區塊鏈養羊演算法
❶ 羊來啦APP是什麼
羊來啦aPP,羊來啦是基於區塊連技術的養羊賺錢區塊鏈平台。
❷ 區塊鏈的密碼技術有
密碼學技術是區塊鏈技術的核心。區塊鏈的密碼技術有數字簽名演算法和哈希演算法。
數字簽名演算法
數字簽名演算法是數字簽名標準的一個子集,表示了只用作數字簽名的一個特定的公鑰演算法。密鑰運行在由SHA-1產生的消息哈希:為了驗證一個簽名,要重新計算消息的哈希,使用公鑰解密簽名然後比較結果。縮寫為DSA。
數字簽名是電子簽名的特殊形式。到目前為止,至少已經有 20 多個國家通過法律 認可電子簽名,其中包括歐盟和美國,我國的電子簽名法於 2004 年 8 月 28 日第十屆全 國人民代表大會常務委員會第十一次會議通過。數字簽名在 ISO 7498-2 標准中定義為: 「附加在數據單元上的一些數據,或是對數據單元所作的密碼變換,這種數據和變換允許數據單元的接收者用以確認數據單元來源和數據單元的完整性,並保護數據,防止被人(例如接收者)進行偽造」。數字簽名機制提供了一種鑒別方法,以解決偽造、抵賴、冒充和篡改等問題,利用數據加密技術、數據變換技術,使收發數據雙方能夠滿足兩個條件:接收方能夠鑒別發送方所宣稱的身份;發送方以後不能否認其發送過該數據這一 事實。
數字簽名是密碼學理論中的一個重要分支。它的提出是為了對電子文檔進行簽名,以 替代傳統紙質文檔上的手寫簽名,因此它必須具備 5 個特性。
(1)簽名是可信的。
(2)簽名是不可偽造的。
(3)簽名是不可重用的。
(4)簽名的文件是不可改變的。
(5)簽名是不可抵賴的。
哈希(hash)演算法
Hash,就是把任意長度的輸入(又叫做預映射, pre-image),通過散列演算法,變換成固定長度的輸出,該輸出就是散列值。這種轉換是一種壓縮映射,其中散列值的空間通常遠小於輸入的空間,不同的輸入可能會散列成相同的輸出,但是不可逆向推導出輸入值。簡單的說就是一種將任意長度的消息壓縮到某一固定長度的消息摘要的函數。
哈希(Hash)演算法,它是一種單向密碼體制,即它是一個從明文到密文的不可逆的映射,只有加密過程,沒有解密過程。同時,哈希函數可以將任意長度的輸入經過變化以後得到固定長度的輸出。哈希函數的這種單向特徵和輸出數據長度固定的特徵使得它可以生成消息或者數據。
以比特幣區塊鏈為代表,其中工作量證明和密鑰編碼過程中多次使用了二次哈希,如SHA(SHA256(k))或者RIPEMD160(SHA256(K)),這種方式帶來的好處是增加了工作量或者在不清楚協議的情況下增加破解難度。
以比特幣區塊鏈為代表,主要使用的兩個哈希函數分別是:
1.SHA-256,主要用於完成PoW(工作量證明)計算;
2.RIPEMD160,主要用於生成比特幣地址。如下圖1所示,為比特幣從公鑰生成地址的流程。
❸ 區塊鏈技術的六大核心演算法
區塊鏈技術的六大核心演算法
區塊鏈核心演算法一:拜占庭協定
拜占庭的故事大概是這么說的:拜占庭帝國擁有巨大的財富,周圍10個鄰邦垂誕已久,但拜占庭高牆聳立,固若金湯,沒有一個單獨的鄰邦能夠成功入侵。任何單個鄰邦入侵的都會失敗,同時也有可能自身被其他9個鄰邦入侵。拜占庭帝國防禦能力如此之強,至少要有十個鄰邦中的一半以上同時進攻,才有可能攻破。然而,如果其中的一個或者幾個鄰邦本身答應好一起進攻,但實際過程出現背叛,那麼入侵者可能都會被殲滅。於是每一方都小心行事,不敢輕易相信鄰國。這就是拜占庭將軍問題。
在這個分布式網路里:每個將軍都有一份實時與其他將軍同步的消息賬本。賬本里有每個將軍的簽名都是可以驗證身份的。如果有哪些消息不一致,可以知道消息不一致的是哪些將軍。盡管有消息不一致的,只要超過半數同意進攻,少數服從多數,共識達成。
由此,在一個分布式的系統中,盡管有壞人,壞人可以做任意事情(不受protocol限制),比如不響應、發送錯誤信息、對不同節點發送不同決定、不同錯誤節點聯合起來干壞事等等。但是,只要大多數人是好人,就完全有可能去中心化地實現共識
區塊鏈核心演算法二:非對稱加密技術
在上述拜占庭協定中,如果10個將軍中的幾個同時發起消息,勢必會造成系統的混亂,造成各說各的攻擊時間方案,行動難以一致。誰都可以發起進攻的信息,但由誰來發出呢?其實這只要加入一個成本就可以了,即:一段時間內只有一個節點可以傳播信息。當某個節點發出統一進攻的消息後,各個節點收到發起者的消息必須簽名蓋章,確認各自的身份。
在如今看來,非對稱加密技術完全可以解決這個簽名問題。非對稱加密演算法的加密和解密使用不同的兩個密鑰.這兩個密鑰就是我們經常聽到的」公鑰」和」私鑰」。公鑰和私鑰一般成對出現, 如果消息使用公鑰加密,那麼需要該公鑰對應的私鑰才能解密; 同樣,如果消息使用私鑰加密,那麼需要該私鑰對應的公鑰才能解密。
區塊鏈核心演算法三:容錯問題
我們假設在此網路中,消息可能會丟失、損壞、延遲、重復發送,並且接受的順序與發送的順序不一致。此外,節點的行為可以是任意的:可以隨時加入、退出網路,可以丟棄消息、偽造消息、停止工作等,還可能發生各種人為或非人為的故障。我們的演算法對由共識節點組成的共識系統,提供的容錯能力,這種容錯能力同時包含安全性和可用性,並適用於任何網路環境。
區塊鏈核心演算法四:Paxos 演算法(一致性演算法)
Paxos演算法解決的問題是一個分布式系統如何就某個值(決議)達成一致。一個典型的場景是,在一個分布式資料庫系統中,如果各節點的初始狀態一致,每個節點都執行相同的操作序列,那麼他們最後能得到一個一致的狀態。為保證每個節點執行相同的命令序列,需要在每一條指令上執行一個「一致性演算法」以保證每個節點看到的指令一致。一個通用的一致性演算法可以應用在許多場景中,是分布式計算中的重要問題。節點通信存在兩種模型:共享內存和消息傳遞。Paxos演算法就是一種基於消息傳遞模型的一致性演算法。
區塊鏈核心演算法五:共識機制
區塊鏈共識演算法主要是工作量證明和權益證明。拿比特幣來說,其實從技術角度來看可以把PoW看做重復使用的Hashcash,生成工作量證明在概率上來說是一個隨機的過程。開采新的機密貨幣,生成區塊時,必須得到所有參與者的同意,那礦工必須得到區塊中所有數據的PoW工作證明。與此同時礦工還要時時觀察調整這項工作的難度,因為對網路要求是平均每10分鍾生成一個區塊。
區塊鏈核心演算法六:分布式存儲
分布式存儲是一種數據存儲技術,通過網路使用每台機器上的磁碟空間,並將這些分散的存儲資源構成一個虛擬的存儲設備,數據分散的存儲在網路中的各個角落。所以,分布式存儲技術並不是每台電腦都存放完整的數據,而是把數據切割後存放在不同的電腦里。就像存放100個雞蛋,不是放在同一個籃子里,而是分開放在不同的地方,加起來的總和是100個。
❹ 區塊鏈 --- 共識演算法
PoW演算法是一種防止分布式服務資源被濫用、拒絕服務攻擊的機制。它要求節點進行適量消耗時間和資源的復雜運算,並且其運算結果能被其他節點快速驗算,以耗用時間、能源做擔保,以確保服務與資源被真正的需求所使用。
PoW演算法中最基本的技術原理是使用哈希演算法。假設求哈希值Hash(r),若原始數據為r(raw),則運算結果為R(Result)。
R = Hash(r)
哈希函數Hash()的特性是,對於任意輸入值r,得出結果R,並且無法從R反推回r。當輸入的原始數據r變動1比特時,其結果R值完全改變。在比特幣的PoW演算法中,引入演算法難度d和隨機值n,得到以下公式:
Rd = Hash(r+n)
該公式要求在填入隨機值n的情況下,計算結果Rd的前d位元組必須為0。由於哈希函數結果的未知性,每個礦工都要做大量運算之後,才能得出正確結果,而算出結果廣播給全網之後,其他節點只需要進行一次哈希運算即可校驗。PoW演算法就是採用這種方式讓計算消耗資源,而校驗僅需一次。
PoS演算法要求節點驗證者必須質押一定的資金才有挖礦打包資格,並且區域鏈系統在選定打包節點時使用隨機的方式,當節點質押的資金越多時,其被選定打包區塊的概率越大。
POS模式下,每個幣每天產生1幣齡,比如你持有100個幣,總共持有了30天,那麼,此時你的幣齡就為3000。這個時候,如果你驗證了一個POS區塊,你的幣齡就會被清空為0,同時從區塊中獲得相對應的數字貨幣利息。
節點通過PoS演算法出塊的過程如下:普通的節點要成為出塊節點,首先要進行資產的質押,當輪到自己出塊時,打包區塊,然後向全網廣播,其他驗證節點將會校驗區塊的合法性。
DPoS演算法和PoS演算法相似,也採用股份和權益質押。
但不同的是,DPoS演算法採用委託質押的方式,類似於用全民選舉代表的方式選出N個超級節點記賬出塊。
選民把自己的選票投給某個節點,如果某個節點當選記賬節點,那麼該記賬節點往往在獲取出塊獎勵後,可以採用任意方式來回報自己的選民。
這N個記賬節點將輪流出塊,並且節點之間相互監督,如果其作惡,那麼會被扣除質押金。
通過信任少量的誠信節點,可以去除區塊簽名過程中不必要的步驟,提高了交易的速度。
拜占庭問題:
拜占庭是古代東羅馬帝國的首都,為了防禦在每塊封地都駐扎一支由單個將軍帶領的軍隊,將軍之間只能靠信差傳遞消息。在戰爭時,所有將軍必須達成共識,決定是否共同開戰。
但是,在軍隊內可能有叛徒,這些人將影響將軍們達成共識。拜占庭將軍問題是指在已知有將軍是叛徒的情況下,剩餘的將軍如何達成一致決策的問題。
BFT:
BFT即拜占庭容錯,拜占庭容錯技術是一類分布式計算領域的容錯技術。拜占庭假設是對現實世界的模型化,由於硬體錯誤、網路擁塞或中斷以及遭到惡意攻擊等原因,計算機和網路可能出現不可預料的行為。拜占庭容錯技術被設計用來處理這些異常行為,並滿足所要解決的問題的規范要求。
拜占庭容錯系統 :
發生故障的節點被稱為 拜占庭節點 ,而正常的節點即為 非拜占庭節點 。
假設分布式系統擁有n台節點,並假設整個系統拜占庭節點不超過m台(n ≥ 3m + 1),拜占庭容錯系統需要滿足如下兩個條件:
另外,拜占庭容錯系統需要達成如下兩個指標:
PBFT即實用拜占庭容錯演算法,解決了原始拜占庭容錯演算法效率不高的問題,演算法的時間復雜度是O(n^2),使得在實際系統應用中可以解決拜占庭容錯問題
PBFT是一種狀態機副本復制演算法,所有的副本在一個視圖(view)輪換的過程中操作,主節點通過視圖編號以及節點數集合來確定,即:主節點 p = v mod |R|。v:視圖編號,|R|節點個數,p:主節點編號。
PBFT演算法的共識過程如下:客戶端(Client)發起消息請求(request),並廣播轉發至每一個副本節點(Replica),由其中一個主節點(Leader)發起提案消息pre-prepare,並廣播。其他節點獲取原始消息,在校驗完成後發送prepare消息。每個節點收到2f+1個prepare消息,即認為已經准備完畢,並發送commit消息。當節點收到2f+1個commit消息,客戶端收到f+1個相同的reply消息時,說明客戶端發起的請求已經達成全網共識。
具體流程如下 :
客戶端c向主節點p發送<REQUEST, o, t, c>請求。o: 請求的具體操作,t: 請求時客戶端追加的時間戳,c:客戶端標識。REQUEST: 包含消息內容m,以及消息摘要d(m)。客戶端對請求進行簽名。
主節點收到客戶端的請求,需要進行以下交驗:
a. 客戶端請求消息簽名是否正確。
非法請求丟棄。正確請求,分配一個編號n,編號n主要用於對客戶端的請求進行排序。然後廣播一條<<PRE-PREPARE, v, n, d>, m>消息給其他副本節點。v:視圖編號,d客戶端消息摘要,m消息內容。<PRE-PREPARE, v, n, d>進行主節點簽名。n是要在某一個范圍區間內的[h, H],具體原因參見 垃圾回收 章節。
副本節點i收到主節點的PRE-PREPARE消息,需要進行以下交驗:
a. 主節點PRE-PREPARE消息簽名是否正確。
b. 當前副本節點是否已經收到了一條在同一v下並且編號也是n,但是簽名不同的PRE-PREPARE信息。
c. d與m的摘要是否一致。
d. n是否在區間[h, H]內。
非法請求丟棄。正確請求,副本節點i向其他節點包括主節點發送一條<PREPARE, v, n, d, i>消息, v, n, d, m與上述PRE-PREPARE消息內容相同,i是當前副本節點編號。<PREPARE, v, n, d, i>進行副本節點i的簽名。記錄PRE-PREPARE和PREPARE消息到log中,用於View Change過程中恢復未完成的請求操作。
主節點和副本節點收到PREPARE消息,需要進行以下交驗:
a. 副本節點PREPARE消息簽名是否正確。
b. 當前副本節點是否已經收到了同一視圖v下的n。
c. n是否在區間[h, H]內。
d. d是否和當前已收到PRE-PPREPARE中的d相同
非法請求丟棄。如果副本節點i收到了2f+1個驗證通過的PREPARE消息,則向其他節點包括主節點發送一條<COMMIT, v, n, d, i>消息,v, n, d, i與上述PREPARE消息內容相同。<COMMIT, v, n, d, i>進行副本節點i的簽名。記錄COMMIT消息到日誌中,用於View Change過程中恢復未完成的請求操作。記錄其他副本節點發送的PREPARE消息到log中。
主節點和副本節點收到COMMIT消息,需要進行以下交驗:
a. 副本節點COMMIT消息簽名是否正確。
b. 當前副本節點是否已經收到了同一視圖v下的n。
c. d與m的摘要是否一致。
d. n是否在區間[h, H]內。
非法請求丟棄。如果副本節點i收到了2f+1個驗證通過的COMMIT消息,說明當前網路中的大部分節點已經達成共識,運行客戶端的請求操作o,並返回<REPLY, v, t, c, i, r>給客戶端,r:是請求操作結果,客戶端如果收到f+1個相同的REPLY消息,說明客戶端發起的請求已經達成全網共識,否則客戶端需要判斷是否重新發送請求給主節點。記錄其他副本節點發送的COMMIT消息到log中。
如果主節點作惡,它可能會給不同的請求編上相同的序號,或者不去分配序號,或者讓相鄰的序號不連續。備份節點應當有職責來主動檢查這些序號的合法性。
如果主節點掉線或者作惡不廣播客戶端的請求,客戶端設置超時機制,超時的話,向所有副本節點廣播請求消息。副本節點檢測出主節點作惡或者下線,發起View Change協議。
View Change協議 :
副本節點向其他節點廣播<VIEW-CHANGE, v+1, n, C , P , i>消息。n是最新的stable checkpoint的編號, C 是 2f+1驗證過的CheckPoint消息集合, P 是當前副本節點未完成的請求的PRE-PREPARE和PREPARE消息集合。
當主節點p = v + 1 mod |R|收到 2f 個有效的VIEW-CHANGE消息後,向其他節點廣播<NEW-VIEW, v+1, V , O >消息。 V 是有效的VIEW-CHANGE消息集合。 O 是主節點重新發起的未經完成的PRE-PREPARE消息集合。PRE-PREPARE消息集合的選取規則:
副本節點收到主節點的NEW-VIEW消息,驗證有效性,有效的話,進入v+1狀態,並且開始 O 中的PRE-PREPARE消息處理流程。
在上述演算法流程中,為了確保在View Change的過程中,能夠恢復先前的請求,每一個副本節點都記錄一些消息到本地的log中,當執行請求後副本節點需要把之前該請求的記錄消息清除掉。
最簡單的做法是在Reply消息後,再執行一次當前狀態的共識同步,這樣做的成本比較高,因此可以在執行完多條請求K(例如:100條)後執行一次狀態同步。這個狀態同步消息就是CheckPoint消息。
副本節點i發送<CheckPoint, n, d, i>給其他節點,n是當前節點所保留的最後一個視圖請求編號,d是對當前狀態的一個摘要,該CheckPoint消息記錄到log中。如果副本節點i收到了2f+1個驗證過的CheckPoint消息,則清除先前日誌中的消息,並以n作為當前一個stable checkpoint。
這是理想情況,實際上當副本節點i向其他節點發出CheckPoint消息後,其他節點還沒有完成K條請求,所以不會立即對i的請求作出響應,它還會按照自己的節奏,向前行進,但此時發出的CheckPoint並未形成stable。
為了防止i的處理請求過快,設置一個上文提到的 高低水位區間[h, H] 來解決這個問題。低水位h等於上一個stable checkpoint的編號,高水位H = h + L,其中L是我們指定的數值,等於checkpoint周期處理請求數K的整數倍,可以設置為L = 2K。當副本節點i處理請求超過高水位H時,此時就會停止腳步,等待stable checkpoint發生變化,再繼續前進。
在區塊鏈場景中,一般適合於對強一致性有要求的私有鏈和聯盟鏈場景。例如,在IBM主導的區塊鏈超級賬本項目中,PBFT是一個可選的共識協議。在Hyperledger的Fabric項目中,共識模塊被設計成可插拔的模塊,支持像PBFT、Raft等共識演算法。
Raft基於領導者驅動的共識模型,其中將選舉一位傑出的領導者(Leader),而該Leader將完全負責管理集群,Leader負責管理Raft集群的所有節點之間的復制日誌。
下圖中,將在啟動過程中選擇集群的Leader(S1),並為來自客戶端的所有命令/請求提供服務。 Raft集群中的所有節點都維護一個分布式日誌(復制日誌)以存儲和提交由客戶端發出的命令(日誌條目)。 Leader接受來自客戶端的日誌條目,並在Raft集群中的所有關注者(S2,S3,S4,S5)之間復制它們。
在Raft集群中,需要滿足最少數量的節點才能提供預期的級別共識保證, 這也稱為法定人數。 在Raft集群中執行操作所需的最少投票數為 (N / 2 +1) ,其中N是組中成員總數,即 投票至少超過一半 ,這也就是為什麼集群節點通常為奇數的原因。 因此,在上面的示例中,我們至少需要3個節點才能具有共識保證。
如果法定仲裁節點由於任何原因不可用,也就是投票沒有超過半數,則此次協商沒有達成一致,並且無法提交新日誌。
數據存儲:Tidb/TiKV
日誌:阿里巴巴的 DLedger
服務發現:Consul& etcd
集群調度:HashiCorp Nomad
只能容納故障節點(CFT),不容納作惡節點
順序投票,只能串列apply,因此高並發場景下性能差
Raft通過解決圍繞Leader選舉的三個主要子問題,管理分布式日誌和演算法的安全性功能來解決分布式共識問題。
當我們啟動一個新的Raft集群或某個領導者不可用時,將通過集群中所有成員節點之間協商來選舉一個新的領導者。 因此,在給定的實例中,Raft集群的節點可以處於以下任何狀態: 追隨者(Follower),候選人(Candidate)或領導者(Leader)。
系統剛開始啟動的時候,所有節點都是follower,在一段時間內如果它們沒有收到Leader的心跳信號,follower就會轉化為Candidate;
如果某個Candidate節點收到大多數節點的票,則這個Candidate就可以轉化為Leader,其餘的Candidate節點都會回到Follower狀態;
一旦一個Leader發現系統中存在一個Leader節點比自己擁有更高的任期(Term),它就會轉換為Follower。
Raft使用基於心跳的RPC機制來檢測何時開始新的選舉。 在正常期間, Leader 會定期向所有可用的 Follower 發送心跳消息(實際中可能把日誌和心跳一起發過去)。 因此,其他節點以 Follower 狀態啟動,只要它從當前 Leader 那裡收到周期性的心跳,就一直保持在 Follower 狀態。
當 Follower 達到其超時時間時,它將通過以下方式啟動選舉程序:
根據 Candidate 從集群中其他節點收到的響應,可以得出選舉的三個結果。
共識演算法的實現一般是基於復制狀態機(Replicated state machines),何為 復制狀態機 :
簡單來說: 相同的初識狀態 + 相同的輸入 = 相同的結束狀態 。不同節點要以相同且確定性的函數來處理輸入,而不要引入一下不確定的值,比如本地時間等。使用replicated log是一個很不錯的注意,log具有持久化、保序的特點,是大多數分布式系統的基石。
有了Leader之後,客戶端所有並發的請求可以在Leader這邊形成一個有序的日誌(狀態)序列,以此來表示這些請求的先後處理順序。Leader然後將自己的日誌序列發送Follower,保持整個系統的全局一致性。注意並不是強一致性,而是 最終一致性 。
日誌由有序編號(log index)的日誌條目組成。每個日誌條目包含它被創建時的任期號(term),和日誌中包含的數據組成,日誌包含的數據可以為任何類型,從簡單類型到區塊鏈的區塊。每個日誌條目可以用[ term, index, data]序列對表示,其中term表示任期, index表示索引號,data表示日誌數據。
Leader 嘗試在集群中的大多數節點上執行復制命令。 如果復製成功,則將命令提交給集群,並將響應發送回客戶端。類似兩階段提交(2PC),不過與2PC的區別在於,leader只需要超過一半節點同意(處於工作狀態)即可。
leader 、 follower 都可能crash,那麼 follower 維護的日誌與 leader 相比可能出現以下情況
當出現了leader與follower不一致的情況,leader強制follower復制自己的log, Leader會從後往前試 ,每次AppendEntries失敗後嘗試前一個日誌條目(遞減nextIndex值), 直到成功找到每個Follower的日誌一致位置點(基於上述的兩條保證),然後向後逐條覆蓋Followers在該位置之後的條目 。所以丟失的或者多出來的條目可能會持續多個任期。
要求候選人的日誌至少與其他節點一樣最新。如果不是,則跟隨者節點將不投票給候選者。
意味著每個提交的條目都必須存在於這些伺服器中的至少一個中。如果候選人的日誌至少與該多數日誌中的其他日誌一樣最新,則它將保存所有已提交的條目,避免了日誌回滾事件的發生。
即任一任期內最多一個leader被選出。這一點非常重要,在一個復制集中任何時刻只能有一個leader。系統中同時有多餘一個leader,被稱之為腦裂(brain split),這是非常嚴重的問題,會導致數據的覆蓋丟失。在raft中,兩點保證了這個屬性:
因此, 某一任期內一定只有一個leader 。
當集群中節點的狀態發生變化(集群配置發生變化)時,系統容易受到系統故障。 因此,為防止這種情況,Raft使用了一種稱為兩階段的方法來更改集群成員身份。 因此,在這種方法中,集群在實現新的成員身份配置之前首先更改為中間狀態(稱為聯合共識)。 聯合共識使系統即使在配置之間進行轉換時也可用於響應客戶端請求,它的主要目的是提升分布式系統的可用性。
❺ 什麼是區塊鏈技術什麼叫區塊鏈
1、區塊鏈技術
狹義來講,區塊鏈是一種按照時間順序將數據區塊以順序相連的方式組合成的一種鏈式數據結構,並以密碼學方式保證的不可篡改和不可偽造的分布式賬本。
廣義來講,區塊鏈技術是利用塊鏈式數據結構來驗證與存儲數據、利用分布式節點共識演算法來生成和更新數據、利用密碼學的方式保證數據傳輸和訪問的安全、利用由自動化腳本代碼組成的智能合約來編程和操作數據的一種全新的分布式基礎架構與計算方式。
2、區塊鏈的含義
區塊鏈是分布式數據存儲、點對點傳輸、共識機制、加密演算法等計算機技術的新型應用模式。
(5)區塊鏈養羊演算法擴展閱讀
區塊鏈技術基礎的三部分
1、點對點之間傳輸信息的網路,簡稱P2P網路。有了這個網路,任一節點可以把自己的交易信息向網路進行「廣播」,同時獲取總賬內容。
2、密碼技術。採取「公鑰」和「私鑰」相結合的方式,確保交易賬戶的安全。
3、共識機制。即網路中的所有節點需對區塊鏈的演算法達成共識,節點之間無須互相信任,通過演算法計算出的信息可以確保交易可靠並實現數據安全存儲。同時,節點產生的每一個新區塊,需要得到全網路51%以上的共同認可,才能加入全網的區塊鏈中,構成不可篡改的總賬的歷史記錄之一。
❻ 如何用最簡單的方式解讀區塊鏈
大家最近天天都能聽到區塊鏈這個詞,那什麼是區塊鏈呢?「分布式、難以篡改、一致存儲」等解釋太技術化且較為干澀。我這里來通俗的科普下:區塊鏈主要為了解決互不信任的個體之間的信任問題。
舉個通俗的例子:話說老李和老王一個村,老李最近手頭有點緊,想向老王借點錢。老王呢,擔心借了老李後他賴賬怎麼辦,於是找來「德高望重」的村長,不過想想,村長也不可信,以前村長還偷過別人家的地瓜啊!怎麼辦?
區塊鏈的方法是:老王借了1000塊錢給老李後,然後用大喇叭在村裡大喊「我老王今天借了老李1000元錢,大家都趕緊記錄下」,於是村裡的所有人都記錄在了自己家裡的賬本上,謹慎的保管了起來。這下可好,老李再也賴不過了,村裡即便有不守信的人,那還是好人多呀,老李也不可能找村裡全部的人偷偷抹掉自己的借錢記錄的。就這樣,區塊鏈解決了互不信任的老王和老李之間的借錢的信任問題。
在沒有出現區塊鏈之前,我們是如何解決互不信任個體間的信任問題呢?簡單啊,找兩者都信任的「德高望重」的「見證人」就好了,例如故事裡的村長,例如買賣雙方之間的支付寶,例如公證處等等。不過可能這類「見證人」也不一定一直誠信下去,所以區塊鏈乾脆就讓大家都作為見證人。
老王放心了,但老李頭疼啊!老李要等村裡人都記錄好了才能拿到借給他的錢,誰家還沒個大爺大媽手腳慢一些的。所以目前區塊鏈距離應用還有一定的距離,效率問題需要得到大幅提升才可以。
回想一下,你平時是怎麼和別人交易的:一件漂亮的衣服,你可以在實體店挑好,確認好了對方衣服質量不錯,對方確認你的錢是真錢,那麼我們面對面一手交錢一手拿貨。
要是我們隔著十萬八千里,彼此既不認識也不信任還是想交易呢?那就要有我們都信任的第三方了,也就是達成所謂的共識機制。比如:你可以在淘寶通過第三方見證擔保完成交易,錢先給支付寶——支付寶收款讓賣家發貨——賣家發貨——你確認收貨——支付寶再把錢給賣家。
但是,倘若這個中心化的機構作惡了,馬爸爸撕了賬本,不承認你給了錢,或者和賣家聯合起來騙你錢,那可怎麼辦?
又或者政府借了你一100萬,最後用超發貨幣的方式還給你錢,100萬縮水到1萬,由你來承受通貨膨脹的損失,你又怎麼辦?
有沒有不被任何政府、組織機構控制,能公開透明的完成仲裁,記錄了就不被篡改,沒有跑路風險的第三方呢?
別著急,我們的主角區塊鏈技術解決就是這樣的問題——你們之間的交易可以被所有在這個區塊鏈系統的人見證,大家的小賬本里頭都會記錄你們的交易。B如果否認收了A的錢,或者A說自己借了300塊錢,都會被路人甲乙丙丁質疑。具體是如何做到的呢?
1)系統給每個人都發了個小賬本,讓每個人都有記賬的權利,咱們稱之為分布式記賬。
2)為了鼓勵大家幫別人記賬,系統代碼設定將比特幣這樣的代幣獎勵給記賬者,為了防止一堆人記賬堵死,還將代幣設為有限個,甲乙丙丁需要通過系統規定的機制進行計算,算的最快最好的才能獲得記賬的權利,記錄之後通過系統廣播給大家,所有人復制一份相同的賬本,這個通過計算獲得獎勵的過程就叫挖礦,記賬的路人甲乙丙丁就是礦工。
3)有一天,最初記錄這筆交易的甲Game Over了,這個賬本卻還是存在在其他人的賬本里,A和B誰想否認都不行。我們把通過代碼寫好了如何仲裁和分配,無需銀行、政府、企業等中心化組織機構作為第三方見證(去中心化),直接點對點(P2P)交易的方式,稱為去中心化。
4)系統把多個交易打包成區塊,按時間順序鏈接起來成為最後人手一本的賬本,這就是區塊鏈技術
其實把區塊鏈簡單理解為賬本不過是最淺顯的解讀了,把它的每個特點拆分開來,所能應用的領域很多很多。
現在傳統金融行業、券商、投資機構正在跑步入場,物聯網, 游戲 ,儲存,版權,防偽,徵信,支付,預測市場(賭博之類)、社區等眾多領域已經開始了區塊鏈的 探索 應用。
互聯網讓萬物皆可連,區塊鏈能否讓所連皆可信呢?
我用天地自然運化的奇石解讀一下區塊鏈:
所有科學、哲學、道義⋯⋯天地都包涵著。任何一個事物、任何一種文化都與天地道化有關。
區塊鏈自然逃不脫天地運化法:即順然、隨然、無窮、無常。
它就是這塊奇石,其表面整體上的數據運化,一是,整體向著無形無象。二是線點守著一個規律:即無常之道。就是說它們每條線,每個點,追求的都不是一個閉合的目標和一個局限的目的。這樣說大家我好理解了:一個畫家要畫一隻雞,是有目的的,有終結相的,而奇石,大自然造化時,是沒有終結相的。所以相不閉合,線、點數據也不終結。區塊連接之技術,就是這個天運之道。無常運化無形無象,永無終結。(無中心化,就是無形無相,形式不封閉,結構不封閉,思想不封閉⋯⋯如「石」辦事就行)。
山東曲阜孔子靈石館
大家好,我是皮皮,我在這里用幾個生活小例子給大家解讀一下什麼叫區塊鏈?
去中心化,不可篡改級,分布式存貯的,以加密信息做鏈接地址的數據區塊鏈接系統,叫區塊鏈
這玩意本來就是許多高 科技 的復合品,沒法簡單,再簡單也是一大段話,而且未必能說清楚
區塊鏈(Blockchain)嚴格的定義是指通過基於密碼學技術設計的共識機制方式,在對等網路中多個節點共同維護一個持續增長,由時間戳和有序記錄數據塊所構建的鏈式列表賬本的分布式資料庫技術。該技術方案讓參與系統中的任意多個節點,把一段時間系統內全部信息交流的數據,通過密碼學演算法計算和記錄到一個數據塊(block),並且生成該數據塊的指紋用於鏈接(chain)下個數據塊和校驗,系統所有參與節點來共同認定記錄是否為真。
區塊鏈是一種類似於NoSQL(非關系型資料庫)這樣的技術解決方案統稱,並不是某種特定技術,能夠通過很多編程語言和架構來實現區塊鏈技術。並且實現區塊鏈的方式種類也有很多,目前常見的包括POW(Proof of Work,工作量證明),POS(Proof of Stake,權益證明),DPOS(Delegate Proof of Stake,股份授權證明機制)等。
區塊鏈的概念首次在論文《比特幣:一種點對點的電子現金系統(Bitcoin: A Peer-to-Peer Electronic Cash System)》中提出,作者為自稱中本聰(Satoshi Nakamoto)的個人(或團體)。因此可以把比特幣看成區塊鏈的首個在金融支付領域中的應用。
【通俗解釋】
無論多大的系統或者多小的網站,一般在它背後都有資料庫。那麼這個資料庫由誰來維護?在一般情況下,誰負責運營這個網路或者系統,那麼就由誰來進行維護。如果是微信資料庫肯定是騰訊團隊維護,淘寶的資料庫就是阿里的團隊在維護。大家一定認為這種方式是天經地義的,但是區塊鏈技術卻不是這樣。
如果我們把資料庫想像成是一個賬本:比如支付寶就是很典型的賬本,任何數據的改變就是記賬型的。資料庫的維護我們可以認為是很簡單的記賬方式。在區塊鏈的世界也是這樣,區塊鏈系統中的每一個人都有機會參與記賬。系統會在一段時間內,可能選擇十秒鍾內,也可能十分鍾,選出這段時間記賬最快最好的人,由這個人來記賬,他會把這段時間資料庫的變化和賬本的變化記在一個區塊(block)中,我們可以把這個區塊想像成一頁紙上,系統在確認記錄正確後,會把過去賬本的數據指紋鏈接(chain)這張紙上,然後把這張紙發給整個系統裡面其他的所有人。然後周而復始,系統會尋找下一個記賬又快又好的人,而系統中的其他所有人都會獲得整個賬本的副本。這也就意味著這個系統每一個人都有一模一樣的賬本,這種技術,我們就稱之為區塊鏈技術(Blockchain),也稱為分布式賬本技術。
由於每個人(計算機)都有一模一樣的賬本,並且每個人(計算機)都有著完全相等的權利,因此不會由於單個人(計算機)失去聯系或宕機,而導致整個系統崩潰。既然有一模一樣的賬本,就意味著所有的數據都是公開透明的,每一個人可以看到每一個賬戶上到底有什麼數字變化。它非常有趣的特性就是,其中的數據無法篡改。因為系統會自動比較,會認為相同數量最多的賬本是真的賬本,少部分和別人數量不一樣的賬本是虛假的賬本。在這種情況下,任何人篡改自己的賬本是沒有任何意義的,因為除非你能夠篡改整個系統裡面大部分節點。如果整個系統節點只有五個、十個節點也許還容易做到,但是如果有上萬個甚至上十萬個,並且還分布在互聯網上的任何角落,除非某個人能控制世界上大多數的電腦,否則不太可能篡改這樣大型的區塊鏈。
【要素】
結合區塊鏈的定義,我們認為必須具有如下四點要素才能被稱為公開區塊鏈技術,如果只具有前3點要素,我們將認為其為私有區塊鏈技術(私有鏈)。
1、點對點的對等網路(權力對等、物理點對點連接)
2、可驗證的數據結構(可驗證的PKC體系,不可篡改資料庫)
3、分布式的共識機制(解決拜占庭將軍問題,解決雙重支付)
4、納什均衡的博弈設計(合作是演化穩定的策略)
【特性】
結合定義區塊鏈的定義,區塊鏈會現實出四個主要的特性:去中心化(Decentralized)、去信任(Trustless)、集體維護(Collectively maintain)、可靠資料庫(Reliable Database)。並且由四個特性會引申出另外2個特性:開源(Open Source)、隱私保護(Anonymity)。如果一個系統不具備這些特徵,將不能視其為基於區塊鏈技術的應用。
去中心化(Decentralized):整個網路沒有中心化的硬體或者管理機構,任意節點之間的權利和義務都是均等的,且任一節點的損壞或者失去都會不影響整個系統的運作。因此也可以認為區塊鏈系統具有極好的健壯性。
去信任(Trustless):參與整個系統中的每個節點之間進行數據交換是無需互相信任的,整個系統的運作規則是公開透明的,所有的數據內容也是公開的,因此在系統指定的規則范圍和時間范圍內,節點之間是不能也無法欺騙其它節點。
集體維護(Collectively maintain):系統中的數據塊由整個系統中所有具有維護功能的節點來共同維護的,而這些具有維護功能的節點是任何人都可以參與的。
可靠資料庫(Reliable Database):整個系統將通過分資料庫的形式,讓每個參與節點都能獲得一份完整資料庫的拷貝。除非能夠同時控制整個系統中超過51%的節點,否則單個節點上對資料庫的修改是無效的,也無法影響其他節點上的數據內容。因此參與系統中的節點越多和計算能力越強,該系統中的數據安全性越高。
開源(Open Source):由於整個系統的運作規則必須是公開透明的,所以對於程序而言,整個系統必定會是開源的。
隱私保護(Anonymity):由於節點和節點之間是無需互相信任的,因此節點和節點之間無需公開身份,在系統中的每個參與的節點的隱私都是受到保護的。
【區塊鏈意義之一 :解決拜占庭將軍問題】
區塊鏈解決的核心問題不是「數字貨幣」,而是在信息不對稱、不確定的環境下,如何建立滿足經濟活動賴以發生、發展的「信任」生態體系。而這個問題稱之為「拜占庭將軍問題」,也可稱為「拜占庭容錯」或者「兩軍問題」,這是一個分布式系統中進行信息機交互時面臨的難題,即在整個網路中的任意節點都無法信任與之通信的對方時,如何能創建出共識基礎來進行安全的信息交互而無需擔心數據被篡改。區塊鏈使用演算法證明機制來保證整個網路的安全,藉助它,整個系統中的所有節點能夠在去信任的環境下自動安全的交換數據。更多介紹請參見《比特幣與拜占庭將軍問題》。
【區塊鏈意義之二:實現跨國價值轉移】
互聯網誕生最初,最早核心解決的問題是信息製造和傳輸,我們可以通過互聯網將信息快速生成並且復制到全世界每一個有著網路的角落,但是它尚始終不能解決價值轉移和信用轉移。這里所謂的價值轉移是指,在網路中每個人都能夠認可和確認的方式,將某一部分價值精確的從某一個地址轉移到另一個地址,而且必須確保當價值轉移後,原來的地址減少了被轉移的部分,而新的地址增加了所轉移的價值。這里說的價值可以是貨幣資產,也可以是某種實體資產或者虛擬資產(包括有價證券、金融衍生品等)。而這操作的結果必須獲得所有參與方的認可,且其結果不能受到任何某一方的操縱。
在目前的互聯網中也有各種各樣的金融體系,也有許多政府銀行提供或者第三方提供的支付系統,但是它還是依靠中心化的方案來解決。所謂中心化的方案,就是通過某個公司或者政府信用作為背書,將所有的價值轉移計算放在一個中心伺服器(集群)中,盡管所有的計算也是由程序自動完成,但是卻必須信任這個中心化的人或者機構。事實上通過中心化的信用背書來解決,也只能將信用局限在一定的機構、地區或者國家的范圍之內。由此可以看出,必須要解決的這個根本問題,那就是信用。所以價值轉移的核心問題是跨國信用共識。
在如此紛繁復雜的全球體系中,要憑空建立一個全球性的信用共識體系是很難的,由於每個國家的政治、經濟和文化情況不同,對於兩個國家的企業和政府完全互信是幾乎做不到的,這也就意味著無論是以個人抑或企業政府的信用進行背書,對於跨國之間的價值交換即使可以完成,也有著巨大的時間和經濟成本。但是在漫長的人類 歷史 中,無論每個國家的宗教、政治和文化是如何的不同,唯一能取得共識的是數學(基礎科學)。因此,可以毫不誇張的說,數學(演算法)是全球文明的最大公約數,也是全球人類獲得最多共識的基礎。如果我們以數學演算法(程序)作為背書,所有的規則都建立一個公開透明的數學演算法(程序)之上,能夠讓所有不同政治文化背景的人群獲得共識。
【未來的發展】
互聯網將使得全球之間的互動越來越緊密,伴隨而來的就是巨大的信任鴻溝。目前現有的主流資料庫技術架構都是私密且中心化的,在這個架構上是永遠無法解決價值轉移和互信問題。所以區塊鏈技術有可能將成為下一代資料庫架構。通過去中心化技術,將能夠在大數據的基礎上完成數學(演算法)背書、全球互信這個巨大的進步。
區塊鏈技術作為一種特定分布式存取數據技術,它通過網路中多個參與計算的節點開共同參與數據的計算和記錄,並且互相驗證其信息的有效性(防偽)。從這一點來,區塊鏈技術也是一種特定的資料庫技術。互聯網剛剛進入大數據時代,但是從目前來看,大數據還處於非常基礎的階段。但是當進入到區塊鏈資料庫階段,將進入到真正的強信任背書的大數據時代。這裡面的所有數據都獲得堅不可摧的質量,任何人都沒有能力也沒有必要去質疑。
也許我們現在正處在一個重大的轉折點之上——和工業革命所帶來的深刻變革幾乎相同的重大轉折的早期階段。不僅僅是新技術指數級、數字化和組合式的進步與變革,更多的驚喜也許還會在我們前面。在未來的24個月里,這個星球所增長的計算機算力和記錄的數據將會超過所有 歷史 階段的總和。在過去的24個月里,這個增值可能已經超過了1000倍。這些數字化的數據信息還在以比摩爾定律更快的速度增長。區塊鏈技術將不僅僅應用在金融支付領域,而是將會擴展到目前所有應用范圍,諸如去中心化的微博、微信、搜索、租房,甚至是打車軟體都有可能會出現。因為區塊鏈將可以讓人類無地域限制的、去信任的方式來進行大規模協作。
區塊鏈是一種技術,基於這項技術產生很多應用,包括與數據和信息相關的一切行業業務,比特幣就是其中最為人熟知的一種應用。對於區塊鏈的通俗解釋就是,假如在網上買一隻口紅,首先找到心儀的產品和賣家下單,先把錢給中間平台,等到賣家發貨買家確認收貨以後,中間平台再把錢轉給賣家,因為信任問題買賣家之間都依賴於中間平台,而區塊鏈作為去中心化的分布式賬本資料庫,則著力於去掉這個中間平台但同時又解決信任問題。在區塊鏈中每個人擁有自己的記賬本,用來記錄發生的每一件事,假如在交易中出現賣家拿錢不發貨的行為,這一條記錄將永久存在不可修改,不需要互相交換信息,區塊鏈的世界會選擇在同一個時間節點記錄最快質量最好的那個人的記賬本進行復制發送並串聯,最後越疊越厚形成區塊。
大家在談論虛擬貨幣時,往往離不開區塊鏈這個概念,那麼區塊鏈到底是個神馬玩意呢?
區塊鏈是一種底層技術,本質上是一個去中心化的分布式賬本資料庫。聽起來好像十分高端,遙不可及,其實是很容易理解的。
舉個例子,假如要在淘寶上購買商品,那麼一般首先要做的就是打開淘寶,找到想要的商品並下單將錢支付給作為交易中介的淘寶。等收到商品並確認收貨後淘寶便會將貨款打給賣家。這本來只是我和賣家的交易,但卻多了個「中心」,即淘寶。
在交易進行的過程中,這個「中心」擁有無限大的權力,甚至隨意修改賬單。因此,「中心」往往需要強大的後台為其背書。
於是,有一個名叫中本聰的男人想要幹掉這個權力無窮大的中心,他想創造一個去中心化的系統,在這個系統里,每個人都是中心,都有記賬的權力。於是,他創造了比特幣。
在比特幣的系統中,每個人都有一個小賬本用以記錄發生的每一筆交易。一筆交易只有經過大部分人確認後才有效。如果賣家不發貨,那麼每個人的小賬本都會將這件事記錄下來,讓他無處可逃。
這時候大家可能會有疑問,既然只是一個公開的賬本,那麼為什麼又要叫區塊鏈呢?這就涉及到了共識問題,區塊鏈系統是一個由眾多「中心」組成的系統,整個區塊鏈是屬於所有參與記賬的個體的。這時候就產生了新的問題,一個系統必須要有秩序才能長遠的存在。假如記賬者可以不計成本地胡作非為,那就可能出現本來只是購買一台手機,但收到的卻是一台特斯拉的情況。
於是,中本聰發明了一種名為PoW的共識方式。這種方式提高了記賬者記賬的成本,讓其不能輕易作惡。PoW通過密碼學的方式要求記賬者需要通過競爭計算能力來獲取記賬權,第一個計算出結果的記賬者即可獲得一個由若干筆交易打包而來的區塊的記賬權,同時獲得一定的代幣作為獎勵。這就是我們俗稱的「挖礦」。
既然記賬者已經將一個包含了若干筆交易的區塊記錄了下來,那麼系統就需要進行整理排序,不可能讓無數的區塊雜亂無章地分布在系統中。於是就需要把所有區塊按照時間順序首尾相連鏈接鏈接起來,這時,區塊鏈便誕生了。區塊鏈的核心是技術。
❼ 北大青鳥java培訓:區塊鏈技術中的共識演算法
關於區塊鏈技術的一些講解和知識點分析我們已經給大家分享過很多次了。
今天,天津java課程http://www.kmbdqn.cn/就再來了解一下,區塊鏈技術中的共識演算法的一些基本定義與特點。
簡單過一下區塊鏈我們一般意識形態中的鏈是鐵鏈,由鐵鑄成,一環扣一環。
形象地,區塊鏈的也可以這么理解,只不過它不是由鐵鑄成,而是由擁有一定數據結構的塊連接而成,這是一個簡單的雛形通俗講解共識所謂共識,通俗來說,就是我們大家對某種事物的理解達成一致的意思。
比如說日常的開會討論問題,又比如判斷一個動物是不是貓,我們肉眼看了後覺得像貓,其滿足貓的特徵,那麼我們認為它是貓。
共識,是一種規則。
繼續我們的會議例子。
參與會議的人,通過開會的方式來達到談論解決問題。
對比區塊鏈中,參與挖礦的礦工通過某種共識方式(演算法)來解決讓自己的賬本跟其他節點的賬本保持一致。
讓賬本保持一致的深入一層意思就是,讓鏈中區塊信息保持一致。
為什麼需要共識,不需要可不可以?當然不可以,生活中沒了共識的規則,一切亂套。
區塊鏈沒了共識的規則,各個節點各干各的,失去一致的意義。
這兩個例子的對應的關系如下:會議的人=挖礦的礦工開會=共識方式(演算法)談論解決問題=讓自己的賬本跟其他節點的賬本保持一致如果你對節點的概念意思不懂,請先理解為礦工,一個節點內部包含很多角色,礦工是其中之一。
共識演算法目前常見的在區塊鏈中,節點們讓自己的賬本跟其他節點的賬本保持一致的共識方式(演算法)有如下幾種:PoW,代表者是比特幣(BTC)弊端:礦池的出現,一定程度上違背了去中心化的初衷,同時也使得51%攻擊成為可能,影響其安全性。
存在巨大的算力浪費,看看礦池消耗大量的電力資源,隨著難度增加,挖出的不夠付電費PoS,代表者是以太坊(ETH),從PoW過度到PoS弊端:破壞者對網路的攻擊成本很低,擁有代幣就能競爭另外擁有代幣數量大的節點獲得記賬權的概率會更大,會使得網路共識受少數富裕賬戶支配,從而失去公正性。
❽ 區塊鏈技術中的區塊是什麼
區塊就是很多交易數據的集合,它被標記上時間戳和之前一個區塊的獨特標記。有效的區塊獲得全網路的共識認可以後會被追加到主區塊鏈中。區塊鏈是有包含交易信息的區塊從後向前有序鏈接起來的數據結構。
區塊鏈由一串使用密碼學演算法產生的區塊連接而成。每一個區塊上寫滿了交易記錄,區塊按順序相連形成鏈狀結構,也就是區塊鏈大賬本。以比特幣為例,礦工在生成新區塊時,需要根據前一個區塊的哈希值、新交易區塊和隨機數,來計算新的哈希值和隨機數。
(8)區塊鏈養羊演算法擴展閱讀:
每一個區塊都是在前一個區塊數據的基礎上生成的,該機制保證了區塊鏈數據的唯一性。因為交易記錄細微的變化也會徹底改變哈希值的結果。
所以礦工在進行算力競爭的時候無法作弊,每個礦工都必須等前一個區塊生成之後才能根據前一個區塊的數據開始計算符合條件的隨機數,保證了挖礦的公平性。
❾ 深入了解區塊鏈的共識機制及演算法原理
所謂「共識機制」,是通過特殊節點的投票,在很短的時間內完成對交易的驗證和確認;對一筆交易,如果利益不相乾的若干個節點能夠達成共識,我們就可以認為全網對此也能夠達成共識。再通俗一點來講,如果中國一名微博大V、美國一名虛擬幣玩家、一名非洲留學生和一名歐洲旅行者互不相識,但他們都一致認為你是個好人,那麼基本上就可以斷定你這人還不壞。
要想整個區塊鏈網路節點維持一份相同的數據,同時保證每個參與者的公平性,整個體系的所有參與者必須要有統一的協議,也就是我們這里要將的共識演算法。比特幣所有的節點都遵循統一的協議規范。協議規范(共識演算法)由相關的共識規則組成,這些規則可以分為兩個大的核心:工作量證明與最長鏈機制。所有規則(共識)的最終體現就是比特幣的最長鏈。共識演算法的目的就是保證比特幣不停地在最長鏈條上運轉,從而保證整個記賬系統的一致性和可靠性。
區塊鏈中的用戶進行交易時不需要考慮對方的信用、不需要信任對方,也無需一個可信的中介機構或中央機構,只需要依據區塊鏈協議即可實現交易。這種不需要可信第三方中介就可以順利交易的前提是區塊鏈的共識機制,即在互不了解、信任的市場環境中,參與交易的各節點出於對自身利益考慮,沒有任何違規作弊的動機、行為,因此各節點會主動自覺遵守預先設定的規則,來判斷每一筆交易的真實性和可靠性,並將檢驗通過的記錄寫入到區塊鏈中。各節點的利益各不相同,邏輯上將它們沒有合謀欺騙作弊的動機產生,而當網路中有的節點擁有公共信譽時,這一點尤為明顯。區塊鏈技術運用基於數學原理的共識演算法,在節點之間建立「信任」網路,利用技術手段從而實現一種創新式的信用網路。
目前區款連行業內主流的共識演算法機制包含:工作量證明機制、權益證明機制、股份授權證明機制和Pool驗證池這四大類。
工作量證明機制即對於工作量的證明,是生成要加入到區塊鏈中的一筆新的交易信息(即新區塊)時必須滿足的要求。在基於工作量證明機制構建的區塊鏈網路中,節點通過計算隨機哈希散列的數值解爭奪記賬權,求得正確的數值解以生成區塊的能力是節點算力的具體表現。工作量證明機制具有完全去中心化的優點,在以工作量證明機制為共識的區塊鏈中,節點可以自由進出。大家所熟知的比特幣網路就應用工作量證明機制來生產新的貨幣。然而,由於工作量證明機制在比特幣網路中的應用已經吸引了全球計算機大部分的算力,其他想嘗試使用該機制的區塊鏈應用很難獲得同樣規模的算力來維持自身的安全。同時,基於工作量證明機制的挖礦行為還造成了大量的資源浪費,達成共識所需要的周期也較長,因此該機制並不適合商業應用。
2012年,化名Sunny King的網友推出了Peercoin,該加密電子貨幣採用工作量證明機制發行新幣,採用權益證明機制維護網路安全,這是權益證明機制在加密電子貨幣中的首次應用。與要求證明人執行一定量的計算工作不同,權益證明要求證明人提供一定數量加密貨幣的所有權即可。權益證明機制的運作方式是,當創造一個新區塊時,礦工需要創建一個「幣權」交易,交易會按照預先設定的比例把一些幣發送給礦工本身。權益證明機制根據每個節點擁有代幣的比例和時間,依據演算法等比例地降低節點的挖礦難度,從而加快了尋找隨機數的速度。這種共識機制可以縮短達成共識所需的時間,但本質上仍然需要網路中的節點進行挖礦運算。因此,PoS機制並沒有從根本上解決PoW機制難以應用於商業領域的問題。
股份授權證明機制是一種新的保障網路安全的共識機制。它在嘗試解決傳統的PoW機制和PoS機制問題的同時,還能通過實施科技式的民主抵消中心化所帶來的負面效應。
股份授權證明機制與董事會投票類似,該機制擁有一個內置的實時股權人投票系統,就像系統隨時都在召開一個永不散場的股東大會,所有股東都在這里投票決定公司決策。基於DPoS機制建立的區塊鏈的去中心化依賴於一定數量的代表,而非全體用戶。在這樣的區塊鏈中,全體節點投票選舉出一定數量的節點代表,由他們來代理全體節點確認區塊、維持系統有序運行。同時,區塊鏈中的全體節點具有隨時罷免和任命代表的權力。如果必要,全體節點可以通過投票讓現任節點代表失去代表資格,重新選舉新的代表,實現實時的民主。
股份授權證明機制可以大大縮小參與驗證和記賬節點的數量,從而達到秒級的共識驗證。然而,該共識機制仍然不能完美解決區塊鏈在商業中的應用問題,因為該共識機制無法擺脫對於代幣的依賴,而在很多商業應用中並不需要代幣的存在。
Pool驗證池基於傳統的分布式一致性技術建立,並輔之以數據驗證機制,是目前區塊鏈中廣泛使用的一種共識機制。
Pool驗證池不需要依賴代幣就可以工作,在成熟的分布式一致性演算法(Pasox、Raft)基礎之上,可以實現秒級共識驗證,更適合有多方參與的多中心商業模式。不過,Pool驗證池也存在一些不足,例如該共識機制能夠實現的分布式程度不如PoW機制等
這里主要講解區塊鏈工作量證明機制的一些演算法原理以及比特幣網路是如何證明自己的工作量的,希望大家能夠對共識演算法有一個基本的認識。
工作量證明系統的主要特徵是客戶端要做一定難度的工作來得到一個結果,驗證方則很容易通過結果來檢查客戶端是不是做了相應的工作。這種方案的一個核心特徵是不對稱性:工作對於請求方是適中中的,對於驗證方是易於驗證的。它與驗證碼不同,驗證碼是易於被人類解決而不是易於被計算機解決。
下圖所示的為工作量證明流程。
舉個例子,給個一個基本的字元創「hello,world!」,我們給出的工作量要求是,可以在這個字元創後面添加一個叫做nonce(隨機數)的整數值,對變更後(添加nonce)的字元創進行SHA-256運算,如果得到的結果(一十六進制的形式表示)以「0000」開頭的,則驗證通過。為了達到這個工作量證明的目標,需要不停地遞增nonce值,對得到的字元創進行SHA-256哈希運算。按照這個規則,需要經過4251次運算,才能找到前導為4個0的哈希散列。
通過這個示例我們對工作量證明機制有了一個初步的理解。有人或許認為如果工作量證明只是這樣一個過程,那是不是只要記住nonce為4521使計算能通過驗證就行了,當然不是了,這只是一個例子。
下面我們將輸入簡單的變更為」Hello,World!+整數值」,整數值取1~1000,也就是說將輸入變成一個1~1000的數組:Hello,World!1;Hello,World!2;...;Hello,World!1000。然後對數組中的每一個輸入依次進行上面的工作量證明—找到前導為4個0的哈希散列。
由於哈希值偽隨機的特性,根據概率論的相關知識容易計算出,預計要進行2的16次方次數的嘗試,才能得到前導為4個0的哈希散列。而統計一下剛剛進行的1000次計算的實際結果會發現,進行計算的平均次數為66958次,十分接近2的16次方(65536)。在這個例子中,數學期望的計算次數實際就是要求的「工作量」,重復進行多次的工作量證明會是一個符合統計學規律的概率事件。
統計輸入的字元創與得到對應目標結果實際使用的計算次數如下:
對於比特幣網路中的任何節點,如果想生成一個新的區塊加入到區塊鏈中,則必須解決出比特幣網路出的這道謎題。這道題的關鍵要素是工作量證明函數、區塊及難度值。工作量證明函數是這道題的計算方法,區塊是這道題的輸入數據,難度值決定了解這道題的所需要的計算量。
比特幣網路中使用的工作量證明函數正是上文提及的SHA-256。區塊其實就是在工作量證明環節產生的。曠工通過不停地構造區塊數據,檢驗每次計算出的結果是否滿足要求的工作量,從而判斷該區塊是不是符合網路難度。區塊頭即比特幣工作量證明函數的輸入數據。
難度值是礦工們挖掘的重要參考指標,它決定了曠工需要經過多少次哈希運算才能產生一個合法的區塊。比特幣網路大約每10分鍾生成一個區塊,如果在不同的全網算力條件下,新區塊的產生基本都保持這個速度,難度值必須根據全網算力的變化進行調整。總的原則即為無論挖礦能力如何,使得網路始終保持10分鍾產生一個新區塊。
難度值的調整是在每個完整節點中獨立自動發生的。每隔2016個區塊,所有節點都會按照統一的格式自動調整難度值,這個公式是由最新產生的2016個區塊的花費時長與期望時長(按每10分鍾產生一個取款,則期望時長為20160分鍾)比較得出來的,根據實際時長一期望時長的比值進行調整。也就是說,如果區塊產生的速度比10分鍾快,則增加難度值;反正,則降低難度值。用公式來表達如下:
新難度值=舊難度值*(20160分鍾/過去2016個區塊花費時長)。
工作量證明需要有一個目標值。比特幣工作量證明的目標值(Target)的計算公式如下:
目標值=最大目標值/難度值,其中最大目標值為一個恆定值
目標值的大小與難度值成反比,比特幣工作量證明的達成就是礦中計算出來的區塊哈希值必須小於目標值。
我們也可以將比特幣工作量的過程簡單的理解成,通過不停變更區塊頭(即嘗試不同nonce值)並將其作為輸入,進行SHA-256哈希運算,找出一個有特定格式哈希值的過程(即要求有一定數量的前導0),而要求的前導0個數越多,難度越大。
可以把比特幣將這道工作量證明謎題的步驟大致歸納如下:
該過程可以用下圖表示:
比特幣的工作量證明,就是我們俗稱「挖礦」所做的主要工作。理解工作量證明機制,將為我們進一步理解比特幣區塊鏈的共識機制奠定基礎。
❿ 三. 區塊鏈系統的核心之一-分布式共識機制
拜占庭將軍問題(Byzantine Generals Problem),是由萊斯利·蘭波特在其同名論文中提出的分布式對等網路通信容錯問題。
在分布式計算中,不同的計算機通過通訊交換信息達成共識而按照同一套協作策略行動。但有時候,系統中的成員計算機可能出錯而發送錯誤的信息,用於傳遞信息的通訊網路也可能導致信息損壞,使得網路中不同的成員關於全體協作的策略得出不同結論,從而破壞系統一致性。這個難題被稱為「拜占庭容錯」,或者「兩軍問題」。
拜占庭假設是對現實世界的模型化。拜占庭將軍問題被認為是容錯性問題中最難的問題類型之一。拜占庭容錯協議要求能夠解決由於硬體錯誤、網路擁塞或斷開以及遭到惡意攻擊,其他計算機和網路可能出現不可預料的行為而帶來的各種問題。並且拜占庭容錯協議還要滿足所要解決的問題要求的規范。
在拜占庭時代有一個牆高壁厚的城邦——拜占庭,高牆之內存放在世人無法想像多的財富。拜占庭被其他10個城邦所環繞,這10個城邦也很富饒,但和拜占庭相比就有天壤之別了。
拜占庭的十個鄰居都覬覦它的財富,並希望侵略並佔領它。但是,拜占庭的防禦非常強大,任何單個城邦的入侵行動都會失敗,而入侵者的軍隊也會被殲滅,使得該城邦自身遭到其他互相覬覦對方的九個城邦的入侵和劫掠。
拜占庭的防禦很強,十個城邦中要有一半以上同時進攻才能攻破它。也就是說,如果有六個或者以上的相鄰城邦一起進攻,他們就會成功並獲得拜占庭的財富。然而,如果其中有一個或者更多城邦背叛了其他城邦,答應一起入侵但在其他城邦進攻的時候又不幹了,也就導致只有五支或者更少的城邦的軍隊在同時進攻,那麼所有的進攻城邦的軍隊都會被殲滅,並隨後被其他的(包括背叛他們的那(幾)個)城邦所入侵和劫掠。
這是一個由許多不互相信任的城邦構成的一個網路。城邦們必須一起努力以完成共同的使命。而且,各個城邦之間通訊和協調的唯一途徑是通過信使騎馬在城邦之間傳遞信息。城邦的決策者們無法聚集在一個地方開個會(所有的城邦的決策者都不互相信任自己的安全會在自己的城堡或者軍隊范圍之外能夠得到保障)。
城邦的決策者可以在任意時間以任意頻率派出任意數量的信使到任意的對方。每條信息都包含如下的內容:「我城邦將在某一天的某個時間發動進攻,你城邦願意加入嗎?」。如果收信城邦同意了,該城邦就會在原信上附上一份簽名了的或蓋了圖章的(以就是驗證了的)回應然送回發信城邦。然後,再把新合並了的信息的拷貝一一發送給其他八個城邦,要求他們也如此這樣做。最後的目標是,通過在原始信息鏈上蓋上他們所有十個城邦的決策者的圖章,讓他們在時間上達成共識。最後的結果是,會有一個蓋有十個同意同一時間發動進攻的圖章信息包,和一些被拋棄了的包含部分但不是全部圖章的信息包。
在這個過程中首先出現了第一個問題,就是如果每個城邦向其他九個城邦派出一名信使,那麼就是十個城邦每個派出了九名信使,也就是在任何一個時間又總計90次的傳輸,並且每個城市分別收到九個信息,可能每一封都寫著不同的進攻時間。
在這個過程中還有第二個問題,就是部分城邦會答應超過一個的攻擊時間,故意背叛進攻發起人,所以他們將重新廣播超過一條(甚至許許多多條)的信息包,由此產生許多甚至無數的足以淹沒一切的雜音。
有了以上兩個問題,整個網路系統可能迅速變質,並演變成不可信的信息和攻擊時間相互矛盾的糾結體。
拜占庭假設是對現實網路世界的一種模型化。在現實網路世界中由於硬體錯誤、網路擁塞或斷開以及遭到惡意攻擊,網路可能出現許許多多不可預料的行為。拜占庭容錯協議必須處理這些失效,並且還要使這些協議滿足所要解決的問題所要求的規范。
對於拜占庭將軍問題中本聰的區塊鏈給出了比較圓滿的解決方案。也就是比較圓滿的解決了上述的兩個問題。
拜占庭將軍問題的第一個問題從本質上來講就是時間和空間的障礙導致信息的不準確和不及時。
區塊鏈對於第一個問題的解決方案是利用分布式存儲技術和比特流技術(BT技術,一種新型的點對點傳輸技術,具有節點同時作為客戶端和伺服器端和沒有中心伺服器等特點),將整個網路系統內的所有交易信息匯總為一個統一的,分布式存儲的,近乎實時同步更新的電子總賬。統一的分布式共同賬本就解決了空間障礙問題;而近乎同步進行的,實時的,持續的對所有賬本備份的更新、對賬則解決了時間障礙問題。
這個過程較具體一點的描述大概是將區塊鏈系統內所有的交易活動的記錄數據統一於一種標准化的總帳上;區塊鏈系統的每一個節點都會保存一份總帳的備份;所有總帳的備份都是在實時的,持續的更新、對賬、以及同步著。區塊鏈系統的每一個節點能在這本總帳里記上添加記錄;每一筆新添加的記錄都會實時的廣播到區塊鏈系統內;所以在每一個節點上的每一份總帳的備份都是幾乎同時更新的,並且所有的總帳的備份保持著同步。
拜占庭將軍問題的第二個問題從本質上來講就是關於信息過量問題和信息干擾問題。信息過量和信息干擾問題導致決策延遲,甚至決策系統崩潰而無法決策。
區塊鏈對於第二個問題的解決方案是區塊鏈系統的任何一個節點在發送每一筆新添加的記錄時需要附帶一條額外的信息。對區塊鏈系統的任何一個節點來說這條額外的信息的獲得都是有成本的,並且只能有一個節點可以獲得。這樣就解決了區塊鏈系統的任何一個節點新添加額外信息時的信息多且亂而無法達成一致的問題。在這里,區塊鏈系統的任何一個節點獲得那條附帶的額外的信息的過程就是著名的工作量證明機制。
共識機制主要解決區塊鏈系統的數據如何記錄和如何保存的問題。工作量證明機制就是要求區塊鏈系統的節點通過做一定難度的工作得出一個結果的過程。
區塊鏈系統中某節點生成了一筆新的交易記錄,並且該節點將這筆新的交易記錄向全網廣播。全網各個節點收到這個交易記錄並與其他所有準備打包進區塊的交易記錄共同組成交易記錄列表。在列表內先對所有交易進行兩兩的哈希計算;再對以獲得的哈希值進行哈希計算獲得Merkle樹和Merkle樹的根值;把Merkle樹的根值及其他相關欄位組裝成區塊頭。
各個節點將區塊頭的80位元組數據加上一個不停的變更的區塊頭隨機數一起進行不停的哈希運算(實際上這是一個雙重哈希運算);不停的將哈希運算結果值與當前網路的目標值做對比,直到哈希運算結果值小於目標值,就獲得了符合要求的哈希值,工作量證明也就完成了。
分布式的區塊鏈系統是一個動態變化的系統(硬體的運算速度的增長,節點參與網路的程度的變化)。系統的不斷變化必然帶來系統的算力的不斷變化。而算力的變化又會導致通過消耗算力(工作)來獲得符合要求的哈希值的速度的不同。最終的結果會是區塊鏈的增長速度會有巨大的不同。這是一個很大的問題。為了解決這個問題,區塊鏈系統自動根據算力的變化對工作難度進行調整。也就是採用移動平均目標的方法來確定,難度控制為每小時生成區塊的速度為某一個預定的平均數。
在區塊鏈系統中一個符合要求的哈希值是由N個前導零構成,零的個數取決於網路的難度值。為了使區塊的形成時間控制在大約十分鍾左右,區塊鏈系統採用了固定工作難度的難度演算法。難度值每2016個區塊調整一次零的個數。
新的難度值是根據前2015個區塊(理論上應該是2016個區塊,由於當初程序編寫時的失誤造成了用2015而不是2016)的出塊時間來計算。
難度 = 目標值 * 前2015個區塊生成所用的時間 / 1209600 (兩周的秒鍾數)
這樣通過規定的演算法,區塊鏈系統就保證所有節點計算出的難度值都一致,區塊的形成時間大約一致在十分鍾左右。
(1)結果不可控制。其依賴機器進行哈希函數的運算來獲得結果;計算結果是一個隨機數;沒有人能直接控制計算的結果。
(2)計算具有對稱性。就是結果的獲得和結果的驗收需要的工作量是不同的。計算出結果所需要的工作量遠遠大於驗收結果所需要的工作量。
(3)計算的難度自動控制。為了使區塊的形成時間控制在大約十分鍾左右,區塊鏈系統自動控制了每一個符合要求的哈希獲得為大約在十分鍾左右。
第一,方法簡單易行。
第二,系統達成共識容易,節點間不需要太多的信息交換。
第三,系統比較牢固可靠,任何破壞系統的企圖都需要投入大到得不償失的成本。
第一,消耗大量的算力,也就是浪費能源和其他資源。
第二,區塊的確認時間比較長,並且難以縮短。
第三,新創立的區塊鏈非常容易受到算力攻擊。
第四,容易產生區塊鏈分叉,穩定的區塊鏈需要多個確認,並且這種狀況可能不斷持續下去。
第五,算力的逐漸集中導致與去中心化的系統設計基礎的沖突日益明顯。
權益證明機制是一種工作量證明機制的替代方法,試圖解決工作量計算浪費的問題.目前其成功的應用是點點幣區塊鏈系統。
權益證明不要求區塊鏈系統的節點完成一定數量的計算工作,而是要求區塊鏈系統的節點對某些數量的錢展示所有權。
權益證明機制首先應用於點點幣區塊鏈系統中。
點點幣區塊鏈系統的區塊生成時,節點需要構造一個「錢幣權益」交易,即把自己的一些錢幣和預先設定的獎勵發給自己。進行哈希計算時,哈希值的計算只同交易輸入、一些附加的固定數據以及當前時間(是一個表示自1970年1月1日距離當前時刻的秒數的正數)有關。然後,根據類似工作量證明的要求來檢查這個哈希值是否正確。
點點幣區塊鏈系統的權益證明機制除了設定了哈希計算難度與交易輸入的「幣齡」成反比外,其與工作量證明機制非常類似。其中,幣齡的定義為交易輸入大小和它存在時間的乘積。權益證明機制中哈希值只和時間和固定的數據有關,因而沒有辦法通過多完成工作來快速獲取它。
每個點點幣區塊鏈系統的交易的輸出都有一定的幾率來產生有效的正比於幣齡和交易貨幣數量的工作。
第一,縮短了共識達成的時間。
第二,不再需要大量消耗能源。
第一,還是需要哈希計算。
第二,所有的確認都只是一個概率上的表達,而不是一個確定性的事情,有可能受到其他攻擊影響。
授權股份證明機制類似於權益證明機制,是比特股BitShares採用的區塊鏈公識演算法。授權股份證明機制是民主選舉和輪流執政相結合方式來確定區塊的產生。
授權股份證明機制是先由節點選舉若干代理人,由代理人驗證和記賬。其他方面和權益證明機制相似。
每個節點按其持股比例擁有相應的影響力,51%節點投票的結果將是不可逆且有約束力的。為達到及時而高效的方法達到51%批準的目標。每個節點可以將其投票權授予一名節點。獲票數最多的前100位節點按既定時間表輪流產生區塊。每名節點分配到一個時間段來生產區塊。
所有的節點將收到等同於一個平均水平的區塊所含交易費的10%作為報酬。
第一,大幅縮小參與驗證和記賬節點的數量,
第二,可以快速實現共識驗證。
主要缺點就是仍然無法擺脫對代幣的依賴。
在分布式計算上,不同的計算機透過訊息交換,嘗試達成共識;但有時候,系統上協調計算或成員計算機可能因系統錯誤並交換錯的訊息,導致影響最終的系統一致性。
拜占庭將軍問題就根據錯誤計算機的數量,尋找可能的解決辦法,這無法找到一個絕對的答案,但只可以用來驗證一個機制的有效程度。
而拜占庭問題的可能解決方法為:
在 N ≥ 3F + 1 的情況下一致性是可能解決。其中,N為計算機總數,F為有問題計算機總數。信息在計算機間互相交換後,各計算機列出所有得到的信息,以大多數的結果作為解決辦法。
第一,系統運轉可以擺脫對代幣的依賴,共識各節點由業務的參與方或者監管方組成,安全性與穩定性由業務相關方保證。
第二,共識的時延大約在2到5秒鍾。
第三,共識效率高,可滿足高頻交易量的需求。
第一,當有1/3或以上記賬人停止工作後,系統將無法提供服務;
第二,當有1/3或以上記賬人聯合作惡,可能系統會出現會留下密碼學證據的分叉。
小蟻改良了實用拜占庭容錯機制。該機制是由權益來選出記賬人,然後記賬人之間通過拜占庭容錯演算法來達成共識。
此演算法在PBFT基礎上進行了以下改進:
第一,將C/S架構的請求響應模式,改進為適合P2P網路的對等節點模式;
第二,將靜態的共識參與節點改進為可動態進入、退出的動態共識參與節點;
第三,為共識參與節點的產生設計了一套基於持有權益比例的投票機制,通過投票決定共識參與節點(記賬節點);
第四,在區塊鏈中引入數字證書,解決了投票中對記賬節點真實身份的認證問題。
第一,專業化的記賬人;
第二,可以容忍任何類型的錯誤;
第三,記賬由多人協同完成,每一個區塊都有最終性,不會分產生區塊鏈分叉;
第四,演算法的可靠性有嚴格的數學證明來保證;
第一,當有1/3或以上記賬人停止工作後,區塊鏈系統將無法提供服務;
第二,當有1/3或以上記賬人聯合作惡,且其它所有的記賬人被恰好分割為兩個網路孤島時,惡意記賬人可以使區塊鏈系統出現分叉,但是會留下密碼學證據;
瑞波共識機制是全體節點選取出特殊節點組成特殊節點列表,由特殊節點列表內的節點達成共識。
初始特殊節點列表就像一個俱樂部,要接納一個新成員,必須由51%的該俱樂部會員投票通過。共識遵循這核心成員的51%權力,外部人員則沒有影響力。波共識機制將股東們與其投票權隔開,並因此比其他系統更中心化。
瑞波共識機制參與共識形成的只有特殊節點,大大的減少了共識形成的時間。在實踐中,瑞波區塊鏈系統達成共識需要3-6秒鍾,遠遠快於比特幣區塊鏈系統的10分鍾。同時瑞波區塊鏈系統對並發交易的處理達到每秒數萬筆,而比特幣區塊鏈系統只有每秒7筆。
瑞波共識機制處理節點意見分歧的方式也是不同的。瑞波的信任節點對於新區塊的創造進行協商的時間是區塊鏈更新前。先協商,達成共識後再對區塊鏈進行更新。
由於瑞波共識機制的共識是由特殊節點達成的,普通節點並不需要維護一個完整的歷史賬本。各個節點可以根據自己的業務需要選擇同步同步完整的歷史賬本或者任意最近幾步的賬本。這也意味著對存儲空間和網路流量需求的減少。
瑞波共識機製取消了挖坑的發行貨幣機制,採用了原生貨幣(1000億枚)的方式發幣,從而大量的避免了挖礦的天量能耗。