區塊鏈密碼演算法研究
『壹』 區塊鏈中的密碼學是怎麼應用的
在區塊鏈技術中,密碼學機制主要被用於確保交易信息的完整性、真實性和隱私性。
區塊鏈中的密碼學 包括布隆過濾器,哈希函數、加解密演算法,數字證書與數字簽名,同態加密,PKI體系等。
『貳』 區塊鏈技術的六大核心演算法
區塊鏈技術的六大核心演算法
區塊鏈核心演算法一:拜占庭協定
拜占庭的故事大概是這么說的:拜占庭帝國擁有巨大的財富,周圍10個鄰邦垂誕已久,但拜占庭高牆聳立,固若金湯,沒有一個單獨的鄰邦能夠成功入侵。任何單個鄰邦入侵的都會失敗,同時也有可能自身被其他9個鄰邦入侵。拜占庭帝國防禦能力如此之強,至少要有十個鄰邦中的一半以上同時進攻,才有可能攻破。然而,如果其中的一個或者幾個鄰邦本身答應好一起進攻,但實際過程出現背叛,那麼入侵者可能都會被殲滅。於是每一方都小心行事,不敢輕易相信鄰國。這就是拜占庭將軍問題。
在這個分布式網路里:每個將軍都有一份實時與其他將軍同步的消息賬本。賬本里有每個將軍的簽名都是可以驗證身份的。如果有哪些消息不一致,可以知道消息不一致的是哪些將軍。盡管有消息不一致的,只要超過半數同意進攻,少數服從多數,共識達成。
由此,在一個分布式的系統中,盡管有壞人,壞人可以做任意事情(不受protocol限制),比如不響應、發送錯誤信息、對不同節點發送不同決定、不同錯誤節點聯合起來干壞事等等。但是,只要大多數人是好人,就完全有可能去中心化地實現共識
區塊鏈核心演算法二:非對稱加密技術
在上述拜占庭協定中,如果10個將軍中的幾個同時發起消息,勢必會造成系統的混亂,造成各說各的攻擊時間方案,行動難以一致。誰都可以發起進攻的信息,但由誰來發出呢?其實這只要加入一個成本就可以了,即:一段時間內只有一個節點可以傳播信息。當某個節點發出統一進攻的消息後,各個節點收到發起者的消息必須簽名蓋章,確認各自的身份。
在如今看來,非對稱加密技術完全可以解決這個簽名問題。非對稱加密演算法的加密和解密使用不同的兩個密鑰.這兩個密鑰就是我們經常聽到的」公鑰」和」私鑰」。公鑰和私鑰一般成對出現, 如果消息使用公鑰加密,那麼需要該公鑰對應的私鑰才能解密; 同樣,如果消息使用私鑰加密,那麼需要該私鑰對應的公鑰才能解密。
區塊鏈核心演算法三:容錯問題
我們假設在此網路中,消息可能會丟失、損壞、延遲、重復發送,並且接受的順序與發送的順序不一致。此外,節點的行為可以是任意的:可以隨時加入、退出網路,可以丟棄消息、偽造消息、停止工作等,還可能發生各種人為或非人為的故障。我們的演算法對由共識節點組成的共識系統,提供的容錯能力,這種容錯能力同時包含安全性和可用性,並適用於任何網路環境。
區塊鏈核心演算法四:Paxos 演算法(一致性演算法)
Paxos演算法解決的問題是一個分布式系統如何就某個值(決議)達成一致。一個典型的場景是,在一個分布式資料庫系統中,如果各節點的初始狀態一致,每個節點都執行相同的操作序列,那麼他們最後能得到一個一致的狀態。為保證每個節點執行相同的命令序列,需要在每一條指令上執行一個「一致性演算法」以保證每個節點看到的指令一致。一個通用的一致性演算法可以應用在許多場景中,是分布式計算中的重要問題。節點通信存在兩種模型:共享內存和消息傳遞。Paxos演算法就是一種基於消息傳遞模型的一致性演算法。
區塊鏈核心演算法五:共識機制
區塊鏈共識演算法主要是工作量證明和權益證明。拿比特幣來說,其實從技術角度來看可以把PoW看做重復使用的Hashcash,生成工作量證明在概率上來說是一個隨機的過程。開采新的機密貨幣,生成區塊時,必須得到所有參與者的同意,那礦工必須得到區塊中所有數據的PoW工作證明。與此同時礦工還要時時觀察調整這項工作的難度,因為對網路要求是平均每10分鍾生成一個區塊。
區塊鏈核心演算法六:分布式存儲
分布式存儲是一種數據存儲技術,通過網路使用每台機器上的磁碟空間,並將這些分散的存儲資源構成一個虛擬的存儲設備,數據分散的存儲在網路中的各個角落。所以,分布式存儲技術並不是每台電腦都存放完整的數據,而是把數據切割後存放在不同的電腦里。就像存放100個雞蛋,不是放在同一個籃子里,而是分開放在不同的地方,加起來的總和是100個。
『叄』 什麼是區塊鏈加密演算法
區塊鏈加密演算法(EncryptionAlgorithm)
非對稱加密演算法是一個函數,通過使用一個加密鑰匙,將原來的明文文件或數據轉化成一串不可讀的密文代碼。加密流程是不可逆的,只有持有對應的解密鑰匙才能將該加密信息解密成可閱讀的明文。加密使得私密數據可以在低風險的情況下,通過公共網路進行傳輸,並保護數據不被第三方竊取、閱讀。
區塊鏈技術的核心優勢是去中心化,能夠通過運用數據加密、時間戳、分布式共識和經濟激勵等手段,在節點無需互相信任的分布式系統中實現基於去中心化信用的點對點交易、協調與協作,從而為解決中心化機構普遍存在的高成本、低效率和數據存儲不安全等問題提供了解決方案。
區塊鏈的應用領域有數字貨幣、通證、金融、防偽溯源、隱私保護、供應鏈、娛樂等等,區塊鏈、比特幣的火爆,不少相關的top域名都被注冊,對域名行業產生了比較大的影響。
『肆』 區塊鏈隱私關鍵技術研究
在數字化浪潮推動下,數據領域的技術創新、場景應用與管理服務日益成為各個行業領域數字化轉型發展的重要驅動力。同時,「數據流通」與「數據安全」間的矛盾也日益升級,成為影響數字化發展的制約因素。
安全VS發展
「安全」與「發展」,一直是數據管理領域的兩大重要主題。二者既矛盾對立,相互制約;又在不斷的技術創新下追尋均衡,最大限度實現數據的價值。
矛盾制約
「數據」作為一種特殊的市場資源與生產要素,其自身特點決定只有在更大范圍的社會共享中才能發揮其真正的資源價值。在人工智慧、大數據、雲計算等技術快速應用推廣的當下,不斷提高的算力+不斷優化的演算法,將通過不同維度、不同領域的大數據發現事物間蘊藏的規律,並運用規律解釋過去、預測未來。
智能演算法持續優化、提升的重要前提即是通過海量、多元的大數據資源進行數據訓練,客觀上有著較強的數據共享使用需求,這與具有「信息數據共享和透明」特點的區塊鏈技術不謀而合,相輔相成,因此近年來區塊鏈技術發展應用迅速。但需要注意的是,數據的共享交換雖然提升了數據自身價值,但也不可避免的出現侵犯數據所有者「數據隱私」的安全問題,數據共享挖掘面臨合規監管,數據技術發展應用陷入瓶頸。
均衡發展
「在矛盾中尋找平衡」,是目前數據領域技術創新應用的重要課題。客觀市場環境的快速變化也為「數據流通」與「數據安全」的均衡發展形成強大驅動力。
2019年末,一場突如其來的新型冠狀病毒疫情在世界范圍內蔓延肆虐,大量民眾不幸罹難,各國經濟發展更是遭受沉重打擊。在客觀疫情防控形勢下,「數字化轉型發展」成為各國恢復經濟秩序和建立全新國際競爭優勢的重要戰略措施。在這樣的背景下,數據作為全新的生產要素,隨著功能價值不斷提升,技術應用不斷拓展,數據的「流通使用」和「安全保障」也日益受到行業發展與政府監管的重視。
數據技術創新應用,一方面對數據安全保障提出了全新挑戰,另一方面也以技術創新形式給出了相應的答案——「區塊鏈+隱私計算」。
區塊鏈+隱私計算
數據時代的信任機制與隱私保護
區塊鏈技術是一種通過去中心化、高信任的方式集體維護一個可靠資料庫的技術方案。由於具有「去中心化」、「分布式數據存儲」、「可追溯性」、「防篡改性」、「公開透明」等優勢特點,區塊鏈技術能夠有效解決數據領域的數據真實性、安全性與開放性問題,通過建立可信任的數據管理環境,防範和避免各類數據造假、篡改、遺失等數據管理問題,促進數據的高效共享與應用。
一如上文所述,區塊鏈技術具有「信息數據共享和透明」的特點,但無論從市場商業競爭角度還是個人信息安全形度來看,都沒有人希望自己的數據完全公開、透明。因此,隱私保護合規成為數據管理領域的一條重要「紅線」,一方面保護著數據所有者的隱私安全,另一方面也影響著數據流通共享的效率與發展。
那麼有沒有一種技術既可以保證信息數據的高效流通共享,卻又不會越過隱私保護合規紅線?
如果說「區塊鏈」技術建立了數據時代的信任機制,那麼「隱私計算」則在數據共享洪流中為數據所有者建立了安全的隱私保護防線。
「隱私計算」,即面向隱私信息全生命周期保護的計算理論和方法,是隱私信息的所有權、管理權和使用權分離時隱私度量、隱私泄漏代價、隱私保護與隱私分析復雜性的可計算模型與公理化系統。簡單來說,隱私計算即是從數據的產生、收集、保存、分析、利用、銷毀等環節中對隱私進行保護的技術方法。
同區塊鏈技術一樣,隱私計算並不特指某一門技術,而是一種融合了密碼學、數據科學、經濟學、人工智慧、計算機硬體、軟體工程等多學科的綜合技術應用。隱私計算包括一系列信息技術,如業界較早提出的安全多方計算(MPC)技術、以硬體技術隔離保護為主要特點的可信執行環境(TEE)技術、基於密碼學和分布式計算實現多方協作機器學習的聯邦學習(FL)技術,以及如同態加密、零知識證明、差分隱私等輔助性技術,都屬於隱私計算范疇。
安全多方計算(MPC),是一種在參與方不共享各自數據且沒有可信第三方的情況下安全地計算約定函數的技術和系統。通過安全的演算法和協議,參與方將明文形式的數據加密後或轉化後再提供給其他方,任一參與方都無法接觸到其他方的明文形式的數據,從而保證各方數據的安全。
可信執行環境(TEE),是指CPU的一個安全區域,它和操作系統獨立開來,且不受操作系統的影響。在這個安全區域里保存和計算的數據不受操作系統的影響,是保密且不可篡改的。
聯邦學習(FL),是指在多方在不共享本地數據的前提下,進行多方協同訓練的機器學習方式。聯邦學習技術支持數據不出域,而是讓演算法模型進行移動,通過數據訓練進而優化演算法模型。
隱私計算技術的目的在於讓數據在流通過程中實現「可用不可見」,即只輸出數據結果而不輸出數據本身。這一方面保證了數據所有者的數據所有權不受侵犯,滿足數據流通的合規性;另一方面在隱私保護技術加持下,各方主體擁有的信息數據能夠高效流通使用,不斷擴大數據價值,賦能各個行業領域數據應用。
舉例如在醫療數據領域,各類醫療數據的隱私性要求較高、數據量較大,通常只保存在本地機構的信息系統中,很難實現高效的醫療數據流通、共享與使用,無法為醫療領域的各類病理研究、醫療診斷與技術創新形成數據支持,不利於創新醫療技術研發與應用。
但如果能通過隱私計算技術支持,在保證數據「可用不可見」的前提下,實現不同區域、不同醫療機構醫療數據的高效流通使用,持續優化醫療行業的各類演算法模型,將為實現醫療行業的精準醫療、遠程醫療、智能醫療等醫療技術服務創新形成強力數據支持。
數字化發展浪潮之下,「數據」作為一種全新的重要市場資源與生產要素,其快速發展與管理應用日益受到國家的重視,並不斷賦能各個行業領域發展。同時,數據領域存在的隱私安全問題也令數據管理應用陷入發展困境。可以預見,區塊鏈技術和隱私計算技術的結合,將是數據管理領域一次重要的嘗試探索,對數據領域發展產生重要影響。
『伍』 現在越來越多人在說區塊鏈,想知道區塊鏈研究到底有什麼用
武漢新洲區副區長陳曉紅曾經說過:「區塊鏈技術值得進一步被重視和探索,這一技術被應用後,將給現有的生產帶來巨大的改變」。區塊鏈技術在未來的應用領域和作用是非常大的,例如,區塊鏈可以解決中小微型企業難以得到銀行授信,常常面臨的貸款難,融資難的問題。同時也能幫助銀行防範金融風險。只要優秀的區塊鏈企業發展起來了,就可以推動不同企業,不同領域的經濟共同繁榮。所以說,區塊鏈技術成熟以後,是可以推動各個行業的發展,創造更多就業機會的,是非常有意義的事情。以上內容來源於公眾號「張驥的區塊鏈」,推薦你也關注下。
『陸』 區塊鏈技術的機密性是如何實現的
因為區塊鏈技術對實現智能合約存在天然的優勢。
比特幣、瑞泰幣、萊特幣、以太坊等數字加密貨幣都使用了區塊鏈技術。
區塊鏈(Blockchain)是比特幣的一個重要概念,本質上是一個去中心化的資料庫,同時作為比特幣的底層技術。區塊鏈是一串使用密碼學方法相關聯產生的數據塊,每一個數據塊中包含了一次比特幣網路交易的信息,用於驗證其信息的有效性(防偽)和生成下一個區塊。
『柒』 學習區塊鏈加密演算法的公司有哪些
去鏈派社區看看吧
『捌』 區塊鏈密碼演算法是怎樣的
區塊鏈作為新興技術受到越來越廣泛的關注,是一種傳統技術在互聯網時代下的新的應用,這其中包括分布式數據存儲技術、共識機制和密碼學等。隨著各種區塊鏈研究聯盟的創建,相關研究得到了越來越多的資金和人員支持。區塊鏈使用的Hash演算法、零知識證明、環簽名等密碼演算法:
Hash演算法
哈希演算法作為區塊鏈基礎技術,Hash函數的本質是將任意長度(有限)的一組數據映射到一組已定義長度的數據流中。若此函數同時滿足:
(1)對任意輸入的一組數據Hash值的計算都特別簡單;
(2)想要找到2個不同的擁有相同Hash值的數據是計算困難的。
滿足上述兩條性質的Hash函數也被稱為加密Hash函數,不引起矛盾的情況下,Hash函數通常指的是加密Hash函數。對於Hash函數,找到使得被稱為一次碰撞。當前流行的Hash函數有MD5,SHA1,SHA2,SHA3。
比特幣使用的是SHA256,大多區塊鏈系統使用的都是SHA256演算法。所以這里先介紹一下SHA256。
1、 SHA256演算法步驟
STEP1:附加填充比特。對報文進行填充使報文長度與448模512同餘(長度=448mod512),填充的比特數范圍是1到512,填充比特串的最高位為1,其餘位為0。
STEP2:附加長度值。將用64-bit表示的初始報文(填充前)的位長度附加在步驟1的結果後(低位位元組優先)。
STEP3:初始化緩存。使用一個256-bit的緩存來存放該散列函數的中間及最終結果。
STEP4:處理512-bit(16個字)報文分組序列。該演算法使用了六種基本邏輯函數,由64 步迭代運算組成。每步都以256-bit緩存值為輸入,然後更新緩存內容。每步使用一個32-bit 常數值Kt和一個32-bit Wt。其中Wt是分組之後的報文,t=1,2,...,16 。
STEP5:所有的512-bit分組處理完畢後,對於SHA256演算法最後一個分組產生的輸出便是256-bit的報文。
2、環簽名
2001年,Rivest, shamir和Tauman三位密碼學家首次提出了環簽名。是一種簡化的群簽名,只有環成員沒有管理者,不需要環成員間的合作。環簽名方案中簽名者首先選定一個臨時的簽名者集合,集合中包括簽名者。然後簽名者利用自己的私鑰和簽名集合中其他人的公鑰就可以獨立的產生簽名,而無需他人的幫助。簽名者集合中的成員可能並不知道自己被包含在其中。
環簽名方案由以下幾部分構成:
(1)密鑰生成。為環中每個成員產生一個密鑰對(公鑰PKi,私鑰SKi)。
(2)簽名。簽名者用自己的私鑰和任意n個環成員(包括自己)的公鑰為消息m生成簽名a。
(3)簽名驗證。驗證者根據環簽名和消息m,驗證簽名是否為環中成員所簽,如果有效就接收,否則丟棄。
環簽名滿足的性質:
(1)無條件匿名性:攻擊者無法確定簽名是由環中哪個成員生成,即使在獲得環成員私鑰的情況下,概率也不超過1/n。
(2)正確性:簽名必需能被所有其他人驗證。
(3)不可偽造性:環中其他成員不能偽造真實簽名者簽名,外部攻擊者即使在獲得某個有效環簽名的基礎上,也不能為消息m偽造一個簽名。
3、環簽名和群簽名的比較
(1)匿名性。都是一種個體代表群體簽名的體制,驗證者能驗證簽名為群體中某個成員所簽,但並不能知道為哪個成員,以達到簽名者匿名的作用。
(2)可追蹤性。群簽名中,群管理員的存在保證了簽名的可追蹤性。群管理員可以撤銷簽名,揭露真正的簽名者。環簽名本身無法揭示簽名者,除非簽名者本身想暴露或者在簽名中添加額外的信息。提出了一個可驗證的環簽名方案,方案中真實簽名者希望驗證者知道自己的身份,此時真實簽名者可以通過透露自己掌握的秘密信息來證實自己的身份。
(3)管理系統。群簽名由群管理員管理,環簽名不需要管理,簽名者只有選擇一個可能的簽名者集合,獲得其公鑰,然後公布這個集合即可,所有成員平等。
鏈喬教育在線旗下學碩創新區塊鏈技術工作站是中國教育部學校規劃建設發展中心開展的「智慧學習工場2020-學碩創新工作站 」唯一獲準的「區塊鏈技術專業」試點工作站。專業站立足為學生提供多樣化成長路徑,推進專業學位研究生產學研結合培養模式改革,構建應用型、復合型人才培養體系。