑制植物生長、促進脫落、促進休眠、調節氣孔關閉。
5.乙 烯
乙烯的特性:乙烯簡稱ETH(圖12-5)。是一種促進組織器官成熟的氣態激素。由於乙烯是氣體,使用比較困難,所以一般都用它的類似物乙烯利代替。
乙烯的生理作用:加速果實成熟、促進脫落衰老、調節植物生長、促進開花。
在植物生長發育過程中,任何一種生理反應都不是單一激素作用的結果,而是各種激素相互作用的結果,各種激素間的相互作用是很復雜的,有時表現為增效作用,有時表現為拮抗作用。了解各種激素對植物的生理作用、激素間的相互作用,以及和環境間的關系,在農業生產上具有非常重要的意義。
② 促進植物生長的激素有哪些各有什麼作用
即生長素(auxin)、赤黴素(GA)、細胞分裂素(CTK)、脫落酸(abscisic acid,ABA)、乙烯(ethyne,ETH)和油菜素甾醇(brassinosteroid,BR)。它們都是些簡單的小分子有機化合物,但它們的生理效應卻非常復雜、多樣。例如從影響細胞的分裂、伸長、分化到影響植物發芽、生根、開花、結實、性別的決定、休眠和脫落等。所以,植物激素對植物的生長發育有重要的調節控製作用。
植物激素的化學結構已為人所知,人工合成的相似物質稱為生長調節劑,如吲哚乙酸;有的還不能人工合成,如赤黴素。目前市場上售出的赤黴素試劑是從赤黴菌的培養過濾物中製取的。這些外加於植物的吲哚乙酸和赤黴素,與植物體自身產生的吲哚乙酸和赤黴素在來源上有所不同,所以作為植物生長調節劑,也有稱為外源植物激素。
最近新確認的植物激素有,多胺,水楊酸類,茉莉酸(酯)等等。
植物體內產生的植物激素有赤黴素、激動素、脫落酸等。現已能人工合成某些類似植物激素作用的物質如2,4-D(2,4-二氯苯酚代乙酚)等。
植物自身產生的、運往其他部位後能調節植物生長發育的微量有機物質稱為植物激素。人工合成的具有植物激素活性的物質稱為植物生長調節劑。已知的植物激素主要有以下5類:生長素、赤黴素、細胞分裂素、脫落酸和乙烯。而油菜素甾醇也逐漸被公認為第六大類植物激素。
生長素
1.有關歷史
D.Darwin在1880年研究植物向性運動時,只有各種激素的協調配合,發現植物幼嫩的尖端受單側光照射後產生的一種影響,能傳到莖的伸長區引起彎曲。1928年荷蘭F.W.溫特從燕麥胚芽鞘尖端分離出一種具生理活性的物質,稱為生長素,它正是引起胚芽鞘伸長的物質。1934年荷蘭F.克格爾等從人尿得到生長素的結晶,經鑒定為吲哚乙酸。
2.存在的部位
生長素在低等和高等植物中普遍存在。生長素主要集中在幼嫩、正生長的部位,如禾穀類的胚芽鞘,它的產生具有「自促作用」,雙子葉植物的莖頂端、幼葉、花粉和子房以及正在生長的果實、種子等;衰老器官中含量極少。
用胚芽鞘切段證明植物體內的生長素通常只能從植物的上端向下端運輸,而不能相反。這種運輸方式稱為極性運輸,能以遠快於擴散的速度進行。但從外部施用的生長素類葯劑的運輸方向則隨施用部位和濃度而定,如根部吸收的生長素可隨蒸騰流上升到地上幼嫩部位。
在植物中,則吲哚乙酸通過酶促反應從色氨酸合成。十字花科植物中合成吲哚乙酸的前體為吲哚乙腈,西葫蘆中有相當多的吲哚乙醇,也可轉變為吲哚乙酸。已合成的生長素又可被植物體內的酶或外界的光所分解,因而處於不斷的合成與分解之中。
3.作用
1.低濃度的生長素有促進器官伸長的作用。
從而可減少蒸騰失水。超過最適濃度時由於會導致乙烯產生,生長的促進作用下降,甚至反會轉為抑制。不同器官對生長素的反應不同,根最敏感,芽次之,莖的敏感性最差。生長素能促進細胞伸長的主要原因,在於它能使細胞壁環境酸化、水解酶的活性增加,從而使細胞壁的結構鬆弛、可塑性增加,有利於細胞體積增大。
2.生長素還能促進RNA和蛋白質的合成,促進細胞的分裂與分化。生長素具有兩重性,不僅能促進植物生長,也能抑制植物生長。低濃度的生長素促進植物生長,過高濃度的生長素抑制植物生長。2,4-D曾被用做選擇性除草劑。
4.關於生長素類似物
吲哚乙酸可以人工合成。生產上使用的是人工合成的類似生長素的物質如吲哚丙酸、吲哚丁酸、萘乙酸、2,4-D、4-碘苯氧乙酸等,可用於防止脫落、促進單性結實、疏花疏果、插條生根、防止馬鈴薯發芽等方面。愈傷組織容易生根;反之容易生芽。
赤黴素
1.有關歷史
1926年日本黑澤在水稻惡苗病的研究中,發現感病稻苗的徒長和黃化現象與赤黴菌(Gibberellafujikuroi)有關。1935年藪田和住木從赤黴菌的分泌物中分離出了有生理活性的物質,定名為赤黴素(GA)。從50年代開始,英、美的科學工作者對赤黴素進行了研究,現已從赤黴菌和高等植物中分離出60多種赤黴素,分別被命名為GA1,GA2等。以後從植物中發現有十多種細胞分裂素,赤黴素廣泛存在於菌類、藻類、蕨類、裸子植物及被子植物中。商品生產的赤黴素是GA3、GA4和GA7。GA3又稱赤霉酸,是最早分離、鑒定出來的赤黴素,分子式為C19H22O6。即6-呋喃氨基嘌呤。
2.存在部位
高等植物中的赤黴素主要存在於幼根、幼葉、幼嫩種子和果實等部位。
由甲羥戊酸經貝殼杉烯等中間物合成。後證明其中含有一種能誘導細胞分裂的成分,赤黴素在植物體內運輸時無極性,通常由木質部向上運輸,由韌皮部向下或雙向運輸。
3.作用
赤黴素最顯著的效應是促進植物莖伸長。無合成赤黴素的遺傳基因的矮生品種,用赤黴素處理可以明顯地引起莖稈伸長。赤黴素也促進禾本科植物葉的伸長。在蔬菜生產上,常用赤黴素來提高莖葉用蔬菜的產量。一些需低溫和長日照才能開花的二年生植物,干種子吸水後,用赤黴素處理可以代替低溫作用,使之在第1年開花。赤黴素還可促進果實發育和單性結實,打破塊莖和種子的休眠,促進發芽。干種子吸水後,胚中產生的赤黴素能誘導糊粉層內a-澱粉酶的合成和其他水解酶活性的增加,促使澱粉水解,加速種子發芽。目前在啤酒工業上多用赤黴素促進a-澱粉酶的產生,避免大麥種子由於發芽而造成的大量有機物消耗,從而節約成本。
細胞分裂素
1.有關歷史
這種物質的發現是從激動素的發現開始的。由韌皮部向下或雙向運輸。1955年美國人F.斯庫格等在煙草髓部組織培養中偶然發現培養基中加入從變質鯡魚精子提取的DNA,可促進煙草愈傷組織強烈生長。後證明其中含有一種能誘導細胞分裂的成分,稱為激動素。第一個天然細胞分裂素是1964年D.S.萊瑟姆等從未成熟的玉米種子中分離出來的玉米素。以後從植物中發現有十多種細胞分裂素,GA2等。都是腺嘌呤的衍生物。
2.存在部位
高等植物細胞分裂素存在於植物的根、葉、種子、果實等部位。根尖合成的細胞分裂素可向上運到莖葉,但在未成熟的果實、種子中也有細胞分裂素形成。細胞分裂素的主要生理作用是促進細胞分裂和防止葉子衰老。綠色植物葉子衰老變黃是由於其中的蛋白質和葉綠素分解;而細胞分裂素可維持蛋白質的合成,從而使葉片保持綠色,延長其壽命。
3.作用
細胞分裂素還可促進芽的分化。在組織培養中當它們的含量大於生長素時,愈傷組織容易生芽;反之容易生根。可用於防止脫落、促進單性結實、疏花疏果、插條生根、防止馬鈴薯發芽等方面。
人工合成的細胞分裂素苄基腺嘌呤常用於防止萵苣、芹菜、甘藍等在貯存期間衰老變質。
脫落酸
1.有關歷史
60年代初美國人F.T.阿迪科特和英國人P.F.韋爾林分別從脫落的棉花幼果和樺樹葉中分離出脫落酸,其分子式為C15H20O4。
2.存在部位
脫落酸存在於植物的葉、休眠芽、成熟種子中。通常在衰老的器官或組織中的含量比在幼嫩部分中的多。
3.作用
抑制細胞分裂,促進葉和果實的衰老和脫落。抑制種子萌發。抑制RNA和蛋白質的合成,從而抑制莖和側芽生長,因此是一種生長抑制劑,有利於細胞體積增大。與赤黴素有拮抗作用。脫落酸通過促進離層的形成而促進葉柄的脫落,還能促進芽和種子休眠。種子中較高的脫落酸含量是種子休眠的主要原因。經層積處理的桃、紅松等種子,芽次之,因其中的脫落酸含量減少而易於萌發。脫落酸也與葉片氣孔的開閉有關,小麥葉片乾旱時,保衛細胞內脫落酸含量增加,氣孔就關閉,從而可減少蒸騰失水。根尖的向重力性運動與脫落酸的分布有關。合成部位:根冠、萎蔫的葉片等。
乙烯
1.有關歷史
早在20世紀初就發現用煤氣燈照明時有一種氣體能促進綠色檸檬變黃而成熟,這種氣體就是乙烯。但直至60年代初期用氣相層析儀從未成熟的果實中檢測出極微量的乙烯後,乙烯才被列為植物激素。
2.存在部位
乙烯廣泛存在於植物的各種組織、器官中,是由蛋氨酸在供氧充足的條件下轉化而成的。合成部位:植物體各個部位。
3.作用
促進果實成熟,促進器官脫落和衰老。它的產生具有「自促作用」,即乙烯的積累可以刺激更多的乙烯產生。乙烯可以促進RNA和蛋白質的合成,並使細胞膜的通透性增加, 加速呼吸作用。因而果實中乙烯含量增加時,可促進其中有機物質的轉化,加速成熟。乙烯也有促進器官脫落和衰老的作用。用乙烯處理黃化幼苗莖可使莖加粗和葉柄偏上生長。乙烯還可使瓜類植物雌花增多,在植物中,促進橡膠樹、漆樹等排出乳汁。
4.有關運用
乙烯是氣體,在田間應用不方便。一種能釋放乙烯的液體化合物2-氯乙基膦酸(商品名乙烯利)已廣泛應用於果實催熟、棉花採收前脫葉和促進棉鈴開裂吐絮、刺激橡膠乳汁分泌、水稻矮化、增加瓜類雌花及促進菠蘿開花等。
其他激素
主要有油菜素甾醇、水楊酸、茉莉酸等,目前比較公認的第六大類植物激素是油菜素甾醇(Brassinosteroid)。油菜素甾醇是甾體類激素,與動物甾體激素的作用機理不同。其具有促進細胞伸長和細胞分裂、促進維管分化、促進花粉管伸長而保持雄性育性、加速組織衰老、促進根的橫向發育、頂端優勢的維持、促進種子萌發等生理作用。而目前油菜素甾醇的信號轉導途徑也是目前研究的前沿和熱點之一。
③ 9. 解釋ETH促進果實成熟的原因
最佳答案
1)脫落酸的作用在於抑制RNA和蛋白質的合成,從而抑制莖和側芽生長;乙烯可以促進RNA和蛋白質的合成,使細胞膜的透性增加,加速呼吸作用,加速成熟。這是拮抗作用!
脫落酸抑制細胞分裂,促進葉和果實的衰老和脫落。乙烯(促進果實成熟,)促進器官脫落和衰老。這是協同。
④ 影響光合作用的因素有哪些
一、外界條件對光合速率的影響
光合作用的指標是光合速率(photosynthetic rate)。光合速率通常以每小時每平方分米葉面積吸收二氧化碳毫克數表示,一般測定光合速率的方法都沒有把葉子的呼吸作用考慮在內,所以測定的結果實際是光合作用減去呼吸作用的差數,叫做表觀光合速率(apparent photosynthetic rate)或凈光合速率(net photosynthetic rate)。如果我們同時測定其呼吸速率,把它加到表觀光合速率上去,則得到真正光合速率(true photosynthetic rate)。
真正光合速率=表觀光合速率+呼吸速率
(一)光照
光合作用是一個光生物化學反應,所以光合速率隨著光照強度的增加而加快。在一定范圍內幾乎是呈正相關。但超過一定范圍之後,光合速率的增加轉慢;當達到某一光照強度時,光合速率就不再增加,這種現象稱為光飽和現象(light saturation)。各種作物的光飽和點(light saturation point)不同,與葉片厚薄、單位葉面積葉綠素含量多少有關。水稻和棉花的光飽和點在40~50klx,小麥、菜豆、煙草、向日葵和玉米的光飽和點較低,約30klx。上述光飽和點的數值是指單葉而言,對群體則不適用。因為大田作物群體對光能的利用,與單株葉片不同。群體葉枝繁茂,當外部光照很強,達到單葉光飽和點以上時,而群體內部的光照強度仍在光飽和點以下,中、下層葉片就比較充分地利用群體中的透射光和反射光。群體對光能的利用更充分,光飽和點就會上升。例如,水稻在抽穗期前後到乳熟期,在自然日照條件下,其光照強度與光合作用的關系基本是直線關系,即光照越強,群體的光合作用越大,也就是說,其群體光飽和點可上升到60~80klx,甚至更高。
根據對光照強度需要的不同,可把植物分為陽生植物(sun plant)和陰生植物(shadeplant)兩類。陽生植物要求充分直射日光,才能生長或生長良好,如馬尾松(Pinus massoniana)和白樺(Betula platyphylla)。陰生植物是適宜於生長在蔭蔽環境中,例如胡椒(Peperonia sp.)和酢漿草(Oxalis corniculata),它們在完全日照下反而生長不良或不能生長。陽生植物和陰生植物所以適應不同的光照,是與它們的生理特性和形態特徵的不同有關。
以光飽和點來說,陽生植物的光飽和點是全光照(即全部太陽光照)的100%,而陰生植物的則是全光照的10~50%(圖3-31)。因為陰生植物葉片的輸導組織比陽生植物的稀疏,當光照強度很大時,水分對葉片的供給不足,所以,陰生植物的葉片在較強的光照下便不再增加光合速率。
以葉綠體來說,陰生植物與陽生植物相比,前者有較大的基粒,基粒片層數目多得多,葉綠素含量又較高,這樣,陰生植物就能在較低的光照強度下充分地吸收光線。此外,陰生植物還適應於遮陰處的光的波長。例如,陰生植物經常處於漫射光中,漫射光中的較短波長占優勢。上面已經討論過,葉綠素a在紅光部分的吸收帶偏向長光波方面,而葉綠素b在藍紫光部分的吸收帶較寬。陰生植物的葉綠素a和葉綠素b的比值小,即葉綠素b的含量相對地說是較多的,所以陰生植物便能強烈地利用藍紫光,而適應於在遮陰處生長。
以光補償點來說,陽生植物的光補償點高於陰生植物。當光照強度較強時,光合速率比呼吸速率大幾倍,但隨著光照減弱,光合速率逐漸接近呼吸速率,最後達到一點,即光合速率等於呼吸速率。同一葉子在同一時間內,光合過程中吸收的CO2和呼吸過程中放出的CO2等量時的光照強度,就稱為光補償點(light compensation point)(圖3-32)。植物在光補償點時,有機物的形成和消耗相等,不能積累干物質,而晚間還要消耗干物質,因此從全天來看,植物所需的最低光照強度,必須高於光補償點,才能使植物正常生長。一般來說,陽生植物的光補償點在全光照的3~5%,而陰生植物的則在全光照的1%以下。
農作物雖然沒有陰生植物和陽生植物之分,但不同作物對光照強度的要求是不同的。例如,各種作物達到開花結實的最低光強度是:大麥和小麥為1.8~2.0klx,玉米為8klx,番茄為4klx,豌豆為1klx。人參(Panax schinseng)、藿香(Agastache rugosa)和姜(Zingiber officinale)是耐陰植物,棉花、向日葵、煙草等是喜光植物。水稻的光補償點,在30℃下約為600~700lx。
光補償點在實踐上有很大的意義。間作和套作時作物種類的搭配,林帶樹種的配置,間苗、修剪、採伐的程度,冬季溫室栽培蔬菜等等都與補償點有關。又如,栽培作物由於過密或肥水過多,造成徒長,封行過早,中下層葉子所受的光照往往在光補償點以下,這些葉子不但不能製造養分,反而消耗養分,形成消費器官。因此,生產上要注意合理密植,肥水管理恰當,保證透光良好。
光是光合作用的能源,所以光是光合作用必需的。然而,光照過強時,尤其炎熱的夏天,光合作用受到光抑制,光合速率下降。如果強光時間過長,甚至會出現光氧化現象,光合色素和光合膜結構遭受破壞。低溫、高溫、乾旱等不良環境因子會加劇光抑制的危害。例如,黃瓜等對冷害敏感的植物,在暗中受冷不會影響光合作用,但在光和低溫下,則光合磷酸化受抑制,細胞膜透性加大。植物本身對光抑制有一定程度的保護性反應。例如,葉子運動,調節角度去迴避強光;葉綠體運動以適應光照強弱。又如,小麥幼苗在強光下,葉綠體中的捕光葉綠素a/b蛋白復合體含量低於生長在弱光下的;而負擔將光能轉化為化學能的反應中心復合體含量,則前者大於後者。在農業生產上,要盡可能提供作物所需的生育條件,尤其是要防止幾種脅迫因子同時出現,最大限度地減輕光抑制。
光質不同也影響植物的光合速率。從圖3-33可知,菜豆在橙、紅光下光合速率最快,藍、紫光其次,綠光最差。其他高等植物和綠藻都有類似結果。一般來說,不同光波影響下的光合高峰相當於葉綠素和類胡蘿卜素的吸收光譜高峰。在自然條件下,植物會或多或少受到不同波長的光線照射的。例如,陰天的光照不僅光強減弱,而且藍光和綠光增多;樹木的葉片吸收紅光和藍光較多,故樹冠下的光線富於綠光,尤其是樹木繁茂的森林更是明顯。水層同樣改變光強和光質。水層越深,光照越弱,例如,20m深處的光強和水面的光強比較。前者為後者的二十分之一,水色不清光照更弱。水層對光波中的紅、橙部分吸收顯著多於對藍、綠部分的吸收,水下深層的光線相對富於短波長的光。所以含有葉綠素,吸收紅光較多的綠藻分布海水的表層,含有藻紅蛋白,吸收綠、藍光較多的紅藻,則分布在海水的深層。這是海藻對光線的適應。
(二)二氧化碳
陸生植物光合作用所需要的碳源,主要是空氣中的二氧化碳,二氧化碳主要是通過葉片氣孔進入葉子。大氣中的二氧化碳含量,如以容積表示,僅為0.03%,但光合過程中吸收相當大量的二氧化碳,如向日葵的葉面吸收0.14CO2cm3/h·cm2。以前已經講過,氣孔在葉面上所佔的面積不到1%,這樣小面積的氣孔如何吸收大量的二氧化碳呢?根據試驗結果,如小孔只佔總面積的0.31%時,而CO2被NaOH吸收的速度相當於總面積的14%,即加快45倍左右。這種現象,完全符合以前所講過的蒸汽經過小孔擴散的特點。空氣中的二氧化碳經過氣孔進入葉肉細胞的細胞間隙,是以氣體狀態擴散進行的,速度很快;但當二氧化碳通過細胞壁透到葉綠體時,便必須溶解在水中,擴散速度也大減。
陸生植物的根部也可以吸收土壤中的二氧化碳和碳酸鹽,用於光合作用。試驗證明,把菜豆幼苗根部放在含有14CO2的空氣中或NaH14CO3的營養液中,進行光照,結果光合產物中發現14C。關於根部吸收的二氧化碳如何用於光合作用問題,據研究,二氧化碳透入根後就與丙酮酸結合成草醯乙酸,再還原為蘋果酸,蘋果酸沿輸導組織上升而透入綠色器官——葉、莖和果實中。如果這時在光照下,則用於光合作用;如果在黑暗中,大部分的二氧化碳就排出體外。
浸沒在水中的綠色植物,其光合作用的碳源是溶於水中的二氧化碳、碳酸鹽和重碳酸鹽,這些物質可通過表皮細胞進入葉子中去。
二氧化碳是光合作用的原料,對光合速率影響很大。前面講過,空氣中的二氧化碳含量一般占體積的0.033%(即0.65mg/L,0℃,101kPa),對植物的光合作用來說是比較低的。如果二氧化碳濃度更低,光合速率急劇減慢。當光合吸收的二氧化碳量等於呼吸放出的二氧化碳量,這個時候外界的二氧化碳數量就叫做二氧化碳補償點(CO2compensation point)。水稻單葉的二氧化碳補償點是55mg/LCO2(25℃,光照>10klx),其變化范圍隨光照強度而異。光弱,光合降低比呼吸顯著,所以要求較高的二氧化碳水平;才能維持光合與呼吸相等,也即是二氧化碳補償點高。當光強,光合顯著大於呼吸,二氧化碳補償點就低。作物高產栽培的密度大,肥水充足,植株繁茂,吸收更多二氧化碳,特別在中午前後,二氧化碳就成為增產的限制因子之一。植物對二氧化碳的利用與光照強度有關,在弱光情況下,只能利用較低的二氧化碳濃度,光合慢,隨著光照的加強,植物就能吸收利用較高的二氧化碳濃度,光合加快
(三)溫度
光合過程中的暗反應是由酶所催化的化學反應,而溫度直接影響酶的活性,因此,溫度對光合作用的影響也很大。除了少數的例子以外,一般植物可在10~35℃下正常地進行光合作用,其中以25~30℃最適宜,在35℃以上時光合作用就開始下降,40~50℃時即完全停止。在低溫中,酶促反應下降,故限制了光合作用的進行。光合作用在高溫時降低的原因,一方面是高溫破壞葉綠體和細胞質的結構,並使葉綠體的酶鈍化;另一方面是在高溫時,呼吸速率大於光合速率,因此,雖然真正光合作用增大,但因呼吸作用的牽制,表觀光合作用便降低
(四)礦質元素
礦質元素直接或間接影響光合作用。氮、鎂、鐵、錳等是葉綠素生物合成所必需的礦質元素,鉀、磷等參與糖類代謝,缺乏時便影響糖類的轉變和運輸,這樣也就間接影響了光合作用;同時,磷也參與光合作用中間產物的轉變和能量傳遞,所以對光合作用影響很大。圖3-36說明水稻活動中心葉葉片的氮、磷、鉀含量不同,光合作用就不同。在一定范圍內,營養元素越多,光合速率就越快。三要素中以氮肥對光合作用的效果最明顯。追施氮肥促使光合速率的原因有兩方面:一方面是促進葉片面積增大,葉片數目增多,增加光合面積,這是間接的影響。另一方面是直接的影響,即影響光合能力。施氮肥後,葉綠素含量急劇增加,加速光反應;氮肥亦增加葉片蛋白態氮百分率,而蛋白質是酶的主要組成成分,也使暗反應進行順利。由此可見,施用氮肥促進光合作用的光反應和暗反應。
(五)水分
水分是光合作用原料之一,缺乏時可使光合速率下降。水分在植物體內的功能是多方面的,葉子要在含水量較高的條件下才能生存,而光合作用所需的水分只是植物所吸收水分的一小部分(1%以下),因此,水分缺乏主要是間接的影響光合作用下降。具體來說,缺水使氣孔關閉,影響二氧化碳進入葉內;缺水使葉片澱粉水解加強,糖類堆積,光合產物輸出緩慢,這些都會使光合速率下降。試驗證明,由於土壤乾旱而處於永久萎蔫的甘蔗葉片,其光合速率比原來正常的下降87%。再灌以水,葉子在數小時後可恢復膨脹狀態,可是表觀光合速率在好幾天後仍未恢復正常。由此可見,葉片缺水過甚,會嚴重損害光合進程。水稻烤田,棉花、花生煉苗時,要認真控制烤田(煉苗)程度,不能過頭。
(六)氧
實驗證明,當將環境的氧含量降低為1~3%時,就發現正常大氣中21%的氧含量對植物光合作用是有抑制效應的,通稱之為氧的脅迫。大氣中21%氧含量對C3植物的光合作用抑制竟達33~50%之高,而對C4植物幾乎不抑制。氧抑制光合作用的原因主要是:加強氧與二氧化碳對RuBP結合的競爭,提高光呼吸速率;氧能與NADP+競爭接受電子,NADPH會成量就少,碳同化所需的還原能力減少;氧接受電子後形成的超氧自由基,會破壞光合膜;在強光下,氧參與光合色素的光氧化,破壞光合色素,等等。植物在長期演化過程中逐漸形成一些保護性反應,例如,葉綠體中生成的超氧物歧化酶可以消除超氧自由基,抗壞血酸和谷胱甘肽可以消除過氧化氫等。在農業生產上噴施150mg/L2,3-環氧丙酸,可部分拮抗氧抑制,提高光合速率。
(七)光合速率的日變化
影響光合作用的外界條件每天都在時時刻刻變化著,所以光合速率在一天中也有變化。在溫暖的日子裡,如水分供應充足,太陽光照成為主要矛盾,光合過程一般與太陽輻射進程相符合:從早晨開始,光合作用逐漸加強,中午達到高峰,以後逐漸降低,到日落則停止,成為單峰曲線。這是指無雲的晴天而言。如果白天雲量變化不定,則光合速率隨著到達地面的光強度的變化而變化,成不規則的曲線。但當晴天無雲而太陽光照強烈時,光合進程便形成雙峰曲線:一個高峰在上午,一個高峰在下午。中午前後光合速率下降,呈現「午休」現象。為什麼會出現這種現象呢?(1)水分在中午供給不上,氣孔關閉;(2)CO2供應不足;(3)光合產物澱粉等來不及分解運走,積累在葉肉細胞的細胞質中,阻礙細胞內CO2的運輸。這些都會限制光合作用的進行。南方夏季日照強,作物「午休」會更普遍一些,在生產上應適時灌溉或選用抗旱品種,以緩和「午休」現象,增強光合能力。
二、內部因素對光合速率的影響
(一)不同部位
由於葉綠素具有接受和轉換能量的作用,所以,植株中凡是綠色的、具有葉綠素的部位都進行光合作用,在一定范圍內,葉綠素含量越多,光合越強。就拿抽穗後的水稻植株來說,葉片、葉鞘、穗軸、節間和穎殼等部分都進行光合作用。以光合速率和光合量來說,都是葉片最大,葉鞘次之,穗軸和節間很小,穎殼甚微。在生產上盡量保持足夠的葉片,製造更多光合產物,為高產提供物質基礎。
以一片葉子來說,最幼嫩的葉片光合速率低,隨著葉子成長,光合速率不斷加強,達到高峰,後來葉子衰老,光合速率就下降。根據這個原則,同一植株不同部位的葉片光合速率,因葉子發育狀況不同而呈規律性的變化。
(二)不同生育期
一株作物不同生育期的光合速率,一般都以營養生長中期為最強,到生長末期就下降。就拿水稻來說,分櫱盛期的光合速率最快,以後隨生育期的進展而下降,特別在抽穗期以後下降較快。但從群體來看,群體的光合量不僅決定於單位葉面積的光合速率,而且很大程度上受總葉面積及群體結構的影響。水稻群體光合量有兩個高峰:一個在分櫱盛期,另一個在孕穗期。從此以後,下層葉片枯黃,單株葉面積減少,故此光合量急劇下降。在農業生產上,通過栽培措施以延長生育後期的葉片壽命和光合功能,使生育後期光合下降緩和一些,更有利於種子飽滿充實。
⑤ 植物中ETH是什麼物質
是植物激素乙烯(ethylene, ETH)。
乙烯的生理作用
1、三重反應(抑制莖伸長,使莖加粗,失去負向地性)偏上生長
2、促進果實成熟
3、促進花的分化
4、促進器官脫落
5、促進次生物排泌
⑥ 植物生長激素極其詳細作用 有無濃度、細胞成熟情況、器官種類不同而有所差別 謝謝~
1.植物激素: 在植物體內合成,從產生部位運到作用部位,微量濃度就能對植物的生長
發育產生顯著生理作用的活性有機物。
2.乙烯對植物生長的典型效應是:抑制莖的伸長生長;促進橫向加粗;莖失去負向重
力性,上胚軸向水平方向生長。這就是乙烯所特有的「三重反應」(triple response)。
3.偏上生長,是指器官的上部生長速度快於下部的現象。乙烯對莖與葉柄都有偏上生
長的作用,從而造成了莖橫生和葉下垂。
4.除乙烯外,其他四種植物在植物組織內以兩種形式存在:游離型(作用形式)和束
縛型(儲運形式、解毒、調節游離型含量)。植物激素的降解途徑有:酶促降解和光氧化降
解。運輸途徑:生長素(韌皮部運輸、極性運輸);赤黴素(無極性,根尖→導管↑,嫩葉→
篩管↓);細胞分裂素(主:根尖→木質部↑→地上部,少數:葉片→韌皮部);脫落酸(無極
性,木質部、韌皮部)。註:乙烯的運輸是被動的擴散過程,但一般在合成部位起作用,不
被轉運,而其前體ACC 在植物體內可被運輸。
5.五大類植物激素的作用:
生長素:促進生長(雙重作用:對物質運輸的影響。不同器官對生長素的敏感性不同;對離體器官和整株植物效應有別);促進插條不定根的形成;對養分的調運作用;誘導維管束分化;維持頂端優勢;誘導雌花分化(但效果不如乙烯)單性結實;促進光合產物的運輸;葉片的擴大和氣孔的開放;抑制花朵脫落。
赤黴素:促進莖的伸長生長;誘導開花;打破休眠;促進雄花分化;GA 還可加強IAA對養分的動員效應,促進某些植物坐果和延緩葉片衰老
細胞分裂素:促進芽的分化{[CTK]/[IAA]的比值高時,愈傷組織形成芽;[CTK]/[IAA]的比值低時,愈傷組織形成根)後來居上,芽高根低};促進細胞分裂;調節地上部和根細胞分裂;抑制根生長(偏上性生長);促進細胞擴大;促進側芽發育,消除頂端優勢;打破種子休眠;延緩葉片衰老;促進某些植物坐果和延緩葉片衰老。
脫落酸:脫落酸與種子發育;促進休眠;胎萌現象;促進氣孔關閉;乾旱條件下提高根導水率,促進根生長,抑制地上部生長;提高植物抗逆性;促進葉片衰老。
乙烯:改變生長習性(「三重反應」,偏上生長);促進果實成熟;促進根毛生長,打破某些植物種子和芽休眠;促進鳳梨科開花;促進水生植物地下部伸長生長;加速葉片衰老;促進脫落。
植物激素相互作用:
IAA 與GA:有增效作用。促進伸長生長,GA/IAA 比值高時,促進韌皮部分化,GA/IAA比值低時,促進木質部分化。
IAA 與CTK:增效作用: CTK 加強IAA 的極性運輸,加強IAA 效應。
對抗作用: CTK促進側芽生長,破壞頂端優勢;IAA 抑制側芽生長,保持頂端優勢。
IAA 與ETH:IAA 促進ETH 的生物合成,ETH 降低IAA 的含量水平(抑制IAA 的生物合成;提高IAA 氧化酶的活性,加速IAA 的破壞;阻礙IAA 的極性運輸)。
GA 與ABA :都是由異戊二烯單位構成的,相同的前體物質(甲瓦龍酸),對抗:GA打破休眠,促進萌發;ABA 促進休眠,抑制萌發。ABA 使GA 自由型→束縛型。