區塊鏈加密不對稱
『壹』 區塊鏈技術是什麼
區塊鏈是分布式數據存儲、點對點傳輸、共識機制、加密演算法等計算機技術的新型應用模式。所謂共識機制是區塊鏈系統中實現不同節點之間建立信任、獲取權益的數學演算法
區塊鏈(Blockchain)是比特幣的一個重要概念,它本質上是一個去中心化的資料庫,同時作為比特幣的底層技術。區塊鏈是一串使用密碼學方法相關聯產生的數據塊,每一個數據塊中包含了一次比特幣網路交易的信息,用於驗證其信息的有效性(防偽)和生成下一個區塊。
狹義來講,區塊鏈是一種按照時間順序將數據區塊以順序相連的方式組合成的一種鏈式數據結構,並以密碼學方式保證的不可篡改和不可偽造的分布式賬本。
廣義來講,區塊鏈技術是利用塊鏈式數據結構來驗證與存儲數據、利用分布式節點共識演算法來生成和更新數據、利用密碼學的方式保證數據傳輸和訪問的安全、利用由自動化腳本代碼組成的智能合約來編程和操作數據的一種全新的分布式基礎架構與計算方式
『貳』 非對稱加密演算法是什麼意思
asymmetric encoding algorithm
非對稱加密演算法需要兩個密鑰:公開密鑰(publickey)和私有密鑰(privatekey)。公開密鑰與私有密鑰是一對,如果用公開密鑰對數據進行加密,只有用對應的私有密鑰才能解密;如果用私有密鑰對數據進行加密,那麼只有用對應的公開密鑰才能解密。因為加密和解密使用的是兩個不同的密鑰,所以這種演算法叫作非對稱加密演算法。 非對稱加密演算法實現機密信息交換的基本過程是:甲方生成一對密鑰並將其中的一把作為公用密鑰向其它方公開;得到該公用密鑰的乙方使用該密鑰對機密信息進行加密後再發送給甲方;甲方再用自己保存的另一把專用密鑰對加密後的信息進行解密。另一方面,甲方可以使用自己的私密鑰對機密信息進行加密後再發送給乙方;乙方再用甲方的公鑰對加密後的信息進行解密。
甲方只能用其專用密鑰解密由其公用密鑰加密後的任何信息。 非對稱加密演算法的保密性比較好,它消除了最終用戶交換密鑰的需要。
非對稱密碼體制的特點:演算法強度復雜、安全性依賴於演算法與密鑰但是由於其演算法復雜,而使得加密解密速度沒有對稱加密解密的速度快。對稱密碼體制中只有一種密鑰,並且是非公開的,如果要解密就得讓對方知道密鑰。所以保證其安全性就是保證密鑰的安全,而非對稱密鑰體制有兩種密鑰,其中一個是公開的,這樣就可以不需要像對稱密碼那樣傳輸對方的密鑰了。這樣安全性就大了很多。
『叄』 什麼是非對稱加密
MD5
\PGP這類的都屬於非對稱加密.就是加密簡單,解密(破解)困難.
『肆』 區塊鏈成傳銷新騙術,區塊鏈到底是什麼
前段時間,一張中國大媽現身區塊鏈大會現場的照片在網上走紅,一時之間引發了熱議,網友們紛紛表示:「大媽們已經被區塊鏈盯上。」事實上,從幾年前開始,當區塊鏈的概念出來的時候,就有一些不法分子打著區塊鏈的名義進行傳銷活動,成為傳銷的最新變種之一。事實上,對著區塊鏈的發展,各種虛擬貨幣也是應運而生,其中大多數都是騙局,騙子打著「虛擬貨幣」、「區塊鏈」的名義,開展騙局,這主要就是利用投資者不懂虛擬貨幣、區塊鏈,卻又想要趕上虛擬貨幣投資熱潮的心理。這種騙局看似復雜,其實也是非常簡單的,但是一旦上當之後,投資也是很難收回來的。
總而言之,區塊鏈技術其實並不是騙局,而是被騙子利用了,利用信息的不對稱,欺騙投資者。
『伍』 區塊鏈技術能解決信息不對稱的問題么如果能,是不是大量的中介,貿易會
區塊鏈的一個理論基礎就是博弈論,題主所說的信息不對稱的問題,往往發生的實際場景,就是在供應鏈的上下游之間。上游希望賣得貴一點,而下游則希望買的便宜點。這就會導致上下游之間的博弈。
另外就是同行之間,比如兩個供應商的競爭博弈,而這種博弈很重要的一個競爭手段就是通過信息的第一手材料的收集,通過信息的不對稱來掌握市場的行情走向,進而獲取更高的經濟利潤。
而區塊鏈技術可以實現各方之間信息的透明共享,以及信任的保障。所以信息不對稱的問題,完全可以通過區塊鏈技術得以解決。
至於是否會徹底消除中介?在我看來,短期內還不能實現。不過同區塊鏈技術的的發展趨勢,以及未來的展望方面來看,作為中介的經銷商的份額肯定會逐步的壓縮,必將被時代所拋棄。
以上是我的個人的一些看法和觀點。
『陸』 什麼是對稱加密什麼是非對稱加密
對稱加密
在對稱加密(或叫單密鑰加密)中,只有一個密鑰用來加密和解密信息。盡管單密鑰加密是一個簡單的過程,但是雙方都必須完全的相信對方,並都持有這個密鑰的備份。但要達到這種信任的級別並不是想像中的那麼簡單。當雙方試圖建立信任關系時可能一個安全破壞已經發生了。首先密鑰的傳輸就是一個重要問題,如果它被截取,那麼這個密鑰以及相關的重要信息就沒有什麼安全可言了。
但是,如果用戶要在公共介質 (如互聯網) 上傳遞信息,他需要一種方法來傳遞密鑰,當然物理的發送和接收密鑰是最安全的,但有時這是不可能的。一種解決方法就是通過電子郵件來發送,但這樣的信息很容易的被截取到,從而擊破了加密的目的。用戶不能加密包含密鑰的郵件,因為他們必須共享另一個用來加密含有密鑰郵件的密鑰。這種困境就產生了問題:如果對稱密鑰用它們自己來加密,那為什麼不直接用相同的方法在第一步就使用?一個解決方案就是用非對稱加密,我們將在本課的後面提到。
所有類型加密的一個主題就是破解。一種減少使用對稱加密所造成的威脅的反措施就是改變密鑰的規律性。然而,定期改變密鑰經常是困難的,尤其是你的公司里有很多用戶。另外,黑客可以使用字典程序,password sniffing來危及對稱密鑰的安全,或者通過搜翻辦公桌,錢包以及公文包。對稱加密也很容易被暴力攻擊的手段擊敗。
非對稱加密
非對稱加密在加密的過程中使用一對密鑰,而不像對稱加密只使用一個單獨的密鑰。一對密鑰中一個用於加密,另一個用來解密。如用A加密,則用B解密;如果用B加密,則要用A解密。
重要的概念是在這對密鑰中一個密鑰用來公用,另一個作為私有的密鑰;用來向外公布的叫做公鑰,另一半需要安全保護的是私鑰。非對稱加密的一個缺點就是加密的速度非常慢,因為需要強烈的數學運算程序。如果一個用戶需要使用非對稱加密,那麼即使比較少量的信息可以也要花上幾個小時的時間。
非對稱加密的另一個名稱叫公鑰加密。盡管私鑰和公鑰都有與數學相關的,但從公鑰中確定私鑰的值是非常困難的並且也是非常耗時的。在互聯網上通信,非對稱加密的密鑰管理是容易的因為公鑰可以任易的傳播,私鑰必須在用戶手中小心保護。
HASH加密把一些不同長度的信息轉化成雜亂的128位的編碼里,叫做HASH值。HASH加密用於不想對信息解密或讀取。使用這種方法解密在理論上是不可能的,是通過比較兩上實體的值是否一樣而不用告之其它信息。HASH加密別一種用途是簽名文件。它還可用於當你想讓別人檢查但不能復制信息的時候。
『柒』 區塊鏈以什麼方式保證網路中數據的安全性
區塊鏈保證網路中數據的安全性的方式:
在區塊鏈技術中,數字加密技術是其關鍵之處,一般運用的是非對稱加正晌密演算法,即加密時的密碼與解鎖時的密碼是不一樣的。簡單來說,就是我們有專屬的私鑰,只要把自己的私鑰保護好,把公鑰給對方,對方用公鑰加密文件生成密文,再將密文傳給你,我們再用私鑰解密得到明文,就能夠保障嘩清盯傳輸內容不被別人看到,這樣子,加密數據就傳輸完畢啦!
同時,還有數字簽名為我們加多一重保障,用來證明文件發給對方過程中沒有被篡改。由此可見區塊鏈的加密技術能夠有效解決數據流通共享過程中的安全問題,可謂是大有施展之處。亂和
『捌』 【深度知識】區塊鏈之加密原理圖示(加密,簽名)
先放一張以太坊的架構圖:
在學習的過程中主要是採用單個模塊了學習了解的,包括P2P,密碼學,網路,協議等。直接開始總結:
秘鑰分配問題也就是秘鑰的傳輸問題,如果對稱秘鑰,那麼只能在線下進行秘鑰的交換。如果在線上傳輸秘鑰,那就有可能被攔截。所以採用非對稱加密,兩把鑰匙,一把私鑰自留,一把公鑰公開。公鑰可以在網上傳輸。不用線下交易。保證數據的安全性。
如上圖,A節點發送數據到B節點,此時採用公鑰加密。A節點從自己的公鑰中獲取到B節點的公鑰對明文數據加密,得到密文發送給B節點。而B節點採用自己的私鑰解密。
2、無法解決消息篡改。
如上圖,A節點採用B的公鑰進行加密,然後將密文傳輸給B節點。B節點拿A節點的公鑰將密文解密。
1、由於A的公鑰是公開的,一旦網上黑客攔截消息,密文形同虛設。說白了,這種加密方式,只要攔截消息,就都能解開。
2、同樣存在無法確定消息來源的問題,和消息篡改的問題。
如上圖,A節點在發送數據前,先用B的公鑰加密,得到密文1,再用A的私鑰對密文1加密得到密文2。而B節點得到密文後,先用A的公鑰解密,得到密文1,之後用B的私鑰解密得到明文。
1、當網路上攔截到數據密文2時, 由於A的公鑰是公開的,故可以用A的公鑰對密文2解密,就得到了密文1。所以這樣看起來是雙重加密,其實最後一層的私鑰簽名是無效的。一般來講,我們都希望簽名是簽在最原始的數據上。如果簽名放在後面,由於公鑰是公開的,簽名就缺乏安全性。
2、存在性能問題,非對稱加密本身效率就很低下,還進行了兩次加密過程。
如上圖,A節點先用A的私鑰加密,之後用B的公鑰加密。B節點收到消息後,先採用B的私鑰解密,然後再利用A的公鑰解密。
1、當密文數據2被黑客攔截後,由於密文2隻能採用B的私鑰解密,而B的私鑰只有B節點有,其他人無法機密。故安全性最高。
2、當B節點解密得到密文1後, 只能採用A的公鑰來解密。而只有經過A的私鑰加密的數據才能用A的公鑰解密成功,A的私鑰只有A節點有,所以可以確定數據是由A節點傳輸過來的。
經兩次非對稱加密,性能問題比較嚴重。
基於以上篡改數據的問題,我們引入了消息認證。經過消息認證後的加密流程如下:
當A節點發送消息前,先對明文數據做一次散列計算。得到一個摘要, 之後將照耀與原始數據同時發送給B節點。當B節點接收到消息後,對消息解密。解析出其中的散列摘要和原始數據,然後再對原始數據進行一次同樣的散列計算得到摘要1, 比較摘要與摘要1。如果相同則未被篡改,如果不同則表示已經被篡改。
在傳輸過程中,密文2隻要被篡改,最後導致的hash與hash1就會產生不同。
無法解決簽名問題,也就是雙方相互攻擊。A對於自己發送的消息始終不承認。比如A對B發送了一條錯誤消息,導致B有損失。但A抵賴不是自己發送的。
在(三)的過程中,沒有辦法解決交互雙方相互攻擊。什麼意思呢? 有可能是因為A發送的消息,對A節點不利,後來A就抵賴這消息不是它發送的。
為了解決這個問題,故引入了簽名。這里我們將(二)-4中的加密方式,與消息簽名合並設計在一起。
在上圖中,我們利用A節點的私鑰對其發送的摘要信息進行簽名,然後將簽名+原文,再利用B的公鑰進行加密。而B得到密文後,先用B的私鑰解密,然後 對摘要再用A的公鑰解密,只有比較兩次摘要的內容是否相同。這既避免了防篡改問題,有規避了雙方攻擊問題。因為A對信息進行了簽名,故是無法抵賴的。
為了解決非對稱加密數據時的性能問題,故往往採用混合加密。這里就需要引入對稱加密,如下圖:
在對數據加密時,我們採用了雙方共享的對稱秘鑰來加密。而對稱秘鑰盡量不要在網路上傳輸,以免丟失。這里的共享對稱秘鑰是根據自己的私鑰和對方的公鑰計算出的,然後適用對稱秘鑰對數據加密。而對方接收到數據時,也計算出對稱秘鑰然後對密文解密。
以上這種對稱秘鑰是不安全的,因為A的私鑰和B的公鑰一般短期內固定,所以共享對稱秘鑰也是固定不變的。為了增強安全性,最好的方式是每次交互都生成一個臨時的共享對稱秘鑰。那麼如何才能在每次交互過程中生成一個隨機的對稱秘鑰,且不需要傳輸呢?
那麼如何生成隨機的共享秘鑰進行加密呢?
對於發送方A節點,在每次發送時,都生成一個臨時非對稱秘鑰對,然後根據B節點的公鑰 和 臨時的非對稱私鑰 可以計算出一個對稱秘鑰(KA演算法-Key Agreement)。然後利用該對稱秘鑰對數據進行加密,針對共享秘鑰這里的流程如下:
對於B節點,當接收到傳輸過來的數據時,解析出其中A節點的隨機公鑰,之後利用A節點的隨機公鑰 與 B節點自身的私鑰 計算出對稱秘鑰(KA演算法)。之後利用對稱秘鑰機密數據。
對於以上加密方式,其實仍然存在很多問題,比如如何避免重放攻擊(在消息中加入 Nonce ),再比如彩虹表(參考 KDF機制解決 )之類的問題。由於時間及能力有限,故暫時忽略。
那麼究竟應該採用何種加密呢?
主要還是基於要傳輸的數據的安全等級來考量。不重要的數據其實做好認證和簽名就可以,但是很重要的數據就需要採用安全等級比較高的加密方案了。
密碼套件 是一個網路協議的概念。其中主要包括身份認證、加密、消息認證(MAC)、秘鑰交換的演算法組成。
在整個網路的傳輸過程中,根據密碼套件主要分如下幾大類演算法:
秘鑰交換演算法:比如ECDHE、RSA。主要用於客戶端和服務端握手時如何進行身份驗證。
消息認證演算法:比如SHA1、SHA2、SHA3。主要用於消息摘要。
批量加密演算法:比如AES, 主要用於加密信息流。
偽隨機數演算法:例如TLS 1.2的偽隨機函數使用MAC演算法的散列函數來創建一個 主密鑰 ——連接雙方共享的一個48位元組的私鑰。主密鑰在創建會話密鑰(例如創建MAC)時作為一個熵來源。
在網路中,一次消息的傳輸一般需要在如下4個階段分別進行加密,才能保證消息安全、可靠的傳輸。
握手/網路協商階段:
在雙方進行握手階段,需要進行鏈接的協商。主要的加密演算法包括RSA、DH、ECDH等
身份認證階段:
身份認證階段,需要確定發送的消息的來源來源。主要採用的加密方式包括RSA、DSA、ECDSA(ECC加密,DSA簽名)等。
消息加密階段:
消息加密指對發送的信息流進行加密。主要採用的加密方式包括DES、RC4、AES等。
消息身份認證階段/防篡改階段:
主要是保證消息在傳輸過程中確保沒有被篡改過。主要的加密方式包括MD5、SHA1、SHA2、SHA3等。
ECC :Elliptic Curves Cryptography,橢圓曲線密碼編碼學。是一種根據橢圓上點倍積生成 公鑰、私鑰的演算法。用於生成公私秘鑰。
ECDSA :用於數字簽名,是一種數字簽名演算法。一種有效的數字簽名使接收者有理由相信消息是由已知的發送者創建的,從而發送者不能否認已經發送了消息(身份驗證和不可否認),並且消息在運輸過程中沒有改變。ECDSA簽名演算法是ECC與DSA的結合,整個簽名過程與DSA類似,所不一樣的是簽名中採取的演算法為ECC,最後簽名出來的值也是分為r,s。 主要用於身份認證階段 。
ECDH :也是基於ECC演算法的霍夫曼樹秘鑰,通過ECDH,雙方可以在不共享任何秘密的前提下協商出一個共享秘密,並且是這種共享秘鑰是為當前的通信暫時性的隨機生成的,通信一旦中斷秘鑰就消失。 主要用於握手磋商階段。
ECIES: 是一種集成加密方案,也可稱為一種混合加密方案,它提供了對所選擇的明文和選擇的密碼文本攻擊的語義安全性。ECIES可以使用不同類型的函數:秘鑰協商函數(KA),秘鑰推導函數(KDF),對稱加密方案(ENC),哈希函數(HASH), H-MAC函數(MAC)。
ECC 是橢圓加密演算法,主要講述了按照公私鑰怎麼在橢圓上產生,並且不可逆。 ECDSA 則主要是採用ECC演算法怎麼來做簽名, ECDH 則是採用ECC演算法怎麼生成對稱秘鑰。以上三者都是對ECC加密演算法的應用。而現實場景中,我們往往會採用混合加密(對稱加密,非對稱加密結合使用,簽名技術等一起使用)。 ECIES 就是底層利用ECC演算法提供的一套集成(混合)加密方案。其中包括了非對稱加密,對稱加密和簽名的功能。
<meta charset="utf-8">
這個先訂條件是為了保證曲線不包含奇點。
所以,隨著曲線參數a和b的不斷變化,曲線也呈現出了不同的形狀。比如:
所有的非對稱加密的基本原理基本都是基於一個公式 K = k G。其中K代表公鑰,k代表私鑰,G代表某一個選取的基點。非對稱加密的演算法 就是要保證 該公式 不可進行逆運算( 也就是說G/K是無法計算的 )。 *
ECC是如何計算出公私鑰呢?這里我按照我自己的理解來描述。
我理解,ECC的核心思想就是:選擇曲線上的一個基點G,之後隨機在ECC曲線上取一個點k(作為私鑰),然後根據k G計算出我們的公鑰K。並且保證公鑰K也要在曲線上。*
那麼k G怎麼計算呢?如何計算k G才能保證最後的結果不可逆呢?這就是ECC演算法要解決的。
首先,我們先隨便選擇一條ECC曲線,a = -3, b = 7 得到如下曲線:
在這個曲線上,我隨機選取兩個點,這兩個點的乘法怎麼算呢?我們可以簡化下問題,乘法是都可以用加法表示的,比如2 2 = 2+2,3 5 = 5+5+5。 那麼我們只要能在曲線上計算出加法,理論上就能算乘法。所以,只要能在這個曲線上進行加法計算,理論上就可以來計算乘法,理論上也就可以計算k*G這種表達式的值。
曲線上兩點的加法又怎麼算呢?這里ECC為了保證不可逆性,在曲線上自定義了加法體系。
現實中,1+1=2,2+2=4,但在ECC演算法里,我們理解的這種加法體系是不可能。故需要自定義一套適用於該曲線的加法體系。
ECC定義,在圖形中隨機找一條直線,與ECC曲線相交於三個點(也有可能是兩個點),這三點分別是P、Q、R。
那麼P+Q+R = 0。其中0 不是坐標軸上的0點,而是ECC中的無窮遠點。也就是說定義了無窮遠點為0點。
同樣,我們就能得出 P+Q = -R。 由於R 與-R是關於X軸對稱的,所以我們就能在曲線上找到其坐標。
P+R+Q = 0, 故P+R = -Q , 如上圖。
以上就描述了ECC曲線的世界裡是如何進行加法運算的。
從上圖可看出,直線與曲線只有兩個交點,也就是說 直線是曲線的切線。此時P,R 重合了。
也就是P = R, 根據上述ECC的加法體系,P+R+Q = 0, 就可以得出 P+R+Q = 2P+Q = 2R+Q=0
於是乎得到 2 P = -Q (是不是與我們非對稱演算法的公式 K = k G 越來越近了)。
於是我們得出一個結論,可以算乘法,不過只有在切點的時候才能算乘法,而且只能算2的乘法。
假若 2 可以變成任意個數進行想乘,那麼就能代表在ECC曲線里可以進行乘法運算,那麼ECC演算法就能滿足非對稱加密演算法的要求了。
那麼我們是不是可以隨機任何一個數的乘法都可以算呢? 答案是肯定的。 也就是點倍積 計算方式。
選一個隨機數 k, 那麼k * P等於多少呢?
我們知道在計算機的世界裡,所有的都是二進制的,ECC既然能算2的乘法,那麼我們可以將隨機數k描 述成二進制然後計算。假若k = 151 = 10010111
由於2 P = -Q 所以 這樣就計算出了k P。 這就是點倍積演算法 。所以在ECC的曲線體系下是可以來計算乘法,那麼以為這非對稱加密的方式是可行的。
至於為什麼這樣計算 是不可逆的。這需要大量的推演,我也不了解。但是我覺得可以這樣理解:
我們的手錶上,一般都有時間刻度。現在如果把1990年01月01日0點0分0秒作為起始點,如果告訴你至起始點為止時間流逝了 整1年,那麼我們是可以計算出現在的時間的,也就是能在手錶上將時分秒指針應該指向00:00:00。但是反過來,我說現在手錶上的時分秒指針指向了00:00:00,你能告訴我至起始點算過了有幾年了么?
ECDSA簽名演算法和其他DSA、RSA基本相似,都是採用私鑰簽名,公鑰驗證。只不過演算法體系採用的是ECC的演算法。交互的雙方要採用同一套參數體系。簽名原理如下:
在曲線上選取一個無窮遠點為基點 G = (x,y)。隨機在曲線上取一點k 作為私鑰, K = k*G 計算出公鑰。
簽名過程:
生成隨機數R, 計算出RG.
根據隨機數R,消息M的HASH值H,以及私鑰k, 計算出簽名S = (H+kx)/R.
將消息M,RG,S發送給接收方。
簽名驗證過程:
接收到消息M, RG,S
根據消息計算出HASH值H
根據發送方的公鑰K,計算 HG/S + xK/S, 將計算的結果與 RG比較。如果相等則驗證成功。
公式推論:
HG/S + xK/S = HG/S + x(kG)/S = (H+xk)/GS = RG
在介紹原理前,說明一下ECC是滿足結合律和交換律的,也就是說A+B+C = A+C+B = (A+C)+B。
這里舉一個WIKI上的例子說明如何生成共享秘鑰,也可以參考 Alice And Bob 的例子。
Alice 與Bob 要進行通信,雙方前提都是基於 同一參數體系的ECC生成的 公鑰和私鑰。所以有ECC有共同的基點G。
生成秘鑰階段:
Alice 採用公鑰演算法 KA = ka * G ,生成了公鑰KA和私鑰ka, 並公開公鑰KA。
Bob 採用公鑰演算法 KB = kb * G ,生成了公鑰KB和私鑰 kb, 並公開公鑰KB。
計算ECDH階段:
Alice 利用計算公式 Q = ka * KB 計算出一個秘鑰Q。
Bob 利用計算公式 Q' = kb * KA 計算出一個秘鑰Q'。
共享秘鑰驗證:
Q = ka KB = ka * kb * G = ka * G * kb = KA * kb = kb * KA = Q'
故 雙方分別計算出的共享秘鑰不需要進行公開就可採用Q進行加密。我們將Q稱為共享秘鑰。
在以太坊中,採用的ECIEC的加密套件中的其他內容:
1、其中HASH演算法採用的是最安全的SHA3演算法 Keccak 。
2、簽名演算法採用的是 ECDSA
3、認證方式採用的是 H-MAC
4、ECC的參數體系採用了secp256k1, 其他參數體系 參考這里
H-MAC 全程叫做 Hash-based Message Authentication Code. 其模型如下:
在 以太坊 的 UDP通信時(RPC通信加密方式不同),則採用了以上的實現方式,並擴展化了。
首先,以太坊的UDP通信的結構如下:
其中,sig是 經過 私鑰加密的簽名信息。mac是可以理解為整個消息的摘要, ptype是消息的事件類型,data則是經過RLP編碼後的傳輸數據。
其UDP的整個的加密,認證,簽名模型如下: