當前位置:首頁 » 區塊鏈知識 » 區塊鏈加密演算法接收

區塊鏈加密演算法接收

發布時間: 2025-05-16 08:14:31

區塊鏈的加密技術

數字加密技能是區塊鏈技能使用和開展的關鍵。一旦加密辦法被破解,區塊鏈的數據安全性將受到挑戰,區塊鏈的可篡改性將不復存在。加密演算法分為對稱加密演算法和非對稱加密演算法。區塊鏈首要使用非對稱加密演算法。非對稱加密演算法中的公鑰暗碼體制依據其所依據的問題一般分為三類:大整數分化問題、離散對數問題和橢圓曲線問題。第一,引進區塊鏈加密技能加密演算法一般分為對稱加密和非對稱加密。非對稱加密是指集成到區塊鏈中以滿意安全要求和所有權驗證要求的加密技能。非對稱加密通常在加密和解密進程中使用兩個非對稱暗碼,稱為公鑰和私鑰。非對稱密鑰對有兩個特點:一是其間一個密鑰(公鑰或私鑰)加密信息後,只能解密另一個對應的密鑰。第二,公鑰可以向別人揭露,而私鑰是保密的,別人無法通過公鑰計算出相應的私鑰。非對稱加密一般分為三種首要類型:大整數分化問題、離散對數問題和橢圓曲線問題。大整數分化的問題類是指用兩個大素數的乘積作為加密數。由於素數的出現是沒有規律的,所以只能通過不斷的試算來尋找解決辦法。離散對數問題類是指基於離散對數的困難性和強單向哈希函數的一種非對稱分布式加密演算法。橢圓曲線是指使用平面橢圓曲線來計算一組非對稱的特殊值,比特幣就採用了這種加密演算法。非對稱加密技能在區塊鏈的使用場景首要包含信息加密、數字簽名和登錄認證。(1)在信息加密場景中,發送方(記為A)用接收方(記為B)的公鑰對信息進行加密後發送給

B,B用自己的私鑰對信息進行解密。比特幣交易的加密就屬於這種場景。(2)在數字簽名場景中,發送方A用自己的私鑰對信息進行加密並發送給B,B用A的公鑰對信息進行解密,然後確保信息是由A發送的。(3)登錄認證場景下,客戶端用私鑰加密登錄信息並發送給伺服器,伺服器再用客戶端的公鑰解密認證登錄信息。請注意上述三種加密計劃之間的差異:信息加密是公鑰加密和私鑰解密,確保信息的安全性;數字簽名是私鑰加密,公鑰解密,確保了數字簽名的歸屬。認證私鑰加密,公鑰解密。以比特幣體系為例,其非對稱加密機制如圖1所示:比特幣體系一般通過調用操作體系底層的隨機數生成器生成一個256位的隨機數作為私鑰。比特幣的私鑰總量大,遍歷所有私鑰空間獲取比特幣的私鑰極其困難,所以暗碼學是安全的。為便於辨認,256位二進制比特幣私鑰將通過SHA256哈希演算法和Base58進行轉化,構成50個字元長的私鑰,便於用戶辨認和書寫。比特幣的公鑰是私鑰通過Secp256k1橢圓曲線演算法生成的65位元組隨機數。公鑰可用於生成比特幣交易中使用的地址。生成進程是公鑰先通過SHA256和RIPEMD160哈希處理,生成20位元組的摘要成果(即Hash160的成果),再通過SHA256哈希演算法和Base58轉化,構成33個字元的比特幣地址。公鑰生成進程是不可逆的,即私鑰不能從公鑰推導出來。比特幣的公鑰和私鑰通常存儲在比特幣錢包文件中,其間私鑰最為重要。丟掉私鑰意味著丟掉相應地址的所有比特幣財物。在現有的比特幣和區塊鏈體系中,現已依據實踐使用需求衍生出多私鑰加密技能,以滿意多重簽名等愈加靈敏雜亂的場景。

㈡ 區塊鏈交易哈希是什麼,區塊鏈哈希

區塊鏈哈希演算法是什麼?

哈希演算法也被稱為「散列」,是區塊鏈的四大核心技術之一。是能計算出一個數字消息所對應的、長度固定的字元串(又稱消息摘要)的演算法。由於一段數據只有一個哈希值,所以哈希演算法可以用於檢驗數據的完整性。在快速查找和加密演算法的應用方面,哈希演算法的使用非常普遍。

在互聯網時代,盡管人與人之間的距離更近了,但是信任問題卻更嚴重了。現存的第三方中介組織的技術架構都是私密而且中心化的,這種模式永遠都無法從根本上解決互信以及價值轉移的問題。因此,區塊鏈技術將會利用去中心化的資料庫架構完成數據交互信任背書,實現全球互信的一大跨步。在這一過程中,哈希演算法發揮了重要作用。

散列演算法是區塊鏈中保證交易信息不被篡改的單向密碼機制。區塊鏈通過散列演算法對一個交易區塊中的交易進行加密,並把信息壓縮成由一串數字和字母組成的散列字元串。區塊鏈的散列值能夠唯一而准確地標識一個區塊。在驗證區塊的真實性時,只需要簡單計算出這個區塊的散列值,如果沒有變化就意味著這個區塊上的信息是沒有被篡改過的。

鏈喬教育在線旗下學碩創新區塊鏈技術工作站是中國教育部學校規劃建設發展中心開展的「智慧學習工場2020-學碩創新工作站」唯一獲準的「區塊鏈技術專業」試點工作站。專業站立足為學生提供多樣化成長路徑,推進專業學位研究生產學研結合培養模式改革,構建應用型、復合型人才培養體系。

區塊鏈中的哈希值是什麼意思?

如果你對區塊鏈領域有所了解,那麼你一定聽說過哈希值,或許我們在瀏覽區塊鏈信息時會經常看到哈希值,但是如果讓我們說說哈希值到底是什麼,可能我們也並不能說明白。我知到,雖然很多人都已經進入幣圈很久,但是對於區塊鏈領域的一些概念還處於一個一知半解,知道又不完全清楚的狀態。其實哈希就是一種壓縮信息的方法,我們可以通過哈希將很長的一段文字壓縮成一小段亂碼,那麼區塊鏈中的哈希值是什麼意思呢?現在就讓我來為大家詳細的講解一下。

哈希值是將任意長度的輸入字元串轉換為密碼並進行固定輸出的過程。哈希值不是一個「密碼」,我們不能通過解密哈希來檢索原始數據,它是一個單向的加密函數。

區塊鏈哈希是什麼?如果是剛開始了解區塊鏈,就需要結合「區塊」的概念來一起理解了。每一個區塊,包含的內容有數據信息,本區塊的哈希值以及上一個區塊的哈希值。區塊中的數據信息,主要是交易雙方的地址與此次交易數量還有交易時間信息等。而哈希值就是尋找到區塊,繼而了解到這些區塊信息的鑰匙。以上就是區塊鏈中哈希的含義了。

區塊鏈通過哈希演算法對一個交易區塊中的交易信息進行加密,並把信息壓縮成由一串數字和字母組成的散列字元串。金窩窩集團分析其哈希演算法的作用如下:區塊鏈的哈希值能夠唯一而精準地標識一個區塊,區塊鏈中任意節點通過簡單的哈希計算都接獲得這個區塊的哈希值,計算出的哈希值沒有變化也就意味著區塊鏈中的信息沒有被篡改。

在區塊鏈中,每個塊都有前一個塊的哈希值,前一個塊被稱為當前塊的父塊,如果考慮父塊有一個當前區塊。它將會有上一個塊的哈希值即父塊。

在區塊鏈中,每個塊都有前一個塊的哈希值。當我們更改當前塊中的任何數據時,塊的哈希值將被更改,這將影響前一個塊,因為它有前一個塊的地址。例如,如果我們只有兩個塊,一個是當前塊,一個是父塊。當前塊將擁有父塊的地址。如果需要更改當前塊中的數據,還需要更改父塊。當只有兩個數據塊時,很容易更改數據,但是現在,當我們在區塊鏈中實現時,2020-01-2412:32已經挖掘了614272個塊,而614272(th)塊的哈希值為。如果我們要更改當前塊614272(th)中的數據,614271塊的哈希地址必須更改,但是614271塊的哈希是不可能更改的,所以這就是區塊鏈被稱為不可變的,數據可信的。區塊鏈的第一個塊,稱為起源塊。你可以從這個起源塊中看到有多少塊被開採到現在。

如果我們對輸入的任何部分做一個小的改變,輸出就會有一個大的改變,請看下面的例子以獲得更多的理解。哈希值是區塊鏈技術不可變的和確定的潛力核心基礎和最重要的方面。它保留了記錄和查看的數據的真實性,以及區塊鏈作為一個整體的完整性。

#比特幣[超話]##數字貨幣##歐易OKEx#

區塊鏈中的哈希值是什麼?

哈希值是將任意長度的輸入字元串轉換為密碼並進行固定輸出的過程。哈希值不是一個「密碼」,我們不能通過解密哈希來檢索原始數據,它是一個單向的加密函數。

區塊鏈:

區塊鏈是一個信息技術領域的術語。從本質上講,它是一個共享資料庫,存儲於其中的數據或信息,具有「不可偽造」「全程留痕」「可以追溯」「公開透明」「集體維護」等特徵。基於這些特徵,區塊鏈技術奠定了堅實的「信任」基礎,創造了可靠的「合作」機制,具有廣闊的運用前景。2019年1月10日,國家互聯網信息辦公室發布《區塊鏈信息服務管理規定》??。

區塊鏈的哈希演算法是什麼玩意?

和數軟體解釋:區塊鏈是使用哈希演算法加密。哈希演算法是區塊鏈中保證交易信息不被篡改的單項密碼機制。哈希演算法接收一段明文後,以一種不可逆的方式將其轉化成一段長度較短,位數固定的散列數據。

㈢ 如何找到區塊鏈的密碼,區塊鏈的密鑰是什麼

【深度知識】區塊鏈之加密原理圖示(加密,簽名)

先放一張以太坊的架構圖:

在學習的過程中主要是採用單個模塊了學習了解的,包括P2P,密碼學,網路,協議等。直接開始總結:

秘鑰分配問題也就是秘鑰的傳輸問題,如果對稱秘鑰,那麼只能在線下進行秘鑰的交換。如果在線上傳輸秘鑰,那就有可能被攔截。所以採用非對稱加密,兩把鑰匙,一把私鑰自留,一把公鑰公開。公鑰可以在網上傳輸。不用線下交易。保證數據的安全性。

如上圖,A節點發送數據到B節點,此時採用公鑰加密。A節點從自己的公鑰中獲取到B節點的公鑰對明文數據加密,得到密文發送給B節點。而B節點採用自己的私鑰解密。

2、無法解決消息篡改。

如上圖,A節點採用B的公鑰進行加密,然後將密文傳輸給B節點。B節點拿A節點的公鑰將密文解密。

1、由於A的公鑰是公開的,一旦網上黑客攔截消息,密文形同虛設。說白了,這種加密方式,只要攔截消息,就都能解開。

2、同樣存在無法確定消息來源的問題,和消息篡改的問題。

如上圖,A節點在發送數據前,先用B的公鑰加密,得到密文1,再用A的私鑰對密文1加密得到密文2。而B節點得到密文後,先用A的公鑰解密,得到密文1,之後用B的私鑰解密得到明文。

1、當網路上攔截到數據密文2時,由於A的公鑰是公開的,故可以用A的公鑰對密文2解密,就得到了密文1。所以這樣看起來是雙重加密,其實最後一層的私鑰簽名是無效的。一般來講,我們都希望簽名是簽在最原始的數據上。如果簽名放在後面,由於公鑰是公開的,簽名就缺乏安全性。

2、存在性能問題,非對稱加密本身效率就很低下,還進行了兩次加密過程。

如上圖,A節點先用A的私鑰加密,之後用B的公鑰加密。B節點收到消息後,先採用B的私鑰解密,然後再利用A的公鑰解密。

1、當密文數據2被黑客攔截後,由於密文2隻能採用B的私鑰解密,而B的私鑰只有B節點有,其他人無法機密。故安全性最高。

2、當B節點解密得到密文1後,只能採用A的公鑰來解密。而只有經過A的私鑰加密的數據才能用A的公鑰解密成功,A的私鑰只有A節點有,所以可以確定數據是由A節點傳輸過來的。

經兩次非對稱加密,性能問題比較嚴重。

基於以上篡改數據的問題,我們引入了消息認證。經過消息認證後的加密流程如下:

當A節點發送消息前,先對明文數據做一次散列計算。得到一個摘要,之後將照耀與原始數據同時發送給B節點。當B節點接收到消息後,對消息解密。解析出其中的散列摘要和原始數據,然後再對原始數據進行一次同樣的散列計算得到摘要1,比較摘要與摘要1。如果相同則未被篡改,如果不同則表示已經被篡改。

在傳輸過程中,密文2隻要被篡改,最後導致的hash與hash1就會產生不同。

無法解決簽名問題,也就是雙方相互攻擊。A對於自己發送的消息始終不承認。比如A對B發送了一條錯誤消息,導致B有損失。但A抵賴不是自己發送的。

在(三)的過程中,沒有辦法解決交互雙方相互攻擊。什麼意思呢?有可能是因為A發送的消息,對A節點不利,後來A就抵賴這消息不是它發送的。

為了解決這個問題,故引入了簽名。這里我們將(二)-4中的加密方式,與消息簽名合並設計在一起。

在上圖中,我們利用A節點的私鑰對其發送的摘要信息進行簽名,然後將簽名+原文,再利用B的公鑰進行加密。而B得到密文後,先用B的私鑰解密,然後對摘要再用A的公鑰解密,只有比較兩次摘要的內容是否相同。這既避免了防篡改問題,有規避了雙方攻擊問題。因為A對信息進行了簽名,故是無法抵賴的。

為了解決非對稱加密數據時的性能問題,故往往採用混合加密。這里就需要引入對稱加密,如下圖:

在對數據加密時,我們採用了雙方共享的對稱秘鑰來加密。而對稱秘鑰盡量不要在網路上傳輸,以免丟失。這里的共享對稱秘鑰是根據自己的私鑰和對方的公鑰計算出的,然後適用對稱秘鑰對數據加密。而對方接收到數據時,也計算出對稱秘鑰然後對密文解密。

以上這種對稱秘鑰是不安全的,因為A的私鑰和B的公鑰一般短期內固定,所以共享對稱秘鑰也是固定不變的。為了增強安全性,最好的方式是每次交互都生成一個臨時的共享對稱秘鑰。那麼如何才能在每次交互過程中生成一個隨機的對稱秘鑰,且不需要傳輸呢?

那麼如何生成隨機的共享秘鑰進行加密呢?

對於發送方A節點,在每次發送時,都生成一個臨時非對稱秘鑰對,然後根據B節點的公鑰和臨時的非對稱私鑰可以計算出一個對稱秘鑰(KA演算法-KeyAgreement)。然後利用該對稱秘鑰對數據進行加密,針對共享秘鑰這里的流程如下:

對於B節點,當接收到傳輸過來的數據時,解析出其中A節點的隨機公鑰,之後利用A節點的隨機公鑰與B節點自身的私鑰計算出對稱秘鑰(KA演算法)。之後利用對稱秘鑰機密數據。

對於以上加密方式,其實仍然存在很多問題,比如如何避免重放攻擊(在消息中加入Nonce),再比如彩虹表(參考KDF機制解決)之類的問題。由於時間及能力有限,故暫時忽略。

那麼究竟應該採用何種加密呢?

主要還是基於要傳輸的數據的安全等級來考量。不重要的數據其實做好認證和簽名就可以,但是很重要的數據就需要採用安全等級比較高的加密方案了。

密碼套件是一個網路協議的概念。其中主要包括身份認證、加密、消息認證(MAC)、秘鑰交換的演算法組成。

在整個網路的傳輸過程中,根據密碼套件主要分如下幾大類演算法:

秘鑰交換演算法:比如ECDHE、RSA。主要用於客戶端和服務端握手時如何進行身份驗證。

消息認證演算法:比如SHA1、SHA2、SHA3。主要用於消息摘要。

批量加密演算法:比如AES,主要用於加密信息流。

偽隨機數演算法:例如TLS1.2的偽隨機函數使用MAC演算法的散列函數來創建一個主密鑰——連接雙方共享的一個48位元組的私鑰。主密鑰在創建會話密鑰(例如創建MAC)時作為一個熵來源。

在網路中,一次消息的傳輸一般需要在如下4個階段分別進行加密,才能保證消息安全、可靠的傳輸。

握手/網路協商階段:

在雙方進行握手階段,需要進行鏈接的協商。主要的加密演算法包括RSA、DH、ECDH等

身份認證階段:

身份認證階段,需要確定發送的消息的來源來源。主要採用的加密方式包括RSA、DSA、ECDSA(ECC加密,DSA簽名)等。

消息加密階段:

消息加密指對發送的信息流進行加密。主要採用的加密方式包括DES、RC4、AES等。

消息身份認證階段/防篡改階段:

主要是保證消息在傳輸過程中確保沒有被篡改過。主要的加密方式包括MD5、SHA1、SHA2、SHA3等。

ECC:EllipticCurvesCryptography,橢圓曲線密碼編碼學。是一種根據橢圓上點倍積生成公鑰、私鑰的演算法。用於生成公私秘鑰。

ECDSA:用於數字簽名,是一種數字簽名演算法。一種有效的數字簽名使接收者有理由相信消息是由已知的發送者創建的,從而發送者不能否認已經發送了消息(身份驗證和不可否認),並且消息在運輸過程中沒有改變。ECDSA簽名演算法是ECC與DSA的結合,整個簽名過程與DSA類似,所不一樣的是簽名中採取的演算法為ECC,最後簽名出來的值也是分為r,s。主要用於身份認證階段。

ECDH:也是基於ECC演算法的霍夫曼樹秘鑰,通過ECDH,雙方可以在不共享任何秘密的前提下協商出一個共享秘密,並且是這種共享秘鑰是為當前的通信暫時性的隨機生成的,通信一旦中斷秘鑰就消失。主要用於握手磋商階段。

ECIES:是一種集成加密方案,也可稱為一種混合加密方案,它提供了對所選擇的明文和選擇的密碼文本攻擊的語義安全性。ECIES可以使用不同類型的函數:秘鑰協商函數(KA),秘鑰推導函數(KDF),對稱加密方案(ENC),哈希函數(HASH),H-MAC函數(MAC)。

ECC是橢圓加密演算法,主要講述了按照公私鑰怎麼在橢圓上產生,並且不可逆。ECDSA則主要是採用ECC演算法怎麼來做簽名,ECDH則是採用ECC演算法怎麼生成對稱秘鑰。以上三者都是對ECC加密演算法的應用。而現實場景中,我們往往會採用混合加密(對稱加密,非對稱加密結合使用,簽名技術等一起使用)。ECIES就是底層利用ECC演算法提供的一套集成(混合)加密方案。其中包括了非對稱加密,對稱加密和簽名的功能。

metacharset="utf-8"

這個先訂條件是為了保證曲線不包含奇點。

所以,隨著曲線參數a和b的不斷變化,曲線也呈現出了不同的形狀。比如:

所有的非對稱加密的基本原理基本都是基於一個公式K=kG。其中K代表公鑰,k代表私鑰,G代表某一個選取的基點。非對稱加密的演算法就是要保證該公式不可進行逆運算(也就是說G/K是無法計算的)。*

ECC是如何計算出公私鑰呢?這里我按照我自己的理解來描述。

我理解,ECC的核心思想就是:選擇曲線上的一個基點G,之後隨機在ECC曲線上取一個點k(作為私鑰),然後根據kG計算出我們的公鑰K。並且保證公鑰K也要在曲線上。*

那麼kG怎麼計算呢?如何計算kG才能保證最後的結果不可逆呢?這就是ECC演算法要解決的。

首先,我們先隨便選擇一條ECC曲線,a=-3,b=7得到如下曲線:

在這個曲線上,我隨機選取兩個點,這兩個點的乘法怎麼算呢?我們可以簡化下問題,乘法是都可以用加法表示的,比如22=2+2,35=5+5+5。那麼我們只要能在曲線上計算出加法,理論上就能算乘法。所以,只要能在這個曲線上進行加法計算,理論上就可以來計算乘法,理論上也就可以計算k*G這種表達式的值。

曲線上兩點的加法又怎麼算呢?這里ECC為了保證不可逆性,在曲線上自定義了加法體系。

現實中,1+1=2,2+2=4,但在ECC演算法里,我們理解的這種加法體系是不可能。故需要自定義一套適用於該曲線的加法體系。

ECC定義,在圖形中隨機找一條直線,與ECC曲線相交於三個點(也有可能是兩個點),這三點分別是P、Q、R。

那麼P+Q+R=0。其中0不是坐標軸上的0點,而是ECC中的無窮遠點。也就是說定義了無窮遠點為0點。

同樣,我們就能得出P+Q=-R。由於R與-R是關於X軸對稱的,所以我們就能在曲線上找到其坐標。

P+R+Q=0,故P+R=-Q,如上圖。

以上就描述了ECC曲線的世界裡是如何進行加法運算的。

從上圖可看出,直線與曲線只有兩個交點,也就是說直線是曲線的切線。此時P,R重合了。

也就是P=R,根據上述ECC的加法體系,P+R+Q=0,就可以得出P+R+Q=2P+Q=2R+Q=0

於是乎得到2P=-Q(是不是與我們非對稱演算法的公式K=kG越來越近了)。

於是我們得出一個結論,可以算乘法,不過只有在切點的時候才能算乘法,而且只能算2的乘法。

假若2可以變成任意個數進行想乘,那麼就能代表在ECC曲線里可以進行乘法運算,那麼ECC演算法就能滿足非對稱加密演算法的要求了。

那麼我們是不是可以隨機任何一個數的乘法都可以算呢?答案是肯定的。也就是點倍積計算方式。

選一個隨機數k,那麼k*P等於多少呢?

我們知道在計算機的世界裡,所有的都是二進制的,ECC既然能算2的乘法,那麼我們可以將隨機數k描述成二進制然後計算。假若k=151=10010111

由於2P=-Q所以這樣就計算出了kP。這就是點倍積演算法。所以在ECC的曲線體系下是可以來計算乘法,那麼以為這非對稱加密的方式是可行的。

至於為什麼這樣計算是不可逆的。這需要大量的推演,我也不了解。但是我覺得可以這樣理解:

我們的手錶上,一般都有時間刻度。現在如果把1990年01月01日0點0分0秒作為起始點,如果告訴你至起始點為止時間流逝了整1年,那麼我們是可以計算出現在的時間的,也就是能在手錶上將時分秒指針應該指向00:00:00。但是反過來,我說現在手錶上的時分秒指針指向了00:00:00,你能告訴我至起始點算過了有幾年了么?

ECDSA簽名演算法和其他DSA、RSA基本相似,都是採用私鑰簽名,公鑰驗證。只不過演算法體系採用的是ECC的演算法。交互的雙方要採用同一套參數體系。簽名原理如下:

在曲線上選取一個無窮遠點為基點G=(x,y)。隨機在曲線上取一點k作為私鑰,K=k*G計算出公鑰。

簽名過程:

生成隨機數R,計算出RG.

根據隨機數R,消息M的HASH值H,以及私鑰k,計算出簽名S=(H+kx)/R.

將消息M,RG,S發送給接收方。

簽名驗證過程:

接收到消息M,RG,S

根據消息計算出HASH值H

根據發送方的公鑰K,計算HG/S+xK/S,將計算的結果與RG比較。如果相等則驗證成功。

公式推論:

HG/S+xK/S=HG/S+x(kG)/S=(H+xk)/GS=RG

在介紹原理前,說明一下ECC是滿足結合律和交換律的,也就是說A+B+C=A+C+B=(A+C)+B。

這里舉一個WIKI上的例子說明如何生成共享秘鑰,也可以參考AliceAndBob的例子。

Alice與Bob要進行通信,雙方前提都是基於同一參數體系的ECC生成的公鑰和私鑰。所以有ECC有共同的基點G。

生成秘鑰階段:

Alice採用公鑰演算法KA=ka*G,生成了公鑰KA和私鑰ka,並公開公鑰KA。

Bob採用公鑰演算法KB=kb*G,生成了公鑰KB和私鑰kb,並公開公鑰KB。

計算ECDH階段:

Alice利用計算公式Q=ka*KB計算出一個秘鑰Q。

Bob利用計算公式Q'=kb*KA計算出一個秘鑰Q'。

共享秘鑰驗證:

Q=kaKB=ka*kb*G=ka*G*kb=KA*kb=kb*KA=Q'

故雙方分別計算出的共享秘鑰不需要進行公開就可採用Q進行加密。我們將Q稱為共享秘鑰。

在以太坊中,採用的ECIEC的加密套件中的其他內容:

1、其中HASH演算法採用的是最安全的SHA3演算法Keccak。

2、簽名演算法採用的是ECDSA

3、認證方式採用的是H-MAC

4、ECC的參數體系採用了secp256k1,其他參數體系參考這里

H-MAC全程叫做Hash-.其模型如下:

在以太坊的UDP通信時(RPC通信加密方式不同),則採用了以上的實現方式,並擴展化了。

首先,以太坊的UDP通信的結構如下:

其中,sig是經過私鑰加密的簽名信息。mac是可以理解為整個消息的摘要,ptype是消息的事件類型,data則是經過RLP編碼後的傳輸數據。

其UDP的整個的加密,認證,簽名模型如下:

區塊鏈密碼演算法是怎樣的?

區塊鏈作為新興技術受到越來越廣泛的關注,是一種傳統技術在互聯網時代下的新的應用,這其中包括分布式數據存儲技術、共識機制和密碼學等。隨著各種區塊鏈研究聯盟的創建,相關研究得到了越來越多的資金和人員支持。區塊鏈使用的Hash演算法、零知識證明、環簽名等密碼演算法:

Hash演算法

哈希演算法作為區塊鏈基礎技術,Hash函數的本質是將任意長度(有限)的一組數據映射到一組已定義長度的數據流中。若此函數同時滿足:

(1)對任意輸入的一組數據Hash值的計算都特別簡單;

(2)想要找到2個不同的擁有相同Hash值的數據是計算困難的。

滿足上述兩條性質的Hash函數也被稱為加密Hash函數,不引起矛盾的情況下,Hash函數通常指的是加密Hash函數。對於Hash函數,找到使得被稱為一次碰撞。當前流行的Hash函數有MD5,SHA1,SHA2,SHA3。

比特幣使用的是SHA256,大多區塊鏈系統使用的都是SHA256演算法。所以這里先介紹一下SHA256。

1、SHA256演算法步驟

STEP1:附加填充比特。對報文進行填充使報文長度與448模512同餘(長度=448mod512),填充的比特數范圍是1到512,填充比特串的最高位為1,其餘位為0。

STEP2:附加長度值。將用64-bit表示的初始報文(填充前)的位長度附加在步驟1的結果後(低位位元組優先)。

STEP3:初始化緩存。使用一個256-bit的緩存來存放該散列函數的中間及最終結果。

STEP4:處理512-bit(16個字)報文分組序列。該演算法使用了六種基本邏輯函數,由64步迭代運算組成。每步都以256-bit緩存值為輸入,然後更新緩存內容。每步使用一個32-bit常數值Kt和一個32-bitWt。其中Wt是分組之後的報文,t=1,2,...,16。

STEP5:所有的512-bit分組處理完畢後,對於SHA256演算法最後一個分組產生的輸出便是256-bit的報文。

作為加密及簽名體系的核心演算法,哈希函數的安全性事關整個區塊鏈體系的底層安全性。所以關注哈希函數的研究現狀是很有必要的。

2、Hash函的研究現狀

2004年我國密碼學家王小雲在國際密碼討論年會(CRYPTO)上展示了MD5演算法的碰撞並給出了第一個實例(CollisionsforhashfunctionsMD4,MD5,HAVAL-128andRIPEMD,rumpsessionofCRYPTO2004,,EuroCrypt2005)。該攻擊復雜度很低,在普通計算機上只需要幾秒鍾的時間。2005年王小雲教授與其同事又提出了對SHA-1演算法的碰撞演算法,不過計算復雜度為2的63次方,在實際情況下難以實現。

2017年2月23日谷歌安全博客上發布了世界上第一例公開的SHA-1哈希碰撞實例,在經過兩年的聯合研究和花費了巨大的計算機時間之後,研究人員在他們的研究網站SHAttered上給出了兩個內容不同,但是具有相同SHA-1消息摘要的PDF文件,這就意味著在理論研究長期以來警示SHA-1演算法存在風險之後,SHA-1演算法的實際攻擊案例也浮出水面,同時也標志著SHA-1演算法終於走向了生命的末期。

NIST於2007年正式宣布在全球范圍內徵集新的下一代密碼Hash演算法,舉行SHA-3競賽。新的Hash演算法將被稱為SHA-3,並且作為新的安全Hash標准,增強現有的FIPS180-2標准。演算法提交已於2008年10月結束,NIST分別於2009年和2010年舉行2輪會議,通過2輪的篩選選出進入最終輪的演算法,最後將在2012年公布獲勝演算法。公開競賽的整個進程仿照高級加密標准AES的徵集過程。2012年10月2日,Keccak被選為NIST競賽的勝利者,成為SHA-3。

Keccak演算法是SHA-3的候選人在2008年10月提交。Keccak採用了創新的的「海綿引擎」散列消息文本。它設計簡單,方便硬體實現。Keccak已可以抵禦最小的復雜度為2n的攻擊,其中N為散列的大小。它具有廣泛的安全邊際。目前為止,第三方密碼分析已經顯示出Keccak沒有嚴重的弱點。

KangarooTwelve演算法是最近提出的Keccak變種,其計算輪次已經減少到了12,但與原演算法比起來,其功能沒有調整。

零知識證明

在密碼學中零知識證明(zero-knowledgeproof,ZKP)是一種一方用於向另一方證明自己知曉某個消息x,而不透露其他任何和x有關的內容的策略,其中前者稱為證明者(Prover),後者稱為驗證者(Verifier)。設想一種場景,在一個系統中,所有用戶都擁有各自全部文件的備份,並利用各自的私鑰進行加密後在系統內公開。假設在某個時刻,用戶Alice希望提供給用戶Bob她的一部分文件,這時候出現的問題是Alice如何讓Bob相信她確實發送了正確的文件。一個簡單地處理辦法是Alice將自己的私鑰發給Bob,而這正是Alice不希望選擇的策略,因為這樣Bob可以輕易地獲取到Alice的全部文件內容。零知識證明便是可以用於解決上述問題的一種方案。零知識證明主要基於復雜度理論,並且在密碼學中有廣泛的理論延伸。在復雜度理論中,我們主要討論哪些語言可以進行零知識證明應用,而在密碼學中,我們主要討論如何構造各種類型的零知識證明方案,並使得其足夠優秀和高效。

環簽名群簽名

1、群簽名

在一個群簽名方案中,一個群體中的任意一個成員可以以匿名的方式代表整個群體對消息進行簽名。與其他數字簽名一樣,群簽名是可以公開驗證的,且可以只用單個群公鑰來驗證。群簽名一般流程:

(1)初始化,群管理者建立群資源,生成對應的群公鑰(GroupPublicKey)和群私鑰(GroupPrivateKey)群公鑰對整個系統中的所有用戶公開,比如群成員、驗證者等。

(2)成員加入,在用戶加入群的時候,群管理者頒發群證書(GroupCertificate)給群成員。

(3)簽名,群成員利用獲得的群證書簽署文件,生成群簽名。

(4)驗證,同時驗證者利用群公鑰僅可以驗證所得群簽名的正確性,但不能確定群中的正式簽署者。

(5)公開,群管理者利用群私鑰可以對群用戶生成的群簽名進行追蹤,並暴露簽署者身份。

2、環簽名

2001年,Rivest,shamir和Tauman三位密碼學家首次提出了環簽名。是一種簡化的群簽名,只有環成員沒有管理者,不需要環成員間的合作。環簽名方案中簽名者首先選定一個臨時的簽名者集合,集合中包括簽名者。然後簽名者利用自己的私鑰和簽名集合中其他人的公鑰就可以獨立的產生簽名,而無需他人的幫助。簽名者集合中的成員可能並不知道自己被包含在其中。

環簽名方案由以下幾部分構成:

(1)密鑰生成。為環中每個成員產生一個密鑰對(公鑰PKi,私鑰SKi)。

(2)簽名。簽名者用自己的私鑰和任意n個環成員(包括自己)的公鑰為消息m生成簽名a。

(3)簽名驗證。驗證者根據環簽名和消息m,驗證簽名是否為環中成員所簽,如果有效就接收,否則丟棄。

環簽名滿足的性質:

(1)無條件匿名性:攻擊者無法確定簽名是由環中哪個成員生成,即使在獲得環成員私鑰的情況下,概率也不超過1/n。

(2)正確性:簽名必需能被所有其他人驗證。

(3)不可偽造性:環中其他成員不能偽造真實簽名者簽名,外部攻擊者即使在獲得某個有效環簽名的基礎上,也不能為消息m偽造一個簽名。

3、環簽名和群簽名的比較

(1)匿名性。都是一種個體代表群體簽名的體制,驗證者能驗證簽名為群體中某個成員所簽,但並不能知道為哪個成員,以達到簽名者匿名的作用。

(2)可追蹤性。群簽名中,群管理員的存在保證了簽名的可追

㈣ 鍦ㄥ尯鍧楅摼涓涓鑸浣跨敤浠涔堝姞瀵嗙畻娉

鍦ㄥ尯鍧楅摼涓錛屼竴鑸浣跨敤涓ょ嶄富瑕佺殑鍔犲瘑綆楁硶錛



  1. 鍏閽/縐侀掗鍔犲瘑綆楁硶錛氳繖縐嶅康緇濆姞瀵嗙畻娉曚嬌鐢ㄤ竴瀵瑰叕閽ュ拰縐侀掗銆傚叕閽ュ彲浠ュ叕寮鍒嗗彂錛岃岀侀掗闇瑕佷繚瀵嗐傚彧鏈夋嫢鏈夌侀掗鐨勪漢鎵嶈兘瑙e瘑浣跨敤鍏閽ュ姞瀵嗙殑鏁版嵁銆傝繖縐嶅姞瀵嗘柟娉曡騫挎硾鐢ㄤ簬鏁板瓧絳懼悕鍜岃韓浠介獙璇侊紝鍥犱負瀹冨彲浠ョ『璁ゆ暟鎹鐨勬潵婧愬拰瀹屾暣鎬с傚湪鍖哄潡閾句腑錛岀侀掗鐢ㄤ簬紜璁や氦鏄撹呯殑韜浠斤紝鑰屽叕閽ュ垯琚騫挎挱緇欑綉緇滀腑鐨勫叾浠栬妭鐐逛互楠岃瘉浜ゆ槗鐨勬湁鏁堟ф壈楂樼瑧銆

  2. RSA綆楁硶錛氳繖鏄涓縐嶅父鐢ㄧ殑鍏閽/縐侀掗鍔犲瘑綆楁硶錛岀敱Ron Rivest銆丄di Shamir 鍜 Leonard Adleman浜1978騫村彂鏄庛傚畠鏄涓縐嶉潪瀵圭О鍔犲瘑綆楁硶錛屼篃灝辨槸璇達紝鐢ㄤ簬鍔犲瘑鐨勫瘑閽ュ拰鐢ㄤ簬瑙e瘑鐨勫瘑閽ユ槸涓嶅悓鐨勩

  3. ECDSA錛堟き鍦嗘洸綰挎暟瀛楃懼悕綆楁硶錛夛細榪欐槸涓縐嶅熀浜嶳SA綆楁硶鐨勬敼榪涚増錛屼嬌鐢ㄦき鍦嗘洸綰垮瘑鐮佸︼紝浣垮緱絳懼悕榪囩▼鏇村揩閫熶笖鏇村畨鍏ㄣ傚湪鍖哄潡閾句腑錛孍CDSA琚鐢ㄤ簬楠岃瘉浜ゆ槗鐨勬暟瀛楃懼悕銆


鎷撳睍鐭ヨ瘑錛



鍝堝笇鍑芥暟鏄涓縐嶅皢浠繪剰闀垮害鐨勬暟鎹錛堝傛枃鏈銆佹暟瀛楃瓑錛夎漿鎹涓哄滻瀹氶暱搴︼紙閫氬父涓256浣嶆垨512浣嶏級鐨勬憳瑕佺殑鏂規硶銆傚畠浠緙撳惈闈炲父蹇涓旈潪甯稿畨鍏錛屽洜涓烘敼鍙樻暟鎹涓鐨勪竴灝忛儴鍒嗭紙鍗充嬌鏄寰灝忕殑鏀瑰彉錛変細瀵艱嚧鍝堝笇緇撴灉鐨勫彉鍖栭潪甯稿ぇ錛岀敋鑷充笉鍙閫嗐傝繖縐嶇壒鎬т嬌寰楀搱甯屽嚱鏁板湪鍖哄潡閾句腑琚騫挎硾浣跨敤錛屽傚尯鍧楃殑merkle鏍戠粨鏋勩佷氦鏄撶殑鏁板瓧絳懼悕浠ュ強瀵嗙爜瀛﹂挶鍖呯殑瀛樺偍絳夈


姣旂壒甯佸尯鍧楅摼涓昏佷嬌鐢⊿HA-256浣滀負鍏跺搱甯屽嚱鏁幫紝榪欐槸鐢盌avid Chaum鍜孧ayra P. Chilomchik鍦1997騫村紩鍏ョ殑涓縐嶇畻娉曘係HA-256鎻愪緵浜嗕竴縐嶉潪甯稿畨鍏ㄧ殑鏂瑰紡鏉ュ壋寤哄尯鍧楅摼騫剁『淇濅氦鏄撶殑瀹夊叏鎬с傛ゅ栵紝鍖哄潡閾句腑鐨凪erkle鏍戠粨鏋勪篃鏄鍩轟簬SHA-256鐨勫搱甯屽嚱鏁版潵鍒涘緩鐨勩


浠ヤ笂涓ょ嶅姞瀵嗙畻娉曞拰鍝堝笇鍑芥暟鍦ㄥ尯鍧楅摼涓閮芥壆婕旂潃闈炲父閲嶈佺殑瑙掕壊錛屽畠浠淇濊瘉浜嗕氦鏄撶殑瀹夊叏鎬с佸畬鏁存у拰鍖垮悕鎬э紝鍚屾椂涔熺『淇濅簡鍖哄潡閾劇綉緇滅殑鍘諱腑蹇冨寲鍜屼笉鍙綃℃敼鎬с


鍚屾椂錛岀敱浜庡尯鍧楅摼涓鐨勬暟鎹鏄浠ュ尯鍧楃殑褰㈠紡涓嶆柇澧為暱鐨勶紝榪欎簺鍔犲瘑綆楁硶榪樿鐢ㄤ簬鍒涘緩鍖哄潡澶村拰鍖哄潡闂寸殑閾炬帴錛岃繘涓姝ユ彁楂樹簡鍖哄潡閾劇殑鎬ц兘鍜屽畨鍏ㄦс

㈤ 比特幣用什麼加密

比特幣使用區塊鏈技術中的加密演算法,具體是SHA-256加密演算法


比特幣的加密過程是通過區塊鏈技術實現的,其中SHA-256加密演算法起到了關鍵作用。SHA-256是一種被廣泛應用於密碼學的哈希演算法,它的工作原理是通過接受輸入數據並生成一個固定長度的哈希值。比特幣網路中的每一個區塊都包含了許多交易記錄,這些交易記錄經過SHA-256演算法處理後,生成一個獨特的哈希值,確保了數據的完整性和安全性。這種加密方式使得比特幣的交易記錄和發行過程具有很高的安全性,防止被篡改或偽造。除了SHA-256演算法外,比特幣還使用其他加密演算法來確保網路安全,比如橢圓曲線數字簽名等。這些加密演算法共同保證了比特幣系統的安全穩定運行。同時,比特幣的加密技術是一個不斷進化的過程,隨著技術的發展和威脅的變化,比特幣的加密技術也在不斷更新和改進。


以上內容即為比特幣使用的加密技術和相關解釋。

熱點內容
挖幣網算力計算 發布:2025-05-16 12:57:36 瀏覽:842
比特幣是在什麼平台買的 發布:2025-05-16 12:57:26 瀏覽:52
數字貨幣BRC怎麼樣 發布:2025-05-16 12:56:44 瀏覽:73
usdt入金盈證券 發布:2025-05-16 12:52:14 瀏覽:734
btc永續合約套利 發布:2025-05-16 12:49:47 瀏覽:870
1080Ti算力多少 發布:2025-05-16 12:49:02 瀏覽:477
區塊鏈在當今的作用 發布:2025-05-16 12:42:56 瀏覽:958
比特幣成就的富翁 發布:2025-05-16 12:42:51 瀏覽:796
usdt最低要買好多錢的 發布:2025-05-16 12:12:30 瀏覽:813
長春市中心醫院怎麼樣值得去工作嗎 發布:2025-05-16 12:11:54 瀏覽:517