區塊鏈技術學習筆記
『壹』 區塊鏈是什麼哪裡可以學習
區塊鏈的定義
狹義來講,區塊鏈是一種按照時間順序將數據區塊以順序相連的方式組合成的一種鏈式數據結構, 並以密碼學方式保證的不可篡改和不可偽造的分布式賬本。
廣義來講,區塊鏈技術是利用塊鏈式數據結構來驗證與存儲數據、利用分布式節點共識演算法來生成和更新數據、利用密碼學的方式保證數據傳輸和訪問的安全、利用由自動化腳本代碼組成的智能合約來編程和操作數據的一種全新的分布式基礎架構與計算方式。
學習區塊鏈的渠道有很多
①可以去購買一些區塊鏈有關的書籍,學習一些區塊鏈有關的知識,在閑暇之餘還可以做做筆記,去查閱相關的資料
②在網路上看一些區塊鏈的視頻,裡面的內容都是通俗易懂的還附帶了相關的例子,也是非常不錯的一個學習方式。
③可以參加一些線下的區塊鏈學習交流會,或者是參加一些培訓課,有老師會專門為你們答疑解惑。
綜上
條條大路通羅馬,學習區塊鏈的渠道也有很多,適合自己的才是最好的
『貳』 想快速了解區塊鏈,應該怎麼辦
1、所謂區塊鏈技術,簡稱BT(Blockchain technology),也被稱之為分布式賬本技術,是一種互聯網資料庫技術,其特點是去中心化、公開透明,讓每個人均可參與資料庫記錄。
2、區塊鏈(Blockchain)是分布式數據存儲、點對點傳輸、共識機制、加密演算法等計算機技術在互聯網時代的創新應用模式,近年來,區塊鏈的發展和應用,對技術革新和產業革命有非常重要的意義。本經驗介紹區塊鏈技術的相關知識。
3、區塊鏈是一個分布式賬本,可以包含金融和/或非金融交易,通過對等網路幾乎實時地復制(分布)在多個系統上,每個參與者「擁有」相同的分類帳副本,並在添加任何交易時獲得更新,每個參與者都有助於確定所有現有記錄的內在「不變性」,使用密碼學和數字簽名來證明身份,真實性和強制讀/寫訪問許可權,有機制使其難以改變歷史記錄,可以很容易地檢測到有人試圖改變它。
首先,條件允許的話,盡量選擇在一線城市學習,畢竟那裡是技術聚集區。其次,再考察其他方面,例如:師資力量、課程體系、教學模式、就業薪資、學費學時等。直接去試聽,考察學校的真實情況。
『叄』 概括《比特幣:一種點對點的電子現金系統》論文的要點
概括比特幣一種點對點的電子現金系統論文的要提示什麼了?這個論文要提,你要去官方網搜索就得到答案了。
『肆』 如何系統的學習python
分享Python學習路線:
第一階段:Python基礎與Linux資料庫
這是Python的入門階段,也是幫助零基礎學員打好基礎的重要階段。你需要掌握Python基本語法規則及變數、邏輯控制、內置數據結構、文件操作、高級函數、模塊、常用標准庫模板、函數、異常處理、mysql使用、協程等知識點。
學習目標:掌握Python的基本語法,具備基礎的編程能力;掌握Linux基本操作命令,掌握MySQL進階內容,完成銀行自動提款機系統實戰、英漢詞典、歌詞解析器等項目。
第二階段:web全棧
這一部分主要學習web前端相關技術,你需要掌握html、cssJavaScript、JQuery、Bootstrap、web開發基礎、Vue、FIask Views、FIask模板、資料庫操作、FIask配置等知識。
學習目標:掌握web前端技術內容,掌握web後端框架,熟練使用FIask、Tornado、Django,可以完成數據監控後台的項目。
第三階段:數據分析+人工智慧
這部分主要是學習爬蟲相關的知識點,你需要掌握數據抓取、數據提取、數據存儲、爬蟲並發、動態網頁抓取、scrapy框架、分布式爬蟲、爬蟲攻防、數據結構、演算法等知識。
學習目標:可以掌握爬蟲、數據採集,數據機構與演算法進階和人工智慧技術。可以完成爬蟲攻防、圖片馬賽克、電影推薦系統、地震預測、人工智慧項目等階段項目。
第四階段:高級進階
這是Python高級知識點,你需要學習項目開發流程、部署、高並發、性能調優、Go語言基礎、區塊鏈入門等內容。
學習目標:可以掌握自動化運維與區塊鏈開發技術,可以完成自動化運維項目、區塊鏈等項目。
按照上面的Python學習路線圖學習完後,你基本上就可以成為一名合格的Python開發工程師。當然,想要快速成為企業競聘的精英人才,你需要有好的老師指導,還要有較多的項目積累實戰經驗。
自學本身難度較高,一步一步學下來肯定全面且扎實,如果自己有針對性的想學哪一部分,可以直接跳過暫時不需要的針對性的學習自己需要的模塊,可以多看一些不同的視頻學習。
『伍』 零基礎學Python,從入門到精通需要多長時間
一:明確自己的學習目標。不管我們學習什麼樣的知識,都要對自己的學習目標有一個明確的認識。只有這樣才能朝著目標持續的前進,少走彎路,從而在學習的過程中得到提升,享受整個學習的樂趣。
二:基礎的Python學習。
了解Python是什麼,都能做些什麼?
知道什麼是變數、演算法、解釋器
Python基本數據類型
列表和元組的操作方法
字元串操作方法
基本的字典操作方法
以上這些可以略微掌握之後就進行下一步,遇到不會的可以在網上查找一下,或者看下書和筆記以及一些基礎的學習視頻。
三、掌握Python的條件、循環和相關的執行語句任何知識它的基礎知識都是有些枯燥的,現在我們就可以動手來做一些邏輯層面的東西了。掌握 if、else、elif、while、for、continue、break和列表推導式等這些語句的使用,還有程序中的異常處理。
四、面對對象知識面對對象OOP,更高層次的Python程序結構,代碼的重用避免代碼冗餘,打包你的代碼,函數的參數、作用域等。類,可以幫助我們減少大量的開發時間,提高編程的效率,對中大型項目十分關鍵。
五、項目實踐在這個階段,一定要多動手實踐,始終要相信我們實踐是檢驗真理的唯一標准,查找和處理過程中遇到的錯誤和異常,遇到問題多上網搜索。
如果投入時間充足,最少三個月以上,入門到精通我建議是系統學習,知道現在應該學什麼,下一步應該學什麼,企業和崗位需要我們掌握哪方面的知識。
『陸』 0基礎學習Python會很難嗎
在學習Python前,你應該規劃好自己的學習方向,畢竟Python的方向比較多,比如:
web開發
爬蟲
自動化開發(運維,測試)、腳本開發
大數據(數據挖掘,數據分析)
人工智慧、機器學習
如果你想要學好Python最好加入一個好的學習環境,可以來這個Q群,首先是697,中間是518,最後是513,這樣大家學習的話就比較方便,還能夠共同交流和分享資料

培訓學
優點:
1、解決了學習過程中的大多數疑問和難題;
2、過濾掉了無用的技術信息;
3、有專業的團隊規劃學習;
4、更有學習氛圍,學習效率更高;
5、更有就業保障,學完之後即能入職;
6、實戰經驗+理論知識雙重保障。
缺點:
1、費用較貴;
2、機構參差不齊;
3、時間有限,學習期間需要付出很大努力;
4、部分學員憑借機構能夠保障就業,學習努力程度不足。
雖然說有老師帶著你學習,比自學可以少走很多彎路,但是師父領進門修行在個人,如果你自身不夠努力,不能堅持,即使讓行業內BAT等大公司的IT人員教你最好的學習方法,也是沒有用的。
總結
無論是自學還是培訓學,最終還是要自身的努力和堅持!
最後小編再說一句:貴在堅持、成在堅持、難在堅持!
『柒』 python怎麼學習
對於很多想學習Python的小夥伴來說,不知道從何開始,小蝸這里整理了一份Python全棧開發的學習路線,大家可按照以下這份大綱來進行學習:
第一階段:專業核心基礎
階段目標:
1. 熟練掌握Python的開發環境與編程核心知識
2. 熟練運用Python面向對象知識進行程序開發
3. 對Python的核心庫和組件有深入理解
4. 熟練應用SQL語句進行資料庫常用操作
5. 熟練運用Linux操作系統命令及環境配置
6. 熟練使用MySQL,掌握資料庫高級操作
7. 能綜合運用所學知識完成項目
知識點:
Python編程基礎、Python面向對象、Python高級進階、MySQL資料庫、Linux操作系統。
1、Python編程基礎,語法規則,函數與參數,數據類型,模塊與包,文件IO,培養扎實的Python編程基本功,同時對Python核心對象和庫的編程有熟練的運用。
2、Python面向對象,核心對象,異常處理,多線程,網路編程,深入理解面向對象編程,異常處理機制,多線程原理,網路協議知識,並熟練運用於項目中。
3、類的原理,MetaClass,下劃線的特殊方法,遞歸,魔術方法,反射,迭代器,裝飾器,UnitTest,Mock。深入理解面向對象底層原理,掌握Python開發高級進階技術,理解單元測試技術。
4、資料庫知識,範式,MySQL配置,命令,建庫建表,數據的增刪改查,約束,視圖,存儲過程,函數,觸發器,事務,游標,PDBC,深入理解資料庫管理系統通用知識及MySQL資料庫的使用與管理。為Python後台開發打下堅實基礎。
5、Linux安裝配置,文件目錄操作,VI命令,管理,用戶與許可權,環境配置,Docker,Shell編程Linux作為一個主流的伺服器操作系統,是每一個開發工程師必須掌握的重點技術,並且能夠熟練運用。
第二階段:PythonWEB開發
階段目標:
1. 熟練掌握Web前端開發技術,HTML,CSS,JavaScript及前端框架
2. 深入理解Web系統中的前後端交互過程與通信協議
3. 熟練運用Web前端和Django和Flask等主流框架完成Web系統開發
4. 深入理解網路協議,分布式,PDBC,AJAX,JSON等知識
5. 能夠運用所學知識開發一個MiniWeb框架,掌握框架實現原理
6. 使用Web開發框架實現貫穿項目
知識點:
Web前端編程、Web前端高級、Django開發框架、Flask開發框架、Web開發項目實戰。
1、Web頁面元素,布局,CSS樣式,盒模型,JavaScript,JQuery與Bootstrap掌握前端開發技術,掌握JQuery與BootStrap前端開發框架,完成頁面布局與美化。
2、前端開發框架Vue,JSON數據,網路通信協議,Web伺服器與前端交互熟練使用Vue框架,深入理解HTTP網路協議,熟練使用Swagger,AJAX技術實現前後端交互。
3、自定義Web開發框架,Django框架的基本使用,Model屬性及後端配置,Cookie與Session,模板Templates,ORM數據模型,Redis二級緩存,RESTful,MVC模型掌握Django框架常用API,整合前端技術,開發完整的WEB系統和框架。
4、Flask安裝配置,App對象的初始化和配置,視圖函數的路由,Request對象,Abort函數,自定義錯誤,視圖函數的返回值,Flask上下文和請求鉤子,模板,資料庫擴展包Flask-Sqlalchemy,資料庫遷移擴展包Flask-Migrate,郵件擴展包Flask-Mail。掌握Flask框架的常用API,與Django框架的異同,並能獨立開發完整的WEB系統開發。
第三階段:爬蟲與數據分析
階段目標:
1. 熟練掌握爬蟲運行原理及常見網路抓包工具使用,能夠對HTTP及HTTPS協議進行抓包分析
2. 熟練掌握各種常見的網頁結構解析庫對抓取結果進行解析和提取
3. 熟練掌握各種常見反爬機制及應對策略,能夠針對常見的反爬措施進行處理
4. 熟練使用商業爬蟲框架Scrapy編寫大型網路爬蟲進行分布式內容爬取
5. 熟練掌握數據分析相關概念及工作流程
6. 熟練掌握主流數據分析工具Numpy、Pandas和Matplotlib的使用
7. 熟練掌握數據清洗、整理、格式轉換、數據分析報告編寫
8. 能夠綜合利用爬蟲爬取豆瓣網電影評論數據並完成數據分析全流程項目實戰
知識點:
網路爬蟲開發、數據分析之Numpy、數據分析之Pandas。
1、爬蟲頁面爬取原理、爬取流程、頁面解析工具LXML,Beautifulfoup,正則表達式,代理池編寫和架構、常見反爬措施及解決方案、爬蟲框架結構、商業爬蟲框架Scrapy,基於對爬蟲爬取原理、網站數據爬取流程及網路協議的分析和了解,掌握網頁解析工具的使用,能夠靈活應對大部分網站的反爬策略,具備獨立完成爬蟲框架的編寫能力和熟練應用大型商業爬蟲框架編寫分布式爬蟲的能力。
2、Numpy中的ndarray數據結構特點、numpy所支持的數據類型、自帶的數組創建方法、算術運算符、矩陣積、自增和自減、通用函數和聚合函數、切片索引、ndarray的向量化和廣播機制,熟悉數據分析三大利器之一Numpy的常見使用,熟悉ndarray數據結構的特點和常見操作,掌握針對不同維度的ndarray數組的分片、索引、矩陣運算等操作。
3、Pandas裡面的三大數據結構,包括Dataframe、Series和Index對象的基本概念和使用,索引對象的更換及刪除索引、算術和數據對齊方法,數據清洗和數據規整、結構轉換,熟悉數據分析三大利器之一Pandas的常見使用,熟悉Pandas中三大數據對象的使用方法,能夠使用Pandas完成數據分析中最重要的數據清洗、格式轉換和數據規整工作、Pandas對文件的讀取和操作方法。
4、matplotlib三層結構體系、各種常見圖表類型折線圖、柱狀圖、堆積柱狀圖、餅圖的繪制、圖例、文本、標線的添加、可視化文件的保存,熟悉數據分析三大利器之一Matplotlib的常見使用,熟悉Matplotlib的三層結構,能夠熟練使用Matplotlib繪制各種常見的數據分析圖表。能夠綜合利用課程中所講的各種數據分析和可視化工具完成股票市場數據分析和預測、共享單車用戶群里數據分析、全球幸福指數數據分析等項目的全程實戰。
第四階段:機器學習與人工智慧
階段目標:
1. 理解機器學習相關的基本概念及系統處理流程
2. 能夠熟練應用各種常見的機器學習模型解決監督學習和非監督學習訓練和測試問題,解決回歸、分類問題
3. 熟練掌握常見的分類演算法和回歸演算法模型,如KNN、決策樹、隨機森林、K-Means等
4. 掌握卷積神經網路對圖像識別、自然語言識別問題的處理方式,熟悉深度學習框架TF裡面的張量、會話、梯度優化模型等
5. 掌握深度學習卷積神經網路運行機制,能夠自定義卷積層、池化層、FC層完成圖像識別、手寫字體識別、驗證碼識別等常規深度學習實戰項目
知識點:
1、機器學習常見演算法、sklearn數據集的使用、字典特徵抽取、文本特徵抽取、歸一化、標准化、數據主成分分析PCA、KNN演算法、決策樹模型、隨機森林、線性回歸及邏輯回歸模型和演算法。熟悉機器學習相關基礎概念,熟練掌握機器學習基本工作流程,熟悉特徵工程、能夠使用各種常見機器學習演算法模型解決分類、回歸、聚類等問題。
2、Tensorflow相關的基本概念,TF數據流圖、會話、張量、tensorboard可視化、張量修改、TF文件讀取、tensorflow playround使用、神經網路結構、卷積計算、激活函數計算、池化層設計,掌握機器學習和深度學習之前的區別和練習,熟練掌握深度學習基本工作流程,熟練掌握神經網路的結構層次及特點,掌握張量、圖結構、OP對象等的使用,熟悉輸入層、卷積層、池化層和全連接層的設計,完成驗證碼識別、圖像識別、手寫輸入識別等常見深度學習項目全程實戰。
『捌』 想了解區塊鏈的知識,請問從哪些渠道
新幣財經內容挺多的,論壇的話巴比特……
『玖』 作為一個小白,Python應該怎樣從零到入門
分享Python學習路線。
第一階段Python基礎與Linux資料庫。這是Python的入門階段,也是幫助零基礎學員打好基礎的重要階段。你需要掌握Python基本語法規則及變數、邏輯控制、內置數據結構、文件操作、高級函數、模塊、常用標准庫模塊、函數、異常處理、MySQL使用、協程等知識點。
學習目標:掌握Python基礎語法,具備基礎的編程能力;掌握Linux基本操作命令,掌握MySQL進階內容,完成銀行自動提款機系統實戰、英漢詞典、歌詞解析器等項目。
第二階段WEB全棧。這一部分主要學習Web前端相關技術,你需要掌握HTML、CSS、JavaScript、jQuery、BootStrap、Web開發基礎、VUE、Flask Views、Flask模板、 資料庫操作、Flask配置等知識。
學習目標:掌握WEB前端技術內容,掌握WEB後端框架,熟練使用Flask、Tornado、Django,可以完成數據監控後台的項目。
第三階段數據分析+人工智慧。這部分主要是學習爬蟲相關的知識點,你需要掌握數據抓取、數據提取、數據存儲、爬蟲並發、動態網頁抓取、scrapy框架、分布式爬蟲、爬蟲攻防、數據結構、演算法等知識。
學習目標:可以掌握爬蟲、數據採集,數據機構與演算法進階和人工智慧技術。可以完成爬蟲攻防、圖片馬賽克、電影推薦系統、地震預測、人工智慧項目等階段項目。
第四階段高級進階。這是Python高級知識點,你需要學習項目開發流程、部署、高並發、性能調優、Go語言基礎、區塊鏈入門等內容。
學習目標:可以掌握自動化運維與區塊鏈開發技術,可以完成自動化運維項目、區塊鏈等項目。
按照上面的Python學習路線圖學習完後,你基本上就可以成為一名合格的Python開發工程師。當然,想要快速成為企業競聘的精英人才,你需要有好的老師指導,還要有較多的項目積累實戰經驗。