區塊鏈拜占廷演算法
Ⅰ 區塊鏈有幾種共識演算法
Ripple Consensus(瑞波共識演算法)
使一組節點能夠基於特殊節點列表達成共識。初始特殊節點列表就像一個俱樂部,要接納一個新成員,必須由51%的該俱樂部會員投票通過。共識遵循這核心成員的51%權力,外部人員則沒有影響力。由於該俱樂部由「中心化」開始,它將一直是「中心化的」,而如果它開始腐化,股東們什麼也做不了。
5、PBFT:Practical Byzantine Fault Tolerance(實用拜占庭容錯演算法)
PBFT是一種狀態機副本復制演算法,即服務作為狀態機進行建模,狀態機在分布式系統的不同節點進行副本復制。每個狀態機的副本都保存了服務的狀態,同時也實現了服務的操作。將所有的副本組成的集合使用大寫字母R表示,使用0到|R|-1的整數表示每一個副本。為了描述方便,假設|R|=3f+1,這里f是有可能失效的副本的最大個數。盡管可以存在多於3f+1個副本,但是額外的副本除了降低性能之外不能提高可靠性。
PBFT演算法主要特點如下:客戶端向主節點發送請求調用服務操作;主節點通過廣播將請求發送給其他副本;所有副本都執行請求並將結果發回客戶端;客戶端需要等待f+1個不同副本節點發回相同的結果,作為整個操作的最終結果。
Ⅱ 區塊鏈技術中的分布式演算法的特點是什麼
重慶金窩窩分析:大數據的分析挖掘是數據密集型計算,需要巨大的分布式計算能力。節點管理、任務調度、容錯和高可靠性是關鍵技術。
Ⅲ 眾安區塊鏈的核心演算法是什麼有什麼特點
眾安鏈用的是帶權重的拜占庭容錯演算法,與傳統的工作量證明演算法相比,眾安鏈的演算法在出塊速度和共識效率上都有很大的提升。
Ⅳ 理論上區塊鏈怎麼解決拜占庭將軍問題
拜占庭將軍問題(以下簡稱「共識問題」)的正式表述是:如何在一個不基於信任的分布式網路中就信息達成共識?這個表述聽起來有些晦澀,但其本質並不復雜,下面的例子與共識問題雖然並不完全一致,但卻有助於我們的理解[9]。
想像一下在遙遠的拜占庭時代,有一個富饒的城邦,金銀珠寶綾羅綢緞應有盡有,它的領主哆啦A夢獨享著這一切奢華與榮耀。而在城邦的外圍,四位拜占庭將軍大雄、胖虎、小夫和靜香都覬覦著哆啦A夢的財富,於是他們決定聯手攻佔哆啦A夢的城邦。根據雙方的實力對比,必須有超過半數的將軍同時發起進攻方能克敵制勝,因此獲勝條件就是四人中至少三個人可以就進攻時間達成一致。那麼四位將軍的勝算有多少呢?
這個問題的答案就要取決於四個人的合作方式了,如果是集中式系統,有一個盟主,比如胖虎(相當於中央伺服器),那麼他們的勝利是毫無懸念的,因為就進攻時間達成一致非常簡單,只要胖虎召集大雄、小夫和靜香開個會討論一下就可以了,即使大家意見有分歧胖虎也可以在最後予以定奪。下面讓我們回到拜占庭將軍問題的假設里,在不基於信任的分布式網路中,四位將軍的勝算又如何呢?
?
首先由於四位將軍之間缺乏信任,因此聚到小黑屋裡開個密謀會的可能性被排除了(一旦在小黑屋裡被胖虎綁架了怎麼辦?);其次由於沒有盟主,四個人的意見都會被同等的看重。在這種情況下,四位將軍只能通過信使在各自營地之間傳遞消息,來商定進攻時間了。比如大雄覺得早上6點是發動進攻的好時機,他就會派信使將自己的意見告訴胖虎、小夫和靜香,與此同時,胖虎可能認為晚上9點發動突襲更好,小夫更喜歡下午3點出擊,而靜香希望是上午10點,他們三人也會在同一時間派出自己的信使。這樣一來,在第一輪通信結束後,四位將軍每個人都有了四個可供選擇的進攻時間,他們各自要在下一輪通信中把自己選定的時間告知另外三人。由於四個人的決策都是獨立做出的,因此最終的選擇結果就有256種可能,而只有當三人以上都恰好選擇了同一時間的時候,共識才被達成,而這樣的結果才64種,也就是說達成共識的概率僅為1/4。這還只是四位將軍的情況,如果將軍的人數是10人,100人,1000人呢?我們稍加計算就可以發現隨著人數的增加,達成共識的希望會變得越來越渺茫。
把上面例子中的將軍換成計算機網路中的節點,把信使換成節點之間的通信,把進攻時間換成需要達成共識的信息,你就可以理解共識問題所描述的困境了。達成共識的能力對於一個支付系統來說重要性不言而喻,如果你給家裡匯了一筆錢買車,第二天去銀行核實的時候櫃台告訴你「關於你匯了多少錢的問題,我們的系統里有三個版本的記錄」,這樣的銀行你顯然是不敢把錢存進去的。在比特幣出現之前共識問題是很難被完美解決的,要保證達成共識就需要採用集中式系統(除非節點滿足特定條件),要想去中心化共識就無法保證。那麼區塊鏈技術又是如何解決這一難題的呢?(關注公眾號weoption,回復「區塊鏈」,可查看全文。)
Ⅳ 剛剛了解,誰能告訴我區塊鏈是什麼通俗解釋一下區塊鏈技術的方法
大家共同記賬的方式,也被稱為「分布式」或「去中心化」,因為人人都記賬,且賬本的准確性由程式演算法決定,而非某個權威機構。
這就是區塊鏈,核心講完了,區塊鏈就這么簡單,一個共同記賬的賬本
區塊鏈技術六大核心演算法:
區塊鏈核心演算法一:拜占庭協定
拜占庭的故事大概是這么說的:拜占庭帝國擁有巨大的財富,周圍10個鄰邦垂誕已久,但拜占庭高牆聳立,固若金湯,沒有一個單獨的鄰邦能夠成功入侵。任何單個鄰邦入侵的都會失敗,同時也有可能自身被其他9個鄰邦入侵。拜占庭帝國防禦能力如此之強,至少要有十個鄰邦中的一半以上同時進攻,才有可能攻破。然而,如果其中的一個或者幾個鄰邦本身答應好一起進攻,但實際過程出現背叛,那麼入侵者可能都會被殲滅。於是每一方都小心行事,不敢輕易相信鄰國。這就是拜占庭將軍問題。
區塊鏈核心演算法二:非對稱加密技術
在上述拜占庭協定中,如果10個將軍中的幾個同時發起消息,勢必會造成系統的混亂,造成各說各的攻擊時間方案,行動難以一致。誰都可以發起進攻的信息,但由誰來發出呢?其實這只要加入一個成本就可以了,即:一段時間內只有一個節點可以傳播信息。當某個節點發出統一進攻的消息後,各個節點收到發起者的消息必須簽名蓋章,確認各自的身份。
區塊鏈核心演算法三:容錯問題
我們假設在此網路中,消息可能會丟失、損壞、延遲、重復發送,並且接受的順序與發送的順序不一致。此外,節點的行為可以是任意的:可以隨時加入、退出網路,可以丟棄消息、偽造消息、停止工作等,還可能發生各種人為或非人為的故障。我們的演算法對由共識節點組成的共識系統,提供的容錯能力,這種容錯能力同時包含安全性和可用性,並適用於任何網路環境。
區塊鏈核心演算法四:Paxos 演算法(一致性演算法)
Paxos演算法解決的問題是一個分布式系統如何就某個值(決議)達成一致。一個典型的場景是,在一個分布式資料庫系統中,如果各節點的初始狀態一致,每個節點都執行相同的操作序列,那麼他們最後能得到一個一致的狀態。為保證每個節點執行相同的命令序列,需要在每一條指令上執行一個「一致性演算法」以保證每個節點看到的指令一致。一個通用的一致性演算法可以應用在許多場景中,是分布式計算中的重要問題。 節點通信存在兩種模型:共享內存和消息傳遞。Paxos演算法就是一種基於消息傳遞模型的一致性演算法。
區塊鏈核心演算法五:共識機制
區塊鏈共識演算法主要是工作量證明和權益證明。拿比特幣來說,其實從技術角度來看可以把PoW看成重復使用的Hashcash,生成工作量證明在概率上來說是一個隨機的過程。開采新的機密貨幣,生成區塊時,必須得到所有參與者的同意,那礦工必須得到區塊中所有數據的PoW工作證明。與此同時礦工還要時時觀察調整這項工作的難度,因為對網路要求是平均每10分鍾生成一個區塊。
區塊鏈核心演算法六:分布式存儲是一種數據存儲技術,通過網路使用每台機器上的磁碟空間,並將這些分散的存儲資源構成一個虛擬的存儲設備,數據分散的存儲在網路中的各個角落。所以,分布式存儲技術並不是每台電腦都存放完整的數據,而是把數據切割後存放在不同的電腦里。就像存放100個雞蛋,不是放在同一個籃子里,而是分開放在不同的地方,加起來的總和是100個。想了解更多可以多利用網路搜索,網路搜索結果-小知識
Ⅵ 什麼是區塊鏈加密演算法
區塊鏈加密演算法(EncryptionAlgorithm)
非對稱加密演算法是一個函數,通過使用一個加密鑰匙,將原來的明文文件或數據轉化成一串不可讀的密文代碼。加密流程是不可逆的,只有持有對應的解密鑰匙才能將該加密信息解密成可閱讀的明文。加密使得私密數據可以在低風險的情況下,通過公共網路進行傳輸,並保護數據不被第三方竊取、閱讀。
區塊鏈技術的核心優勢是去中心化,能夠通過運用數據加密、時間戳、分布式共識和經濟激勵等手段,在節點無需互相信任的分布式系統中實現基於去中心化信用的點對點交易、協調與協作,從而為解決中心化機構普遍存在的高成本、低效率和數據存儲不安全等問題提供了解決方案。
區塊鏈的應用領域有數字貨幣、通證、金融、防偽溯源、隱私保護、供應鏈、娛樂等等,區塊鏈、比特幣的火爆,不少相關的top域名都被注冊,對域名行業產生了比較大的影響。
Ⅶ 以下哪個是目前區塊鏈項目的主流演算法
.top域名給你解答,比特幣是第一個區塊鏈應用,同時也是最著名的應用之一,它所使用的共識機制就是POW。
Ⅷ 區塊鏈中什麼是分布式共識演算法
重慶金窩窩分析分布式共識演算法:
區塊鏈系統利用分布式共識演算法來生成和更新數據,從技術層面杜絕了非法篡改數據的可能性,從而取代了傳統應用中保證信任和交易安全的第三方中介機構,降低了為維護信用而造成的時間成本、人力成本和資源耗用。
