區塊鏈演算法關系
❶ 人工智慧和區塊鏈有什麼關系
最近幾年區塊鏈和人工智慧一直很熱門
首先區塊鏈是建立去中心化的網路,所謂的去中心化,就是說這個網路不屬於你也不屬於我。
它屬於所有人。
而人工智慧是指研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。也就是說,「機器的自我學習」
這樣一來我們就可以思考區塊鏈與人工智慧的結合了。
首先我們要了解到,區塊鏈目前可以簡單的分為三個階段。
而在前三個階段中,都存在著:無法正真實現去中心化 、低擴展性、出塊者獲得的激勵與全網的最佳收益不匹配、 網路總是以最大容量運行等問題。嚴重的浪費資源並降低效率。
那麼我們是不是可以將人工智慧結合到底層公鏈技術當中,來解決這些問題呢?
答案是可以的!並且已經有團隊研發,並已經取得了一定的進度。
Velas 是一個通過人工智慧(AI)優化的神經網路來增強 其共識演算法,進行自我學習和自我優化的公鏈,致力於提高轉賬過程以及智能合約的 安全性、互操作性、和高度可擴展性。 Velas 採用通過 AI 增強的 DPoS 共識,在不 降低安全性和交易速度的情況下,完全實現去中心化。不光如此, AI 根據區塊鏈的需求選擇誰來抵押代幣 ;Velas 只在需要時出塊; 每 1 秒到每 2 分鍾之間 ;可擴展性(可擴展至 30,000 TPS) ; 區塊生產商是通過人工直覺選出的。
❷ 區塊鏈 --- 共識演算法
PoW演算法是一種防止分布式服務資源被濫用、拒絕服務攻擊的機制。它要求節點進行適量消耗時間和資源的復雜運算,並且其運算結果能被其他節點快速驗算,以耗用時間、能源做擔保,以確保服務與資源被真正的需求所使用。
PoW演算法中最基本的技術原理是使用哈希演算法。假設求哈希值Hash(r),若原始數據為r(raw),則運算結果為R(Result)。
R = Hash(r)
哈希函數Hash()的特性是,對於任意輸入值r,得出結果R,並且無法從R反推回r。當輸入的原始數據r變動1比特時,其結果R值完全改變。在比特幣的PoW演算法中,引入演算法難度d和隨機值n,得到以下公式:
Rd = Hash(r+n)
該公式要求在填入隨機值n的情況下,計算結果Rd的前d位元組必須為0。由於哈希函數結果的未知性,每個礦工都要做大量運算之後,才能得出正確結果,而算出結果廣播給全網之後,其他節點只需要進行一次哈希運算即可校驗。PoW演算法就是採用這種方式讓計算消耗資源,而校驗僅需一次。
PoS演算法要求節點驗證者必須質押一定的資金才有挖礦打包資格,並且區域鏈系統在選定打包節點時使用隨機的方式,當節點質押的資金越多時,其被選定打包區塊的概率越大。
POS模式下,每個幣每天產生1幣齡,比如你持有100個幣,總共持有了30天,那麼,此時你的幣齡就為3000。這個時候,如果你驗證了一個POS區塊,你的幣齡就會被清空為0,同時從區塊中獲得相對應的數字貨幣利息。
節點通過PoS演算法出塊的過程如下:普通的節點要成為出塊節點,首先要進行資產的質押,當輪到自己出塊時,打包區塊,然後向全網廣播,其他驗證節點將會校驗區塊的合法性。
DPoS演算法和PoS演算法相似,也採用股份和權益質押。
但不同的是,DPoS演算法採用委託質押的方式,類似於用全民選舉代表的方式選出N個超級節點記賬出塊。
選民把自己的選票投給某個節點,如果某個節點當選記賬節點,那麼該記賬節點往往在獲取出塊獎勵後,可以採用任意方式來回報自己的選民。
這N個記賬節點將輪流出塊,並且節點之間相互監督,如果其作惡,那麼會被扣除質押金。
通過信任少量的誠信節點,可以去除區塊簽名過程中不必要的步驟,提高了交易的速度。
拜占庭問題:
拜占庭是古代東羅馬帝國的首都,為了防禦在每塊封地都駐扎一支由單個將軍帶領的軍隊,將軍之間只能靠信差傳遞消息。在戰爭時,所有將軍必須達成共識,決定是否共同開戰。
但是,在軍隊內可能有叛徒,這些人將影響將軍們達成共識。拜占庭將軍問題是指在已知有將軍是叛徒的情況下,剩餘的將軍如何達成一致決策的問題。
BFT:
BFT即拜占庭容錯,拜占庭容錯技術是一類分布式計算領域的容錯技術。拜占庭假設是對現實世界的模型化,由於硬體錯誤、網路擁塞或中斷以及遭到惡意攻擊等原因,計算機和網路可能出現不可預料的行為。拜占庭容錯技術被設計用來處理這些異常行為,並滿足所要解決的問題的規范要求。
拜占庭容錯系統 :
發生故障的節點被稱為 拜占庭節點 ,而正常的節點即為 非拜占庭節點 。
假設分布式系統擁有n台節點,並假設整個系統拜占庭節點不超過m台(n ≥ 3m + 1),拜占庭容錯系統需要滿足如下兩個條件:
另外,拜占庭容錯系統需要達成如下兩個指標:
PBFT即實用拜占庭容錯演算法,解決了原始拜占庭容錯演算法效率不高的問題,演算法的時間復雜度是O(n^2),使得在實際系統應用中可以解決拜占庭容錯問題
PBFT是一種狀態機副本復制演算法,所有的副本在一個視圖(view)輪換的過程中操作,主節點通過視圖編號以及節點數集合來確定,即:主節點 p = v mod |R|。v:視圖編號,|R|節點個數,p:主節點編號。
PBFT演算法的共識過程如下:客戶端(Client)發起消息請求(request),並廣播轉發至每一個副本節點(Replica),由其中一個主節點(Leader)發起提案消息pre-prepare,並廣播。其他節點獲取原始消息,在校驗完成後發送prepare消息。每個節點收到2f+1個prepare消息,即認為已經准備完畢,並發送commit消息。當節點收到2f+1個commit消息,客戶端收到f+1個相同的reply消息時,說明客戶端發起的請求已經達成全網共識。
具體流程如下 :
客戶端c向主節點p發送<REQUEST, o, t, c>請求。o: 請求的具體操作,t: 請求時客戶端追加的時間戳,c:客戶端標識。REQUEST: 包含消息內容m,以及消息摘要d(m)。客戶端對請求進行簽名。
主節點收到客戶端的請求,需要進行以下交驗:
a. 客戶端請求消息簽名是否正確。
非法請求丟棄。正確請求,分配一個編號n,編號n主要用於對客戶端的請求進行排序。然後廣播一條<<PRE-PREPARE, v, n, d>, m>消息給其他副本節點。v:視圖編號,d客戶端消息摘要,m消息內容。<PRE-PREPARE, v, n, d>進行主節點簽名。n是要在某一個范圍區間內的[h, H],具體原因參見 垃圾回收 章節。
副本節點i收到主節點的PRE-PREPARE消息,需要進行以下交驗:
a. 主節點PRE-PREPARE消息簽名是否正確。
b. 當前副本節點是否已經收到了一條在同一v下並且編號也是n,但是簽名不同的PRE-PREPARE信息。
c. d與m的摘要是否一致。
d. n是否在區間[h, H]內。
非法請求丟棄。正確請求,副本節點i向其他節點包括主節點發送一條<PREPARE, v, n, d, i>消息, v, n, d, m與上述PRE-PREPARE消息內容相同,i是當前副本節點編號。<PREPARE, v, n, d, i>進行副本節點i的簽名。記錄PRE-PREPARE和PREPARE消息到log中,用於View Change過程中恢復未完成的請求操作。
主節點和副本節點收到PREPARE消息,需要進行以下交驗:
a. 副本節點PREPARE消息簽名是否正確。
b. 當前副本節點是否已經收到了同一視圖v下的n。
c. n是否在區間[h, H]內。
d. d是否和當前已收到PRE-PPREPARE中的d相同
非法請求丟棄。如果副本節點i收到了2f+1個驗證通過的PREPARE消息,則向其他節點包括主節點發送一條<COMMIT, v, n, d, i>消息,v, n, d, i與上述PREPARE消息內容相同。<COMMIT, v, n, d, i>進行副本節點i的簽名。記錄COMMIT消息到日誌中,用於View Change過程中恢復未完成的請求操作。記錄其他副本節點發送的PREPARE消息到log中。
主節點和副本節點收到COMMIT消息,需要進行以下交驗:
a. 副本節點COMMIT消息簽名是否正確。
b. 當前副本節點是否已經收到了同一視圖v下的n。
c. d與m的摘要是否一致。
d. n是否在區間[h, H]內。
非法請求丟棄。如果副本節點i收到了2f+1個驗證通過的COMMIT消息,說明當前網路中的大部分節點已經達成共識,運行客戶端的請求操作o,並返回<REPLY, v, t, c, i, r>給客戶端,r:是請求操作結果,客戶端如果收到f+1個相同的REPLY消息,說明客戶端發起的請求已經達成全網共識,否則客戶端需要判斷是否重新發送請求給主節點。記錄其他副本節點發送的COMMIT消息到log中。
如果主節點作惡,它可能會給不同的請求編上相同的序號,或者不去分配序號,或者讓相鄰的序號不連續。備份節點應當有職責來主動檢查這些序號的合法性。
如果主節點掉線或者作惡不廣播客戶端的請求,客戶端設置超時機制,超時的話,向所有副本節點廣播請求消息。副本節點檢測出主節點作惡或者下線,發起View Change協議。
View Change協議 :
副本節點向其他節點廣播<VIEW-CHANGE, v+1, n, C , P , i>消息。n是最新的stable checkpoint的編號, C 是 2f+1驗證過的CheckPoint消息集合, P 是當前副本節點未完成的請求的PRE-PREPARE和PREPARE消息集合。
當主節點p = v + 1 mod |R|收到 2f 個有效的VIEW-CHANGE消息後,向其他節點廣播<NEW-VIEW, v+1, V , O >消息。 V 是有效的VIEW-CHANGE消息集合。 O 是主節點重新發起的未經完成的PRE-PREPARE消息集合。PRE-PREPARE消息集合的選取規則:
副本節點收到主節點的NEW-VIEW消息,驗證有效性,有效的話,進入v+1狀態,並且開始 O 中的PRE-PREPARE消息處理流程。
在上述演算法流程中,為了確保在View Change的過程中,能夠恢復先前的請求,每一個副本節點都記錄一些消息到本地的log中,當執行請求後副本節點需要把之前該請求的記錄消息清除掉。
最簡單的做法是在Reply消息後,再執行一次當前狀態的共識同步,這樣做的成本比較高,因此可以在執行完多條請求K(例如:100條)後執行一次狀態同步。這個狀態同步消息就是CheckPoint消息。
副本節點i發送<CheckPoint, n, d, i>給其他節點,n是當前節點所保留的最後一個視圖請求編號,d是對當前狀態的一個摘要,該CheckPoint消息記錄到log中。如果副本節點i收到了2f+1個驗證過的CheckPoint消息,則清除先前日誌中的消息,並以n作為當前一個stable checkpoint。
這是理想情況,實際上當副本節點i向其他節點發出CheckPoint消息後,其他節點還沒有完成K條請求,所以不會立即對i的請求作出響應,它還會按照自己的節奏,向前行進,但此時發出的CheckPoint並未形成stable。
為了防止i的處理請求過快,設置一個上文提到的 高低水位區間[h, H] 來解決這個問題。低水位h等於上一個stable checkpoint的編號,高水位H = h + L,其中L是我們指定的數值,等於checkpoint周期處理請求數K的整數倍,可以設置為L = 2K。當副本節點i處理請求超過高水位H時,此時就會停止腳步,等待stable checkpoint發生變化,再繼續前進。
在區塊鏈場景中,一般適合於對強一致性有要求的私有鏈和聯盟鏈場景。例如,在IBM主導的區塊鏈超級賬本項目中,PBFT是一個可選的共識協議。在Hyperledger的Fabric項目中,共識模塊被設計成可插拔的模塊,支持像PBFT、Raft等共識演算法。
Raft基於領導者驅動的共識模型,其中將選舉一位傑出的領導者(Leader),而該Leader將完全負責管理集群,Leader負責管理Raft集群的所有節點之間的復制日誌。
下圖中,將在啟動過程中選擇集群的Leader(S1),並為來自客戶端的所有命令/請求提供服務。 Raft集群中的所有節點都維護一個分布式日誌(復制日誌)以存儲和提交由客戶端發出的命令(日誌條目)。 Leader接受來自客戶端的日誌條目,並在Raft集群中的所有關注者(S2,S3,S4,S5)之間復制它們。
在Raft集群中,需要滿足最少數量的節點才能提供預期的級別共識保證, 這也稱為法定人數。 在Raft集群中執行操作所需的最少投票數為 (N / 2 +1) ,其中N是組中成員總數,即 投票至少超過一半 ,這也就是為什麼集群節點通常為奇數的原因。 因此,在上面的示例中,我們至少需要3個節點才能具有共識保證。
如果法定仲裁節點由於任何原因不可用,也就是投票沒有超過半數,則此次協商沒有達成一致,並且無法提交新日誌。
數據存儲:Tidb/TiKV
日誌:阿里巴巴的 DLedger
服務發現:Consul& etcd
集群調度:HashiCorp Nomad
只能容納故障節點(CFT),不容納作惡節點
順序投票,只能串列apply,因此高並發場景下性能差
Raft通過解決圍繞Leader選舉的三個主要子問題,管理分布式日誌和演算法的安全性功能來解決分布式共識問題。
當我們啟動一個新的Raft集群或某個領導者不可用時,將通過集群中所有成員節點之間協商來選舉一個新的領導者。 因此,在給定的實例中,Raft集群的節點可以處於以下任何狀態: 追隨者(Follower),候選人(Candidate)或領導者(Leader)。
系統剛開始啟動的時候,所有節點都是follower,在一段時間內如果它們沒有收到Leader的心跳信號,follower就會轉化為Candidate;
如果某個Candidate節點收到大多數節點的票,則這個Candidate就可以轉化為Leader,其餘的Candidate節點都會回到Follower狀態;
一旦一個Leader發現系統中存在一個Leader節點比自己擁有更高的任期(Term),它就會轉換為Follower。
Raft使用基於心跳的RPC機制來檢測何時開始新的選舉。 在正常期間, Leader 會定期向所有可用的 Follower 發送心跳消息(實際中可能把日誌和心跳一起發過去)。 因此,其他節點以 Follower 狀態啟動,只要它從當前 Leader 那裡收到周期性的心跳,就一直保持在 Follower 狀態。
當 Follower 達到其超時時間時,它將通過以下方式啟動選舉程序:
根據 Candidate 從集群中其他節點收到的響應,可以得出選舉的三個結果。
共識演算法的實現一般是基於復制狀態機(Replicated state machines),何為 復制狀態機 :
簡單來說: 相同的初識狀態 + 相同的輸入 = 相同的結束狀態 。不同節點要以相同且確定性的函數來處理輸入,而不要引入一下不確定的值,比如本地時間等。使用replicated log是一個很不錯的注意,log具有持久化、保序的特點,是大多數分布式系統的基石。
有了Leader之後,客戶端所有並發的請求可以在Leader這邊形成一個有序的日誌(狀態)序列,以此來表示這些請求的先後處理順序。Leader然後將自己的日誌序列發送Follower,保持整個系統的全局一致性。注意並不是強一致性,而是 最終一致性 。
日誌由有序編號(log index)的日誌條目組成。每個日誌條目包含它被創建時的任期號(term),和日誌中包含的數據組成,日誌包含的數據可以為任何類型,從簡單類型到區塊鏈的區塊。每個日誌條目可以用[ term, index, data]序列對表示,其中term表示任期, index表示索引號,data表示日誌數據。
Leader 嘗試在集群中的大多數節點上執行復制命令。 如果復製成功,則將命令提交給集群,並將響應發送回客戶端。類似兩階段提交(2PC),不過與2PC的區別在於,leader只需要超過一半節點同意(處於工作狀態)即可。
leader 、 follower 都可能crash,那麼 follower 維護的日誌與 leader 相比可能出現以下情況
當出現了leader與follower不一致的情況,leader強制follower復制自己的log, Leader會從後往前試 ,每次AppendEntries失敗後嘗試前一個日誌條目(遞減nextIndex值), 直到成功找到每個Follower的日誌一致位置點(基於上述的兩條保證),然後向後逐條覆蓋Followers在該位置之後的條目 。所以丟失的或者多出來的條目可能會持續多個任期。
要求候選人的日誌至少與其他節點一樣最新。如果不是,則跟隨者節點將不投票給候選者。
意味著每個提交的條目都必須存在於這些伺服器中的至少一個中。如果候選人的日誌至少與該多數日誌中的其他日誌一樣最新,則它將保存所有已提交的條目,避免了日誌回滾事件的發生。
即任一任期內最多一個leader被選出。這一點非常重要,在一個復制集中任何時刻只能有一個leader。系統中同時有多餘一個leader,被稱之為腦裂(brain split),這是非常嚴重的問題,會導致數據的覆蓋丟失。在raft中,兩點保證了這個屬性:
因此, 某一任期內一定只有一個leader 。
當集群中節點的狀態發生變化(集群配置發生變化)時,系統容易受到系統故障。 因此,為防止這種情況,Raft使用了一種稱為兩階段的方法來更改集群成員身份。 因此,在這種方法中,集群在實現新的成員身份配置之前首先更改為中間狀態(稱為聯合共識)。 聯合共識使系統即使在配置之間進行轉換時也可用於響應客戶端請求,它的主要目的是提升分布式系統的可用性。
❸ 分布式與區塊鏈之間的關系分析
關於區塊鏈技術的探討我們在前幾期的文章中已經說過很多次了,而且也給大家介紹了使用哪些編程開發語言來實現對區塊告洞悉鏈技術的具現化,今天我們就一起來了解一下,如何從分布式的角度來分析理解區塊鏈的構造。
區塊鏈是源於比特幣中的底層技術,用於實現一個無中心的點對點現金系統,因為沒有中心機構的參與,比特幣以區塊鏈的形式來組織交易數據,防止「雙花」,達成交易共識。
傳統意義上的數字資產,比如游戲幣,是以集中式的方式管理的,僅能在單個系統中流轉,由某個中心化機構負責協調,通常以資料庫的方式來存儲。宏觀上看,區塊鏈和資料庫一樣,都是用來保存數據,只是數據存取襪乎的形式有所不同。
區塊鏈本質上是一個異地多活的分布式資料庫。異地多活的提出,原本是為了在解決系統的容災問題,多年來也一直是分布式資料庫領域在探索的方向,但鮮有成效,因為異地多活需要解決數據沖突的問題,這個問題其實不好解決。然而誕生於比特幣的區塊鏈以一種全新的方式實現了全球大的異地多活資料庫,它完全開放,沒有邊界,支持上萬節點並可隨機的加入和退出。
在區塊鏈中數據沖突問題就更加突出了,區塊鏈里每個節點是完全對等的多活架構,上萬個節點要達成一致,數據以誰為准呢?比特幣採用的方式是POW,大家來算一個謎題,誰先算出來,就擁有記賬權,在這個周期,就以他所記的賬為准,下一個周期大家重新計算。爭奪記賬權的節點決定將哪些顫陸交易打包進區塊,並將區塊同步給其他節點,其他節點仍然需要基於本地數據對區塊中的交易做驗證,並不像資料庫的主從節點間那樣無條件接受,這就是區塊鏈里的共識演算法。POW雖然消耗大量算力,好處是在爭奪記賬權的過程中POW只要在自身節點中計算hash,不需要經過網路投票來選舉,網路通信的代價小,適合大規模節點之間共識。沙河電腦培訓認為POW是目前公有鏈里完備簡單粗暴做法,經得起考驗,但問題是效率太低。
所以後面發展出了PoS、DPoS,誰擁有資產多,誰就擁有記賬權,或者大家投票,但這樣又引入了經濟學方面的問題,比如所謂的賄選的問題,這就不太好控制了。在傳統分布式資料庫里,不叫共識演算法,而叫一致性演算法,本質上也是一回事。但分布式資料庫里一般節點數都很少,而且網路是可信的,通常節點都是安全可靠的,我們基本上可以相信每一個節點,即使它出現故障,不給應答,但絕對不會給出假應答。所以在傳統公司分布式數據里,都用Raft或Paxos協議去做這種一致性演算法。
❹ 區塊鏈和數字人民幣的關系有什麼
1、我國數字人民幣僅借鑒了區塊鏈技術
數字人民幣具有可追溯性、不可篡改性這些與區塊鏈技術相同的特徵,但數字人民幣僅是借鑒了區塊鏈技術。作為法定貨幣,數字人民幣的主要特徵之一為中心化的管理模式,而區塊鏈的核心特徵之一為去中心化。
發行了依託於區塊鏈技術的數字貨幣國家有伊朗、厄瓜多、烏拉圭、塞內加爾、等,但這些數字貨幣沒有流行起來。2020年9月,歐洲主要中央銀行的高管表示,全球范圍內的中央銀行如果想要發行央行數字貨幣,其實並不需要使用區塊鏈技術,在央行數字貨幣情況下,中央銀行提供了「信任」,因此當中央銀行介入之後就沒有使用區塊鏈技術的必要了。
在金融領域,目前區塊鏈技術在數字貨幣、支付清算、數字票據、銀行徵信管理等方面得到了實驗性或小范圍應用。
2、數字人民幣系統框架的核心要素為「一幣,兩庫,三中心」
根據《中國法定數字貨幣原型構想》的闡述,數字人民幣系統框架的核心要素為「一幣,兩庫,三中心」。其中,「一幣」指央行數字貨幣;「兩庫」指的是數字貨幣發行庫(存放央行數字貨幣發行基金的資料庫)和數字貨幣銀行庫(商業銀行存放央行數字貨幣的資料庫);「三中心」指的是認證中心(負責身份信息管理)、登記中心(負責數字貨幣權屬登記)與大數據發行中心(負責對反洗錢、支付行為等分析)。
3、區塊鏈的特徵為分布式、去中心化
數字人民幣經常會被使用區塊鏈技術對的加密貨幣比特幣、以太坊等相比較。廣義來講,區塊鏈技術是利用塊鏈式數據結構來驗證與存儲數據、利用分布式節點共識演算法來生成和更新數據、利用密碼學的方式保證數據傳輸和訪問的安全、利用由自動化腳本代碼組成的智能合約來編程和操作數據的一種全新的分布式基礎架構與計算方式。
❺ 區塊鏈DNA中的兩種演算法分別是
X鏈和Y鏈。
這里引入兩條鏈,(事實上並不存在鏈)這兩條也滿足DNA雙鏈的對應關系。
為了研究的方便,將這兩條鏈分別記作X鏈,和Y鏈,Y鏈負責記錄交易信息。X負責校驗Y鏈記錄的正確性。X鏈和Y鏈之間存在一定的關系。
定義X鏈上的第一個區塊數據。Stringdata="IloveMaxwell",令M=hash(data,10),M是十進制數表示的data的hash值。查找素數表找到一個素數P使得最小。
❻ 區塊鏈技術的六大核心演算法
區塊鏈技術的六大核心演算法
區塊鏈核心演算法一:拜占庭協定
拜占庭的故事大概是這么說的:拜占庭帝國擁有巨大的財富,周圍10個鄰邦垂誕已久,但拜占庭高牆聳立,固若金湯,沒有一個單獨的鄰邦能夠成功入侵。任何單個鄰邦入侵的都會失敗,同時也有可能自身被其他9個鄰邦入侵。拜占庭帝國防禦能力如此之強,至少要有十個鄰邦中的一半以上同時進攻,才有可能攻破。然而,如果其中的一個或者幾個鄰邦本身答應好一起進攻,但實際過程出現背叛,那麼入侵者可能都會被殲滅。於是每一方都小心行事,不敢輕易相信鄰國。這就是拜占庭將軍問題。
在這個分布式網路里:每個將軍都有一份實時與其他將軍同步的消息賬本。賬本里有每個將軍的簽名都是可以驗證身份的。如果有哪些消息不一致,可以知道消息不一致的是哪些將軍。盡管有消息不一致的,只要超過半數同意進攻,少數服從多數,共識達成。
由此,在一個分布式的系統中,盡管有壞人,壞人可以做任意事情(不受protocol限制),比如不響應、發送錯誤信息、對不同節點發送不同決定、不同錯誤節點聯合起來干壞事等等。但是,只要大多數人是好人,就完全有可能去中心化地實現共識
區塊鏈核心演算法二:非對稱加密技術
在上述拜占庭協定中,如果10個將軍中的幾個同時發起消息,勢必會造成系統的混亂,造成各說各的攻擊時間方案,行動難以一致。誰都可以發起進攻的信息,但由誰來發出呢?其實這只要加入一個成本就可以了,即:一段時間內只有一個節點可以傳播信息。當某個節點發出統一進攻的消息後,各個節點收到發起者的消息必須簽名蓋章,確認各自的身份。
在如今看來,非對稱加密技術完全可以解決這個簽名問題。非對稱加密演算法的加密和解密使用不同的兩個密鑰.這兩個密鑰就是我們經常聽到的」公鑰」和」私鑰」。公鑰和私鑰一般成對出現, 如果消息使用公鑰加密,那麼需要該公鑰對應的私鑰才能解密; 同樣,如果消息使用私鑰加密,那麼需要該私鑰對應的公鑰才能解密。
區塊鏈核心演算法三:容錯問題
我們假設在此網路中,消息可能會丟失、損壞、延遲、重復發送,並且接受的順序與發送的順序不一致。此外,節點的行為可以是任意的:可以隨時加入、退出網路,可以丟棄消息、偽造消息、停止工作等,還可能發生各種人為或非人為的故障。我們的演算法對由共識節點組成的共識系統,提供的容錯能力,這種容錯能力同時包含安全性和可用性,並適用於任何網路環境。
區塊鏈核心演算法四:Paxos 演算法(一致性演算法)
Paxos演算法解決的問題是一個分布式系統如何就某個值(決議)達成一致。一個典型的場景是,在一個分布式資料庫系統中,如果各節點的初始狀態一致,每個節點都執行相同的操作序列,那麼他們最後能得到一個一致的狀態。為保證每個節點執行相同的命令序列,需要在每一條指令上執行一個「一致性演算法」以保證每個節點看到的指令一致。一個通用的一致性演算法可以應用在許多場景中,是分布式計算中的重要問題。節點通信存在兩種模型:共享內存和消息傳遞。Paxos演算法就是一種基於消息傳遞模型的一致性演算法。
區塊鏈核心演算法五:共識機制
區塊鏈共識演算法主要是工作量證明和權益證明。拿比特幣來說,其實從技術角度來看可以把PoW看做重復使用的Hashcash,生成工作量證明在概率上來說是一個隨機的過程。開采新的機密貨幣,生成區塊時,必須得到所有參與者的同意,那礦工必須得到區塊中所有數據的PoW工作證明。與此同時礦工還要時時觀察調整這項工作的難度,因為對網路要求是平均每10分鍾生成一個區塊。
區塊鏈核心演算法六:分布式存儲
分布式存儲是一種數據存儲技術,通過網路使用每台機器上的磁碟空間,並將這些分散的存儲資源構成一個虛擬的存儲設備,數據分散的存儲在網路中的各個角落。所以,分布式存儲技術並不是每台電腦都存放完整的數據,而是把數據切割後存放在不同的電腦里。就像存放100個雞蛋,不是放在同一個籃子里,而是分開放在不同的地方,加起來的總和是100個。
❼ 數字貨幣與區塊鏈的關系
1、區塊鏈和數字貨幣相輔相成,密不可分,區塊鏈是數字貨幣流通的手段之一。
2、區塊鏈是數字貨幣的理論基礎,數字貨幣是在區塊鏈技術手段基礎上建立起來的,區塊鏈對數字貨幣的安全性有一定的保證,同時數字貨幣是區塊鏈技術最成功的應用。
拓展資料:1、數字貨幣是一種不受管制的、數字化的貨幣,通常由開發者發行和管理,被特定虛擬社區的成員所接受和使用。歐洲銀行業管理局將虛擬貨幣定義為:價值的數字化表示,不由央行或當局發行,也不與法幣掛鉤,但由於被公眾所接受,所以可作為支付手段,也可以電子形式轉移、存儲或交易。
2、數字貨幣可以認為是一種基於節點網路和數字加密演算法的虛擬貨幣。數字貨幣的核心特徵主要體現了三個方面:①由於來自於某些開放的演算法,數字貨幣沒有發行主體,因此沒有任何人或機構能夠控制它的發行;②由於演算法解的數量確定,所以數字貨幣的總量固定,這從根本上消除了虛擬貨幣濫發導致通貨膨脹的可能;③由於交易過程需要網路中的各個節點的認可,因此數字貨幣的交易過程足夠安全。
3、區塊鏈共享價值體系首先被眾多的加密貨幣效仿,並在工作量證明上和演算法上進行了改進,如採用權益證明和SCrypt演算法。隨後,區塊鏈生態系統在全球不斷進化,出現了首次代幣發售ICO;智能合約區塊鏈以太坊;「輕所有權、重使用權」的資產代幣化共享經濟; 和區塊鏈國家。人們正在利用這一共享價值體系,在各行各業開發去中心化電腦程序,在全球各地構建去中心化自主組織和去中心化自主社區。