當前位置:首頁 » 區塊鏈知識 » 拜占庭創新社區塊鏈

拜占庭創新社區塊鏈

發布時間: 2023-05-22 19:32:21

㈠ 秦儲承辦 | 西部數博會暨第三屆西安區塊鏈產業發展論壇成功召開!

2022年6月17日下午,由 中共西安市委人才工作領導小組辦公室、西安市大數據資源管理局指導,西安市區塊鏈技術應用協會主辦,秦儲承辦的「2022中國西部數字經濟博覽會暨第三屆中國西安區塊鏈產業發展論壇」 (以下簡稱:論壇)成功召開,巴比特、西部網、環球網、中國報道、中國新聞、三秦都市報、大秦網、西安日報、西安晚報、華商報、華商網、鳳凰風、新浪網、搜狐網、網易、騰訊網、鏈節點、8問、察訪區塊鏈等多家媒體為本屆論壇提供報道支持。

本屆論壇作為2022中國西部數字經濟博覽會的分論壇,論壇以「聚焦元宇宙·培育新業態·釋放新動能」為主題,特邀 西安市大數據資源管理局孫偉副局長,中國書法家協會理事、陝西武警總隊原司令員王春新,西安培華學院姜波理事長,陝西職業技術學院黨委副書記、院長劉勝輝,中共西安市委網信辦信息化處李永彬處長,西安滻灞生態區管委會產業發展促進局張藝副局長,西安市區塊鏈技術應用協會檀敏會長,西安市區塊鏈技術應用協會李偉鵬秘書長,西安市區塊鏈技術應用協會趙亮監事長, 以及政府領導、主題演講嘉賓、圓桌會議嘉賓、行業協會代表、區塊鏈領域專家、財經媒體代表、本地企業代表等近500名嘉賓出席,共同探討時代前沿話題,共話區塊鏈產業未來發展趨勢。

本屆論壇在社會各界代表的大力支持下,設有 政府領導致辭、大咖主題演講、頒獎儀式、簽約儀式、嘉賓圓桌對話 等多個環節,以探索數字經濟和實體經濟的雙向賦能道路,積極推進區塊鏈產業的跨區域聯動發展,釋放區塊鏈產業發展新動能,持續推動數字經濟和實體經濟融合發展。

本屆論壇於6月17日下午14:00正式開啟,在兩位主持人對到場的政府領導和參會嘉賓進行簡要介紹並表示熱烈歡迎後,論壇正式開幕!

論壇伊始,西安市大數據資源管理局孫偉副局長為本次論壇致歡迎辭。 孫副局長在本次致辭中,重點介紹了我國區塊鏈產業發展現狀、我市數字經濟發展成果等情況。

孫副局長在本次致辭中強調:

當前,全球經濟仍處於脆弱復甦之中,數字經濟已成為有效推動經濟高質量發展的新動能和新引擎。作為數字經濟產業的西部重鎮,西安立足新發展階段、貫徹新發展理念、構建新發展格局,在智慧城市、數字經濟等方面已經取得了一定成效,西安大數據協會、區塊鏈協會等行業組織的正向引導,更是為我市數字經濟的未來發展奠定了堅實基礎。

未來,西安將堅持創新驅動,營造良好數字生態,努力推動數字技術更好服務實體經濟,營造開放、公平、公正、非歧視的數字經濟發展環境,同時歡迎各企業落戶西安,共建數字經濟產業生態!

演講嘉賓: 鮑大偉 金鏈盟區塊鏈戰略合作負責人

作為本屆論壇的第一位主題演講嘉賓,鮑大偉先生系統介紹了金鏈盟的定位、宗旨、技術優勢、落地應用、人才培育體系、合作網路等多方面情況。

鮑大偉先生談到:

作為中國最大的區塊鏈組織、最具活力的區塊鏈技術開源社區、最具國際影響力的區塊鏈聯盟之一,金鏈盟立足灣區,服務中國,以安全可控技術為特色,致力於提升金融服務實體經濟能力。截止目前,金鏈盟已實現全鏈路國產化支持,200多個應用穩定生產運行,多案例取得良好的社會、經濟效益;廣受認可的區塊鏈人才培育體系,成功培育了區塊鏈專業人才3萬餘人,持續輸出區塊鏈產業中堅力量!

演講嘉賓: 檀敏  西安市區塊鏈技術應用協會會長

論壇現場,檀敏會長以「企業面臨的難題和思考的問題」為切入點,詳細介紹了數字技術對企業發展的推動作用、元宇宙產業格局等內容。

檀敏會長談到:

企業渴望通過數字技術,在「市場需求、品牌打造、用戶獲取、用戶粘性、增加盈利、產業升級」等方面得到突破,目前已經有部分企業取得成功。面對「數字藏品+實體經濟+元宇宙」的未來大趨勢,政府、行業協會、產業園區、先知先行企業和學術機構,都是元宇宙的重要推動者,跨行業、跨領域的技術融通與業務創新,有望促成日益繁榮的元宇宙產業格局。

在兩位嘉賓的精彩演講後,本屆論壇迎來了首個簽約儀式: 「元農源--賦能實體經濟 助力鄉村振興」戰略合作簽約儀式 (以下簡稱:簽約儀式)。

趙祥兵   元農源總經理

劉志強  西安市閻良區數據信息服務中心主任

白昱   渭南市蒲城縣大數據中心主任

郭紅兵  洛川果投好蘋果供應鏈管理有限公司董事長

張建波  興平市辣椒產業協會會長

張邁  禮泉縣小應村村委書記

付磊   陝西新知青網路科技有限公司總經理

陳清  大荔百果王冬棗合作社總經理

演講嘉賓: 馬千里  巴比特副總裁&META50人論壇秘書長

作為本屆論壇的第三位主題演講嘉賓,馬千里秘書長以「元宇宙概念」為切入點,介紹了「未來元宇宙的產品形態、未來的元宇宙版權形態」等方面內容。

馬千里先生提到:

隨著元宇宙概念和關鍵技術的逐漸成熟,元宇宙被不斷地應用到各個場景。在移動互聯網時代,網頁被APP取而代之,人們的交互性更便捷,只需點動手指,便可傳達輸出成千上萬的信息;元宇宙時代的產品形態被NPC取而代之,AR/AI虛擬技術採用全景虛擬技術,提高沉浸感。

未來NPC的核心將會是底層協議(區塊鏈)+虛擬數字人(視覺呈現)+AI(大規模決策),未來元宇宙中的版權形態將會催生出新的資產形態、新的創作主體以及新的組合狀態,未來元宇宙的新型產業版圖正在逐漸成型。

演講嘉賓: 馬強     區塊鏈服務網路BSN發展聯盟副理事長單位 、 紅棗科技C00

論壇現場,馬強先生系統闡述了區塊鏈如何賦能數字經濟、什麼是NFT技術、NFT技術在元宇宙中的重要性、NFT的中國化技術體系等內容。

馬強先生提到:

DDC網路是在區塊鏈服務網路BSN之上,建立一個由多條開放聯盟鏈組成的二級網路,並為NFT/DDC的生成提供現成的鏈環境和相關的智能合約、API和SDK。BSN-DDC基礎網路秉承「像公有鏈一樣透明、在國內完全合規、價格低廉、技術多樣性」等八大核心理念,目前已建設泰安鏈、武漢鏈、文昌鏈、福州鏈等多條基於不同區塊鏈技術的開放聯盟鏈!

主持人: 李海峰  秦儲科技運維總監

圓桌嘉賓:

李石   騰訊雲西北總經理

姚堯   浪潮陝西區雲裝備總經理

王磊   華為雲區塊鏈產品總監

劉福華   亞馬遜雲科技西北業務總監

張磊   阿里雲西北互聯網業務總監

么益   金山雲政企事業部公共事務總監

圓桌會議上,各嘉賓圍繞著「元宇宙 - 下一代互聯網與商業場景」這一主題,分別就「元宇宙的未來形態、元宇宙領域的發力方向、雲計算在元宇宙產業的作用、值得關注的元宇宙應用場景」發表了各自觀點。 正如諸位嘉賓所言:元宇宙賽道充滿了想像空間,值得所有企業布局探索。

分享嘉賓: 鮑帥 深信科創信息技術公司聯合創始人&COO

論壇現場,鮑帥先生以「區塊鏈+自動駕駛」為切入點,分享了自動駕駛系統的商業落地問題、基於區塊鏈的自動駕駛數據共享、基於區塊鏈的自動駕駛數據共享等技術落地方向。

在鮑帥先生的精彩演講後,本屆論壇迎來了第二輪簽約環節: 甘肅文交中心絲路數字藏品交易平台簽約儀式 (以下簡稱:簽約儀式)。

深耕文化融合新領域,鍛造國際文交大平台,甘肅省文化產權交易中心始終秉持「文化對接資本,交易提升價值」的宗旨,不斷推動文化與互聯網的融合發展,全力打造一個文化要素跨行業、跨地域、專業化、精品化、特色化為一體的文化產業綜合性服務平台。

甘肅文交中心絲路數字藏品交易平台 作為一站式數字商品產業服務平台,不斷推動數字商品的確權、確真、確價、確信、確序,真正意義服務實體經濟,促進數字商品的流通,推進文化與互聯網、金融以及創意的深度融合。

王啟明   甘肅文交絲路數藏交易平台總經理

孟凡盈   秦儲科技總經理

王啟明   甘肅文交絲路數藏交易平台總經理

楊寧   陝西叄貳貳文化創意發展有限公司總經理

演講嘉賓: 楊永強  紙貴科技產品總監

作為本屆論壇的第五位主題嘉賓,楊永強先生以「元宇宙賦能數字產業的應用實踐」為切入點,舉例分享了元宇宙在數字產業中的實踐應用,以及未來元宇宙對於數字經濟的影響。

楊永強先生提到:

作為躍向數字世界的重要方式,國內多個城市已經先後發布了元宇宙激勵政策;作為整合多種新技術產生的新型社會形態,元宇宙已經在城市治理、數字孿生、數字藏品、數字藝術、城市展廳、文娛活動、虛擬數字人物等多行業多領域產業數字化轉型過程中持續發力!

演講嘉賓: 馬立川   陝西省區塊鏈與安全計算重點實驗室副主任

作為本屆論壇的最後一位主題分享嘉賓,馬立川副主任從「區塊鏈賦能可信數字經濟建設」為切入點,系統闡述了國內外產業現狀、國內產業發展趨勢、陝西省數字經濟各業態數據、數字經濟發展面臨的挑戰等內容。

馬立川副主任表示:

數字經濟是打造新發展格局的關鍵要素,數字經濟里最核心的是數據,如若能通過推動傳統數字要素革新與傳統產業廣泛深度融合給予實現資源利用最大化、規模經濟泛在化供需均衡方面展現了很大的一個潛力。

有了傳統數據要素核心重組加上數據要素暢通,這樣一來就能夠融合發展強大的國內市場,也能夠大力拓展國外的貿易市場。

本屆論壇的頒獎儀式由西安市區塊鏈技術應用協會檀敏會長、李偉鵬秘書長、趙亮監事長擔任頒獎嘉賓,分別頒發 【元宇宙產業技術領軍品牌】 和 【數字文化產業創新品牌】 兩項大獎,獲獎企業如下:

元宇宙產業技術領軍品牌:

金鏈盟、阿里雲、騰訊雲、華為雲、金山雲、浪潮、亞馬遜雲科技、紙貴科技、趣鏈科技、秦儲科技、紅棗科技、飛蝶XR科技、矩池雲、藝元科技

數字文化產業創新品牌:

靈境藏品、秦儲數藏、紅洞數藏、無界版圖

主持人: 馬千里   巴比特副總裁、META50人論壇秘書長

圓桌嘉賓:

楊錦帆   西北政法大學法治與科技發展研究室主任

祁魯   廈門市雲大物智數據研究院院長

張耀森  福建省區塊鏈協會副秘書長

張瑋   南京區塊鏈產業應用協會副會長、藝元科技總經理

韓奎   秦儲產品總監

陳思琪   靈境藏品商務負責人

第二輪圓桌會議上,各嘉賓圍繞著「區塊鏈技術推動數字文化產業高質量發展」這一主題,共同就「區塊鏈技術如何助力我國文化產業數字化、文化產業數字化催生新消費新業態、數字文化產業面臨的問題與挑戰、如何推動數字文化產業高質量規范化發展、數字藏品的未來重點布局方向」等問題進行了探討, 數字文化產業憑借開放性、低門檻和互動性等優勢,進一步延長文化產業鏈,促進結構優化,形成線上線下一體化發展新趨勢!

㈡ 區塊鏈的共識機制

一、區塊鏈共識機制的目標

區塊鏈是什麼?簡單而言,區塊鏈是一種去中心化的資料庫,或可以叫作分布式賬本(distributed ledger)。傳統上所有的資料庫都是中心化的,例如一間銀行的賬本就儲存在銀行的中心伺服器里。中心化資料庫的弊端是數據的安全及正確性全系於資料庫運營方(即銀行),因為任何能夠訪問中心化資料庫的人(如銀行職員或黑客)都可以破壞或修改其中的數據。


而區塊鏈技術則容許資料庫存放在全球成千上萬的電腦上,每個人的賬本通過點對點網路進行同步,網路中任何用戶一旦增加一筆交易,交易信息將通過網路通知其他用戶驗證,記錄到各自的賬本中。區塊鏈之所以得其名是因為它是由一個個包含交易信息的區塊(block)從後向前有序鏈接起來的數據結構。


很多人對區塊鏈的疑問是,如果每一個用戶都擁有一個獨立的賬本,那麼是否意味著可以在自己的賬本上添加任意的交易信息,而成千上萬個賬本又如何保證記賬的一致性? 解決記賬一致性問題正是區塊鏈共識機制的目標 。區塊鏈共識機制旨在保證分布式系統里所有節點中的數據完全相同並且能夠對某個提案(proposal)(例如是一項交易紀錄)達成一致。然而分布式系統由於引入了多個節點,所以系統中會出現各種非常復雜的情況;隨著節點數量的增加,節點失效或故障、節點之間的網路通信受到干擾甚至阻斷等就變成了常見的問題,解決分布式系統中的各種邊界條件和意外情況也增加了解決分布式一致性問題的難度。


區塊鏈又可分為三種:


公有鏈:全世界任何人都可以隨時進入系統中讀取數據、發送可確認交易、競爭記賬的區塊鏈。公有鏈通常被認為是「完全去中心化「的,因為沒有任何人或機構可以控制或篡改其中數據的讀寫。公有鏈一般會通過代幣機制鼓勵參與者競爭記賬,來確保數據的安全性。


聯盟鏈:聯盟鏈是指有若干個機構共同參與管理的區塊鏈。每個機構都運行著一個或多個節點,其中的數據只允許系統內不同的機構進行讀寫和發送交易,並且共同來記錄交易數據。這類區塊鏈被認為是「部分去中心化」。


私有鏈:指其寫入許可權是由某個組織和機構控制的區塊鏈。參與節點的資格會被嚴格的限制,由於參與的節點是有限和可控的,因此私有鏈往往可以有極快的交易速度、更好的隱私保護、更低的交易成本、不容易被惡意攻擊、並且能夠做到身份認證等金融行業必須的要求。相比中心化資料庫,私有鏈能夠防止機構內單節點故意隱瞞或篡改數據。即使發生錯誤,也能夠迅速發現來源,因此許多大型金融機構在目前更加傾向於使用私有鏈技術。

二、區塊鏈共識機制的分類

解決分布式一致性問題的難度催生了數種共識機制,它們各有其優缺點,亦適用於不同的環境及問題。被眾人常識的共識機制有:


l PoW(Proof of Work)工作量證明機制

l PoS(Proof of Stake)股權/權益證明機制

l DPoS(Delegated Proof of Stake)股份授權證明機制

l PBFT(Practical Byzantine Fault Tolerance)實用拜占庭容錯演算法

l DBFT(Delegated Byzantine Fault Tolerance)授權拜占庭容錯演算法

l SCP (Stellar Consensus Protocol ) 恆星共識協議

l RPCA(Ripple Protocol Consensus Algorithm)Ripple共識演算法

l Pool驗證池共識機制


(一)PoW(Proof of Work)工作量證明機制


1. 基本介紹


在該機制中,網路上的每一個節點都在使用SHA256哈希函數(hash function) 運算一個不斷變化的區塊頭的哈希值 (hash sum)。 共識要求算出的值必須等於或小於某個給定的值。 在分布式網路中,所有的參與者都需要使用不同的隨機數來持續計算該哈希值,直至達到目標為止。當一個節點的算出確切的值,其他所有的節點必須相互確認該值的正確性。之後新區塊中的交易將被驗證以防欺詐。


比特幣中,以上運算哈希值的節點被稱作「礦工」,而PoW的過程被稱為「挖礦」。挖礦是一個耗時的過程,所以也提出了相應的激勵機制(例如向礦工授予一小部分比特幣)。PoW的優點是完全的去中心化,其缺點是消耗大量算力造成了的資源浪費,達成共識的周期也比較長,共識效率低下,因此其不是很適合商業使用。



2. 加密貨幣的應用實例


比特幣(Bitcoin) 及萊特幣(Litecoin)。以太坊(Ethereum) 的前三個階段(Frontier前沿、Homestead家園、Metropolis大都會)皆採用PoW機制,其第四個階段 (Serenity寧靜) 將採用權益證明機制。PoW適用於公有鏈。


PoW機制雖然已經成功證明了其長期穩定和相對公平,但在現有框架下,採用PoW的「挖礦」形式,將消耗大量的能源。其消耗的能源只是不停的去做SHA256的運算來保證工作量公平,並沒有其他的存在意義。而目前BTC所能達到的交易效率為約5TPS(5筆/秒),以太坊目前受到單區塊GAS總額的上限,所能達到的交易頻率大約是25TPS,與平均千次每秒、峰值能達到萬次每秒處理效率的VISA和MASTERCARD相差甚遠。


3. 簡圖理解模式



(ps:其中A、B、C、D計算哈希值的過程即為「挖礦」,為了犒勞時間成本的付出,機制會以一定數量的比特幣作為激勵。)


(Ps:PoS模式下,你的「挖礦」收益正比於你的幣齡(幣的數量*天數),而與電腦的計算性能無關。我們可以認為任何具有概率性事件的累計都是工作量證明,如淘金。假設礦石含金量為p% 質量, 當你得到一定量黃金時,我們可以認為你一定挖掘了1/p 質量的礦石。而且得到的黃金數量越多,這個證明越可靠。)


(二)PoS(Proof of Stake)股權/權益證明機制


1.基本介紹


PoS要求人們證明貨幣數量的所有權,其相信擁有貨幣數量多的人攻擊網路的可能性低。基於賬戶余額的選擇是非常不公平的,因為單一最富有的人勢必在網路中佔主導地位,所以提出了許多解決方案。


在股權證明機制中,每當創建一個區塊時,礦工需要創建一個稱為「幣權」的交易,這個交易會按照一定比例預先將一些幣發給礦工。然後股權證明機制根據每個節點持有代幣的比例和時間(幣齡), 依據演算法等比例地降低節點的挖礦難度,以加快節點尋找隨機數的速度,縮短達成共識所需的時間。


與PoW相比,PoS可以節省更多的能源,更有效率。但是由於挖礦成本接近於0,因此可能會遭受攻擊。且PoS在本質上仍然需要網路中的節點進行挖礦運算,所以它同樣難以應用於商業領域。



2.數字貨幣的應用實例


PoS機制下較為成熟的數字貨幣是點點幣(Peercoin)和未來幣(NXT),相比於PoW,PoS機制節省了能源,引入了" 幣天 "這個概念來參與隨機運算。PoS機制能夠讓更多的持幣人參與到記賬這個工作中去,而不需要額外購買設備(礦機、顯卡等)。每個單位代幣的運算能力與其持有的時間長成正相關,即持有人持有的代幣數量越多、時間越長,其所能簽署、生產下一個區塊的概率越大。一旦其簽署了下一個區塊,持幣人持有的幣天即清零,重新進入新的循環。


PoS適用於公有鏈。


3.區塊簽署人的產生方式


在PoS機制下,因為區塊的簽署人由隨機產生,則一些持幣人會長期、大額持有代幣以獲得更大概率地產生區塊,盡可能多的去清零他的"幣天"。因此整個網路中的流通代幣會減少,從而不利於代幣在鏈上的流通,價格也更容易受到波動。由於可能會存在少量大戶持有整個網路中大多數代幣的情況,整個網路有可能會隨著運行時間的增長而越來越趨向於中心化。相對於PoW而言,PoS機制下作惡的成本很低,因此對於分叉或是雙重支付的攻擊,需要更多的機制來保證共識。穩定情況下,每秒大約能產生12筆交易,但因為網路延遲及共識問題,需要約60秒才能完整廣播共識區塊。長期來看,生成區塊(即清零"幣天")的速度遠低於網路傳播和廣播的速度,因此在PoS機制下需要對生成區塊進行"限速",來保證主網的穩定運行。


4.簡圖理解模式




(PS:擁有越多「股份」權益的人越容易獲取賬權。是指獲得多少貨幣,取決於你挖礦貢獻的工作量,電腦性能越好,分給你的礦就會越多。)


(在純POS體系中,如NXT,沒有挖礦過程,初始的股權分配已經固定,之後只是股權在交易者之中流轉,非常類似於現實世界的股票。)


(三)DPoS(Delegated Proof of Stake)股份授權證明機制


1.基本介紹


由於PoS的種種弊端,由此比特股首創的權益代表證明機制 DPoS(Delegated Proof of Stake)應運而生。DPoS 機制中的核心的要素是選舉,每個系統原生代幣的持有者在區塊鏈裡面都可以參與選舉,所持有的代幣余額即為投票權重。通過投票,股東可以選舉出理事會成員,也可以就關系平台發展方向的議題表明態度,這一切構成了社區自治的基礎。股東除了自己投票參與選舉外,還可以通過將自己的選舉票數授權給自己信任的其它賬戶來代表自己投票。


具體來說, DPoS由比特股(Bitshares)項目組發明。股權擁有著選舉他們的代表來進行區塊的生成和驗證。DPoS類似於現代企業董事會制度,比特股系統將代幣持有者稱為股東,由股東投票選出101名代表, 然後由這些代表負責生成和驗證區塊。 持幣者若想稱為一名代表,需先用自己的公鑰去區塊鏈注冊,獲得一個長度為32位的特有身份標識符,股東可以對這個標識符以交易的形式進行投票,得票數前101位被選為代表。

代表們輪流產生區塊,收益(交易手續費)平分。DPoS的優點在於大幅減少了參與區塊驗證和記賬的節點數量,從而縮短了共識驗證所需要的時間,大幅提高了交易效率。從某種角度來說,DPoS可以理解為多中心系統,兼具去中心化和中心化優勢。優點:大幅縮小參與驗證和記賬節點的數量,可以達到秒級的共識驗證。缺點:投票積極性不高,絕大部分代幣持有者未參與投票;另整個共識機制還是依賴於代幣,很多商業應用是不需要代幣存在的。


DPoS機制要求在產生下一個區塊之前,必須驗證上一個區塊已經被受信任節點所簽署。相比於PoS的" 全民挖礦 ",DPoS則是利用類似" 代表大會 "的制度來直接選取可信任節點,由這些可信任節點(即見證人)來代替其他持幣人行使權力,見證人節點要求長期在線,從而解決了因為PoS簽署區塊人不是經常在線而可能導致的產塊延誤等一系列問題。 DPoS機制通常能達到萬次每秒的交易速度,在網路延遲低的情況下可以達到十萬秒級別,非常適合企業級的應用。 因為公信寶數據交易所對於數據交易頻率要求高,更要求長期穩定性,因此DPoS是非常不錯的選擇。



2. 股份授權證明機制下的機構與系統


理事會是區塊鏈網路的權力機構,理事會的人選由系統股東(即持幣人)選舉產生,理事會成員有權發起議案和對議案進行投票表決。


理事會的重要職責之一是根據需要調整系統的可變參數,這些參數包括:


l 費用相關:各種交易類型的費率。

l 授權相關:對接入網路的第三方平台收費及補貼相關參數。

l 區塊生產相關:區塊生產間隔時間,區塊獎勵。

l 身份審核相關:審核驗證異常機構賬戶的信息情況。

l 同時,關繫到理事會利益的事項將不通過理事會設定。


在Finchain系統中,見證人負責收集網路運行時廣播出來的各種交易並打包到區塊中,其工作類似於比特幣網路中的礦工,在採用 PoW(工作量證明)的比特幣網路中,由一種獲獎概率取決於哈希算力的抽彩票方式來決定哪個礦工節點產生下一個區塊。而在採用 DPoS 機制的金融鏈網路中,通過理事會投票決定見證人的數量,由持幣人投票來決定見證人人選。入選的活躍見證人按順序打包交易並生產區塊,在每一輪區塊生產之後,見證人會在隨機洗牌決定新的順序後進入下一輪的區塊生產。


3. DPoS的應用實例


比特股(bitshares) 採用DPoS。DPoS主要適用於聯盟鏈。


4.簡圖理解模式





(四)PBFT(Practical Byzantine Fault Tolerance)實用拜占庭容錯演算法


1. 基本介紹


PBFT是一種基於嚴格數學證明的演算法,需要經過三個階段的信息交互和局部共識來達成最終的一致輸出。三個階段分別為預備 (pre-prepare)、准備 (prepare)、落實 (commit)。PBFT演算法證明系統中只要有2/3比例以上的正常節點,就能保證最終一定可以輸出一致的共識結果。換言之,在使用PBFT演算法的系統中,至多可以容忍不超過系統全部節點數量1/3的失效節點 (包括有意誤導、故意破壞系統、超時、重復發送消息、偽造簽名等的節點,又稱為」拜占庭」節點)。



2. PBFT的應用實例


著名聯盟鏈Hyperledger Fabric v0.6採用的是PBFT,v1.0又推出PBFT的改進版本SBFT。PBFT主要適用於私有鏈和聯盟鏈。


3. 簡圖理解模式




上圖顯示了一個簡化的PBFT的協議通信模式,其中C為客戶端,0 – 3表示服務節點,其中0為主節點,3為故障節點。整個協議的基本過程如下:


(1) 客戶端發送請求,激活主節點的服務操作;

(2) 當主節點接收請求後,啟動三階段的協議以向各從節點廣播請求;

(a) 序號分配階段,主節點給請求賦值一個序號n,廣播序號分配消息和客戶端的請求消息m,並將構造pre-prepare消息給各從節點;

(b) 交互階段,從節點接收pre-prepare消息,向其他服務節點廣播prepare消息;

(c) 序號確認階段,各節點對視圖內的請求和次序進行驗證後,廣播commit消息,執行收到的客戶端的請求並給客戶端響應。

(3) 客戶端等待來自不同節點的響應,若有m+1個響應相同,則該響應即為運算的結果;



(五)DBFT(Delegated Byzantine Fault Tolerance)授權拜占庭容錯演算法


1. 基本介紹


DBFT建基於PBFT的基礎上,在這個機制當中,存在兩種參與者,一種是專業記賬的「超級節點」,一種是系統當中不參與記賬的普通用戶。普通用戶基於持有權益的比例來投票選出超級節點,當需要通過一項共識(記賬)時,在這些超級節點中隨機推選出一名發言人擬定方案,然後由其他超級節點根據拜占庭容錯演算法(見上文),即少數服從多數的原則進行表態。如果超過2/3的超級節點表示同意發言人方案,則共識達成。這個提案就成為最終發布的區塊,並且該區塊是不可逆的,所有裡面的交易都是百分之百確認的。如果在一定時間內還未達成一致的提案,或者發現有非法交易的話,可以由其他超級節點重新發起提案,重復投票過程,直至達成共識。



2. DBFT的應用實例


國內加密貨幣及區塊鏈平台NEO是 DBFT演算法的研發者及採用者。


3. 簡圖理解模式




假設系統中只有四個由普通用戶投票選出的超級節點,當需要通過一項共識時,系統就會從代表中隨機選出一名發言人擬定方案。發言人會將擬好的方案交給每位代表,每位代表先判斷發言人的計算結果與它們自身紀錄的是否一致,再與其它代表商討驗證計算結果是否正確。如果2/3的代表一致表示發言人方案的計算結果是正確的,那麼方案就此通過。


如果只有不到2/3的代表達成共識,將隨機選出一名新的發言人,再重復上述流程。這個體系旨在保護系統不受無法行使職能的領袖影響。


上圖假設全體節點都是誠實的,達成100%共識,將對方案A(區塊)進行驗證。



鑒於發言人是隨機選出的一名代表,因此他可能會不誠實或出現故障。上圖假設發言人給3名代表中的2名發送了惡意信息(方案B),同時給1名代表發送了正確信息(方案A)。


在這種情況下該惡意信息(方案B)無法通過。中間與右邊的代表自身的計算結果與發言人發送的不一致,因此就不能驗證發言人擬定的方案,導致2人拒絕通過方案。左邊的代表因接收了正確信息,與自身的計算結果相符,因此能確認方案,繼而成功完成1次驗證。但本方案仍無法通過,因為不足2/3的代表達成共識。接著將隨機選出一名新發言人,重新開始共識流程。




上圖假設發言人是誠實的,但其中1名代表出現了異常;右邊的代表向其他代表發送了不正確的信息(B)。


在這種情況下發言人擬定的正確信息(A)依然可以獲得驗證,因為左邊與中間誠實的代表都可以驗證由誠實的發言人擬定的方案,達成2/3的共識。代表也可以判斷到底是發言人向右邊的節點說謊還是右邊的節點不誠實。


(六)SCP (Stellar Consensus Protocol ) 恆星共識協議


1. 基本介紹


SCP 是 Stellar (一種基於互聯網的去中心化全球支付協議) 研發及使用的共識演算法,其建基於聯邦拜占庭協議 (Federated Byzantine Agreement) 。傳統的非聯邦拜占庭協議(如上文的PBFT和DBFT)雖然確保可以通過分布式的方法達成共識,並達到拜占庭容錯 (至多可以容忍不超過系統全部節點數量1/3的失效節點),它是一個中心化的系統 — 網路中節點的數量和身份必須提前知曉且驗證過。而聯邦拜占庭協議的不同之處在於它能夠去中心化的同時,又可以做到拜占庭容錯。


[…]


(七)RPCA(Ripple Protocol Consensus Algorithm)Ripple共識演算法


1. 基本介紹


RPCA是Ripple(一種基於互聯網的開源支付協議,可以實現去中心化的貨幣兌換、支付與清算功能)研發及使用的共識演算法。在 Ripple 的網路中,交易由客戶端(應用)發起,經過追蹤節點(tracking node)或驗證節點(validating node)把交易廣播到整個網路中。追蹤節點的主要功能是分發交易信息以及響應客戶端的賬本請求。驗證節點除包含追蹤節點的所有功能外,還能夠通過共識協議,在賬本中增加新的賬本實例數據。


Ripple 的共識達成發生在驗證節點之間,每個驗證節點都預先配置了一份可信任節點名單,稱為 UNL(Unique Node List)。在名單上的節點可對交易達成進行投票。共識過程如下:


(1) 每個驗證節點會不斷收到從網路發送過來的交易,通過與本地賬本數據驗證後,不合法的交易直接丟棄,合法的交易將匯總成交易候選集(candidate set)。交易候選集裡面還包括之前共識過程無法確認而遺留下來的交易。

(2) 每個驗證節點把自己的交易候選集作為提案發送給其他驗證節點。

(3) 驗證節點在收到其他節點發來的提案後,如果不是來自UNL上的節點,則忽略該提案;如果是來自UNL上的節點,就會對比提案中的交易和本地的交易候選集,如果有相同的交易,該交易就獲得一票。在一定時間內,當交易獲得超過50%的票數時,則該交易進入下一輪。沒有超過50%的交易,將留待下一次共識過程去確認。

(4) 驗證節點把超過50%票數的交易作為提案發給其他節點,同時提高所需票數的閾值到60%,重復步驟(3)、步驟(4),直到閾值達到80%。

(5) 驗證節點把經過80%UNL節點確認的交易正式寫入本地的賬本數據中,稱為最後關閉賬本(last closed ledger),即賬本最後(最新)的狀態。


在Ripple的共識演算法中,參與投票節點的身份是事先知道的,因此,演算法的效率比PoW等匿名共識演算法要高效,交易的確認時間只需幾秒鍾。這點也決定了該共識演算法只適合於聯盟鏈或私有鏈。Ripple共識演算法的拜占庭容錯(BFT)能力為(n-1)/5,即可以容忍整個網路中20%的節點出現拜占庭錯誤而不影響正確的共識。



2. 簡圖理解模式


共識過程節點交互示意圖:



共識演算法流程:



(八)POOL驗證池共識機制


Pool驗證池共識機制是基於傳統的分布式一致性演算法(Paxos和Raft)的基礎上開發的機制。Paxos演算法是1990年提出的一種基於消息傳遞且具有高度容錯特性的一致性演算法。過去, Paxos一直是分布式協議的標准,但是Paxos難於理解,更難以實現。Raft則是在2013年發布的一個比Paxos簡單又能實現Paxos所解決問題的一致性演算法。Paxos和Raft達成共識的過程皆如同選舉一樣,參選者需要說服大多數選民(伺服器)投票給他,一旦選定後就跟隨其操作。Paxos和Raft的區別在於選舉的具體過程不同。而Pool驗證池共識機制即是在這兩種成熟的分布式一致性演算法的基礎上,輔之以數據驗證的機制。






㈢ 區塊鏈的技術原理是什麼

區塊鏈技術涉及的關鍵點包括:去中心化(冊蘆陪Decentralized)、去信任(Trustless)、集體維護(Collectivelymaintain)、可靠資料庫(ReliableDatabase)、時間戳(Timestamp)、非對稱加密(AsymmetricCryptography)等。

區塊鏈技術重新定義了網路中信用的生成方式:在系統中,參與者無需了解其他人的背景資料,也不需要藉助第三方機構的擔保或保證,區塊鏈技術保障了系統對價值轉移的活動進行記錄、傳輸、存儲,其最後的結果一定是可信的。

(3)拜占庭創新社區塊鏈擴展閱讀

區塊鏈技術原理的來源可歸納為一個數學問題:拜占庭將軍問題。拜占庭將軍問題延伸到互聯網生活中來,其內涵可概括為:在互聯網大背景下,當需要與不熟悉的對手方進行價值交換活動時,人們如何才能防止不會被其中的惡意破壞者欺騙、迷惑從而做出錯誤的決策。

進一步將拜占庭將軍問題延伸到技術領域中來,其內涵可概括為:在缺少可信任州蠢的中央節點和可信任的通道的情況嘩此下,分布在網路中的各個節點應如何達成共識。區塊鏈技術解決了聞名已久的拜占庭將軍問題——它提供了一種無需信任單個節點、還能創建共識網路的方法。

㈣ 理論上區塊鏈怎麼解決拜占庭將軍問題

拜占庭將軍問題(以下簡稱「共識問題」)的正式表述是:如何在一個不基於信任的分布式網路中就信息達成共識?這個表述聽起來有些晦澀,但其本質並不復雜,下面的例子與共識問題雖然並不完全一致,但卻有助於我們的理解[9]。

想像一下在遙遠的拜占庭時代,有一個富饒的城邦,金銀珠寶綾羅綢緞應有盡有,它的領主哆啦A夢獨享著這一切奢華與榮耀。而在城邦的外圍,四位拜占庭將軍大雄、胖虎、小夫和靜香都覬覦著哆啦A夢的財富,於是他們決定聯手攻佔哆啦A夢的城邦。根據雙方的實力對比,必須有超過半數的將軍同時發起進攻方能克敵制勝,因此獲勝條件就是四人中至少三個人可以就進攻時間達成一致。那麼四位將軍的勝算有多少呢?

這個問題的答案就要取決於四個人的合作方式了,如果是集中式系統,有一個盟主,比如胖虎(相當於中央伺服器),那麼他們的勝利是毫無懸念的,因為就進攻時間達成一致非常簡單,只要胖虎召集大雄、小夫和靜香開個會討論一下就可以了,即使大家意見有分歧胖虎也可以在最後予以定奪。下面讓我們回到拜占庭將軍問題的假設里,在不基於信任的分布式網路中,四位將軍的勝算又如何呢?

?

首先由於四位將軍之間缺乏信任,因此聚到小黑屋裡開個密謀會的可能性被排除了(一旦在小黑屋裡被胖虎綁架了怎麼辦?);其次由於沒有盟主,四個人的意見都會被同等的看重。在這種情況下,四位將軍只能通過信使在各自營地之間傳遞消息,來商定進攻時間了。比如大雄覺得早上6點是發動進攻的好時機,他就會派信使將自己的意見告訴胖虎、小夫和靜香,與此同時,胖虎可能認為晚上9點發動突襲更好,小夫更喜歡下午3點出擊,而靜香希望是上午10點,他們三人也會在同一時間派出自己的信使。這樣一來,在第一輪通信結束後,四位將軍每個人都有了四個可供選擇的進攻時間,他們各自要在下一輪通信中把自己選定的時間告知另外三人。由於四個人的決策都是獨立做出的,因此最終的選擇結果就有256種可能,而只有當三人以上都恰好選擇了同一時間的時候,共識才被達成,而這樣的結果才64種,也就是說達成共識的概率僅為1/4。這還只是四位將軍的情況,如果將軍的人數是10人,100人,1000人呢?我們稍加計算就可以發現隨著人數的增加,達成共識的希望會變得越來越渺茫。

把上面例子中的將軍換成計算機網路中的節點,把信使換成節點之間的通信,把進攻時間換成需要達成共識的信息,你就可以理解共識問題所描述的困境了。達成共識的能力對於一個支付系統來說重要性不言而喻,如果你給家裡匯了一筆錢買車,第二天去銀行核實的時候櫃台告訴你「關於你匯了多少錢的問題,我們的系統里有三個版本的記錄」,這樣的銀行你顯然是不敢把錢存進去的。在比特幣出現之前共識問題是很難被完美解決的,要保證達成共識就需要採用集中式系統(除非節點滿足特定條件),要想去中心化共識就無法保證。那麼區塊鏈技術又是如何解決這一難題的呢?(關注公眾號weoption,回復「區塊鏈」,可查看全文。)

㈤ 女科學家段斯斯:在區塊鏈「江湖」背後「雙手互搏」

段斯斯在清華大學高等研究院。(受訪者供圖)

段斯斯在清華大學高等研究院擔任研究員。她工作的地方擺放的東西很少,裝備不過是三台電腦。奇崛險怪的攻防進退,只在腦海里醞釀,在鍵盤上推演,找不到任何「硝煙」的痕跡。

她的研究方向是「拜占庭容錯演算法」,旨在防範分布式系統內各節點因「敵人破壞」導致的網路崩潰。形象地說,她在進行一場高智商的「雙手互博」。第一步,假想一個可能的漏洞或「敵人」;第二步,找到讓「敵人」失效的辦法;第三步,讓同行們相信她解決的是個「真問題」。

段斯斯這樣定義自己:介於科學家與工程師之間。她不像網路工程師那樣直接同黑客「鬥法」,她用數學和邏輯的力量設下讓「敵人」無能為力的規則。

「我們中間有匪。」段斯斯用「殺人 游戲 」用語比喻她研究的「拜占庭將軍問題」。「匪傳遞假消息,誤導好人的判斷,仗自然就打輸了。我要做的是制定一個協議,確保即便有匪,好人也不會輸。」

上世紀八十年代初提出「拜占庭將軍問題」時,還沒人知道什麼是區塊鏈。正是對這一問題不斷地務虛研究,才撐起如今的區塊鏈技術。現在,中國已把區塊鏈視作核心技術自主創新的重要突破口。

一開始,段斯斯選擇的方向有點冷門,不明就裡的人以為那是在解奧數題,她也遭遇過科學期刊的拒稿。區塊鏈興起後,人們看到網路安全協議的重要性,她的學術成就才被更多人看到。

今年1月,段斯斯入選《麻省理工 科技 評論》2021年中國區「35歲以下 科技 創新35人」,獲獎理由是她提出多個業界指標性拜占庭容錯協議,在分布式系統、區塊鏈和應用密碼學領域取得突出成果。

搭上新興技術的快車,段斯斯說自己挺走運的,可運氣的解釋力畢竟有限。她碩博階段本就不多的女同學,多數沒有繼續搞學術。支持她不放棄的原因,是「這挺有意思的」。

讓段斯斯覺得有意思的正是她自己想出來的各種刁鑽問題。在她看來,發現問題有時比找到答案更重要。

「女巫攻擊」「硬分叉」「梅克爾樹」「非對稱加密」……被要求科普這些區塊鏈圈的「黑話」時,段斯斯就像在智力競賽節目中按下搶答器,思維很快,語速也很快,且很快就把問題說明白了。

段斯斯本科就讀於香港大學電機電子工程系,2014年獲美國加州大學戴維斯分校計算機博士學位,畢業後曾就職於美國橡樹嶺國家實驗室和馬里蘭大學,2020年舉家回國。

「我覺得國內發展快,工作節奏也快,我比較嚮往發展這一點,尤其在計算機領域,盡管會比較累。」她說。

年輕有為、事業有趣、家庭圓滿,周圍人說她是「人生贏家」,她卻認為自己的生活「一地雞毛」。她是兩個男孩兒的媽媽,一個6歲,一個4歲。她曾經一手抱娃,一手寫代碼。

她打小不服輸,想做的事就停不下來,這也反映在工作風格中。「別人寫代碼可以零敲碎打,可我習慣一口氣寫下去。」

解決一個段斯斯式的問題要寫上萬行代碼,至少得花個把月工夫。現在這位「帶娃科學家」最渴望的是大塊的時間。「一旦被打斷,再回來就忘記自己當時是怎麼想的了。」她說。

段斯斯分享了一條有關「時間管理」的經驗:如果你遇到5分鍾之內可以解決的事,那麼現在就解決它,拖到後面做肯定不止5分鍾。

㈥ 拜占庭將軍很忙—《區塊鏈思維》第21塊

無論在鏈圈,還是在幣圈混,經常聽到一個名詞「拜占庭將軍問題」。

到底拜占庭是啥,拜占庭將軍怎麼啦,到處都被提及,這位將軍好忙啊!

先說拜占庭這個地方。很久很久以前的歐洲,建立在比中世紀還古老的時期,歷史上就是東羅馬帝國,跨越了千年的歷史期盼。

扯遠了,回到正題,什麼是拜占庭將軍問題。

拜占庭這個地方異常堅固,同時被十個獨立鄰邦環伺,分別有一位將軍,單獨攻城必敗,只有一半以上的將軍同時攻打才能破城。

十位將軍為了協調一致,在那個古老的時代,累死傳令兵,要麼飛鴿傳書(那時的歐洲比中國落後,好像沒有這個高速通信手段)。十位將軍相互通信一次就需要90次傳信,每位將軍都有各自的攻城計劃,要想達成統一就需要往復傳遞不知道多少次。

我們可以假設一個場景,一個桌子上坐著十位將軍,每個人各自說著自己的想法,同時聽其他九位的說法,但是信息的傳遞不是實時的,有快有慢,有早有晚。想明白了嗎?也就是說,這十位將軍如果想達成一致,理論上有可能,實際上他們的有生之年都實現不了,難怪拜占庭帝國經歷了千年也沒有被這十位將軍攻破。

中本聰這個神人,利用互聯網信息傳遞的及時性特點,引入時間戳可以明確知道「誰先說、誰後說」的特性,創造性地加入挖礦機制(就是用計算機算隨機數滿足一定難度才算成功)比拼各位將軍的智商來決定誰做本次進攻的統帥,使用非對稱加密保證信息傳輸的安全性等等手段融合到比特幣中,用實例說明自己破解了這個歷史難題「拜占庭將軍問題」。從而向世人證明解決60億人口的互信問題是有去中心化解決方案地。

幣圈和鏈圈的朋友很焦慮的另一個關鍵問題就是:這個圈子概念太TM多。除了這個「拜占庭將軍問題」,還有一個「拜占庭容錯」,這是什麼鬼?這兩個是一樣的嗎?這兩個是故意有一個被寫錯了嗎?還是說我的智商稅沒交夠?其實,你都說對了。

「拜占庭將軍問題」假設所有十個將軍都是好的,都想攻破拜占庭,只是達成共識很難,比特幣提供了好人達成共識的方案。

「拜占庭容錯」是說十個將軍可以很好地達成共識。但是,如果其中出了壞人,怎麼解決?

如果十個將軍中出現了壞人(叫叛徒也行),進攻計劃是否會永遠無法達成共識呢?

「拜占庭容錯」告訴大家,是可以達成地,並且,還能找出這些「叛徒」是誰。只是,10個將軍中叛徒的數量不能超過3個,超出了就無法「容錯」,也找不出這些叛徒是誰。對應的公式就是:3n+1。其中3n+1是將軍總數(區塊鏈的賬本/礦機總數),n是能夠「容錯」的「叛徒」(惡意記錯賬)總數。

對於十個將軍來說,最多容忍三個叛徒,多了就徹底沒戲啦。為了比特幣的容錯能力越來越強,就需要更多的節點,這樣才能容忍並找出更多的叛徒。懂了吧。

小結一下:拜占庭將軍問題是假設都是好人前提下如何達成共識,拜占庭容錯就是全網最多能夠容忍多少叛徒並且能找出他們。

請交智商稅到如下地址:

國稅BTC到Kcash:

地稅ETH及各種原生Token到 Imtoken:

不交稅的,祝你做「韭菜」一切順利 :D

㈦ 區塊鏈技術的六大核心演算法

區塊鏈技術的六大核心演算法
區塊鏈核心演算法一:拜占庭協定
拜占庭的故事大概是這么說的:拜占庭帝國擁有巨大的財富,周圍10個鄰邦垂誕已久,但拜占庭高牆聳立,固若金湯,沒有一個單獨的鄰邦能夠成功入侵。任何單個鄰邦入侵的都會失敗,同時也有可能自身被其他9個鄰邦入侵。拜占庭帝國防禦能力如此之強,至少要有十個鄰邦中的一半以上同時進攻,才有可能攻破。然而,如果其中的一個或者幾個鄰邦本身答應好一起進攻,但實際過程出現背叛,那麼入侵者可能都會被殲滅。於是每一方都小心行事,不敢輕易相信鄰國。這就是拜占庭將軍問題。
在這個分布式網路里:每個將軍都有一份實時與其他將軍同步的消息賬本。賬本里有每個將軍的簽名都是可以驗證身份的。如果有哪些消息不一致,可以知道消息不一致的是哪些將軍。盡管有消息不一致的,只要超過半數同意進攻,少數服從多數,共識達成。
由此,在一個分布式的系統中,盡管有壞人,壞人可以做任意事情(不受protocol限制),比如不響應、發送錯誤信息、對不同節點發送不同決定、不同錯誤節點聯合起來干壞事等等。但是,只要大多數人是好人,就完全有可能去中心化地實現共識
區塊鏈核心演算法二:非對稱加密技術
在上述拜占庭協定中,如果10個將軍中的幾個同時發起消息,勢必會造成系統的混亂,造成各說各的攻擊時間方案,行動難以一致。誰都可以發起進攻的信息,但由誰來發出呢?其實這只要加入一個成本就可以了,即:一段時間內只有一個節點可以傳播信息。當某個節點發出統一進攻的消息後,各個節點收到發起者的消息必須簽名蓋章,確認各自的身份。
在如今看來,非對稱加密技術完全可以解決這個簽名問題。非對稱加密演算法的加密和解密使用不同的兩個密鑰.這兩個密鑰就是我們經常聽到的」公鑰」和」私鑰」。公鑰和私鑰一般成對出現, 如果消息使用公鑰加密,那麼需要該公鑰對應的私鑰才能解密; 同樣,如果消息使用私鑰加密,那麼需要該私鑰對應的公鑰才能解密。
區塊鏈核心演算法三:容錯問題
我們假設在此網路中,消息可能會丟失、損壞、延遲、重復發送,並且接受的順序與發送的順序不一致。此外,節點的行為可以是任意的:可以隨時加入、退出網路,可以丟棄消息、偽造消息、停止工作等,還可能發生各種人為或非人為的故障。我們的演算法對由共識節點組成的共識系統,提供的容錯能力,這種容錯能力同時包含安全性和可用性,並適用於任何網路環境。
區塊鏈核心演算法四:Paxos 演算法(一致性演算法)
Paxos演算法解決的問題是一個分布式系統如何就某個值(決議)達成一致。一個典型的場景是,在一個分布式資料庫系統中,如果各節點的初始狀態一致,每個節點都執行相同的操作序列,那麼他們最後能得到一個一致的狀態。為保證每個節點執行相同的命令序列,需要在每一條指令上執行一個「一致性演算法」以保證每個節點看到的指令一致。一個通用的一致性演算法可以應用在許多場景中,是分布式計算中的重要問題。節點通信存在兩種模型:共享內存和消息傳遞。Paxos演算法就是一種基於消息傳遞模型的一致性演算法。
區塊鏈核心演算法五:共識機制
區塊鏈共識演算法主要是工作量證明和權益證明。拿比特幣來說,其實從技術角度來看可以把PoW看做重復使用的Hashcash,生成工作量證明在概率上來說是一個隨機的過程。開采新的機密貨幣,生成區塊時,必須得到所有參與者的同意,那礦工必須得到區塊中所有數據的PoW工作證明。與此同時礦工還要時時觀察調整這項工作的難度,因為對網路要求是平均每10分鍾生成一個區塊。
區塊鏈核心演算法六:分布式存儲
分布式存儲是一種數據存儲技術,通過網路使用每台機器上的磁碟空間,並將這些分散的存儲資源構成一個虛擬的存儲設備,數據分散的存儲在網路中的各個角落。所以,分布式存儲技術並不是每台電腦都存放完整的數據,而是把數據切割後存放在不同的電腦里。就像存放100個雞蛋,不是放在同一個籃子里,而是分開放在不同的地方,加起來的總和是100個。

㈧ 區塊鏈私享會第四期:從野蠻生長到大浪淘沙

本文由【區塊鏈研習社】優質顫兆拿內容計劃支持,更多關於區塊鏈的深度好文,請點擊 區塊鏈研習社

2018年3月24日下午,每周一期的「區塊鏈私享會」鄭州專場在鄭東新區建業總部港如期舉行。來自傳統互聯網及各領域的區塊鏈投資人、從業者共20餘人參加了本次活動。

本期「區塊鏈私享會」邀請了迷你投合夥人 史雅鯤 。史雅鯤作為 股權眾籌 領域的長期從業者,結合自己的從業經驗,就如何轉型區塊鏈投資以及轉型過程中的一些思考進行了深度分享。史雅鯤說:"因為傳統創業者融資難、傳統投資方資金退出期長等傳統投資領域的痛點,從而催生了ICO這種融資方式的不理性爆發,因此帶來的泡沫和炒作之風值得我們深思,99%以上的Token不具備任何 投資價值 。"

並對結合區塊鏈技術的金融跨境支付、資產證券化、保單等金融應用場景進行了舉例講解。史雅鯤坦言,區塊鏈行業必須經過大浪淘沙的過程,以及適當的市場教育,才能使從業者行為變得更加規范。而傳統投資人的逐步進場茄搭,也會推動整個行業的理性發展。

面對火熱的區塊鏈技術,我們要在主動擁抱的同時用審慎的眼光去對待。區塊鏈 不可篡改 去中心化 等特性帶來的最大變革在於對整個底層商業邏輯的顛覆,未來的機會屬於真正有價值的區塊鏈應用,以及基於現有生態的優秀Token體系設計。

迷你投合夥人 史雅鯤

區塊鏈研習社鄭州分社負責人、資深區塊鏈投資人黃豆進行了「 區塊鏈資產配置及投資策略」 的分享。分析了推動市場行情的根本原因以及區塊鏈市場波動規律,總結了區塊鏈資產的 交易法則 。作為傳統金融領域出身的專業人士,黃豆還從資產配置的角度提出了針對新興投資者的區塊鏈資猜笑產配置策略,並對2018年需重點關注的投資方向與大家進行了充分交流。

區塊鏈研習社鄭州分社負責人 黃豆

河南移動互聯網大會發起人、V5公益發起人,圈內人稱「魔王」的王炎也分享了他在區塊鏈行業跌宕起伏的經歷,為原本就閱歷豐富的人生增添了一份更加傳奇的色彩。

河南移動互聯網大會發起人、V5公益發起人 王炎

幾位嘉賓含金量十足的分享,引來大家積極的討論和互動,銳旗資本CEO 周宜游 通過部分案例指出了區塊鏈行業存在的機遇和風險,並與大家分享了自己評判項目的原則。銳旗資本合夥人 王偉 指出,互聯網+區塊鏈+金融未來會實現真正意義上的普惠金融。雲和數據總經理 郭凱 就區塊鏈教育培訓領域的機會進行了個人解讀。在場人員就區塊鏈創業、投資等相關內容進行了深度的交流與探討。

銳旗資本CEO 周宜游

銳旗資本 王偉

雲和數據總經理 郭凱

「區塊鏈私享會」由全國最大的區塊鏈知識社群、最大的分布式協作組織—— 區塊鏈研習社 發起,鄭州專場由區塊鏈研習社鄭州分社與河南互聯網鏈圈聯合主辦,目前已成功舉辦四期。未來我們將不斷擴大「區塊鏈私享會」的受眾面,引入更多領域的經驗、思想和資源,持續為河南地區的區塊鏈愛好者及從業者提供開放、包容的線下學習交流與創業合作的平台,大力推進中原地區區塊鏈產業取得規范化發展。

㈨ 如何用最簡單的方式解讀區塊鏈

大家最近天天都能聽到區塊鏈這個詞,那什麼是區塊鏈呢?「分布式、難以篡改、一致存儲」等解釋太技術化且較為干澀。我這里來通俗的科普下:區塊鏈主要為了解決互不信任的個體之間的信任問題。

舉個通俗的例子:話說老李和老王一個村,老李最近手頭有點緊,想向老王借點錢。老王呢,擔心借了老李後他賴賬怎麼辦,於是找來「德高望重」的村長,不過想想,村長也不可信,以前村長還偷過別人家的地瓜啊!怎麼辦?

區塊鏈的方法是:老王借了1000塊錢給老李後,然後用大喇叭在村裡大喊「我老王今天借了老李1000元錢,大家都趕緊記錄下」,於是村裡的所有人都記錄在了自己家裡的賬本上,謹慎的保管了起來。這下可好,老李再也賴不過了,村裡即便有不守信的人,那還是好人多呀,老李也不可能找村裡全部的人偷偷抹掉自己的借錢記錄的。就這樣,區塊鏈解決了互不信任的老王和老李之間的借錢的信任問題。

在沒有出現區塊鏈之前,我們是如何解決互不信任個體間的信任問題呢?簡單啊,找兩者都信任的「德高望重」的「見證人」就好了,例如故事裡的村長,例如買賣雙方之間的支付寶,例如公證處等等。不過可能這類「見證人」也不一定一直誠信下去,所以區塊鏈乾脆就讓大家都作為見證人。

老王放心了,但老李頭疼啊!老李要等村裡人都記錄好了才能拿到借給他的錢,誰家還沒個大爺大媽手腳慢一些的。所以目前區塊鏈距離應用還有一定的距離,效率問題需要得到大幅提升才可以。

回想一下,你平時是怎麼和別人交易的:一件漂亮的衣服,你可以在實體店挑好,確認好了對方衣服質量不錯,對方確認你的錢是真錢,那麼我們面對面一手交錢一手拿貨。

要是我們隔著十萬八千里,彼此既不認識也不信任還是想交易呢?那就要有我們都信任的第三方了,也就是達成所謂的共識機制。比如:你可以在淘寶通過第三方見證擔保完成交易,錢先給支付寶——支付寶收款讓賣家發貨——賣家發貨——你確認收貨——支付寶再把錢給賣家。

但是,倘若這個中心化的機構作惡了,馬爸爸撕了賬本,不承認你給了錢,或者和賣家聯合起來騙你錢,那可怎麼辦?

又或者政府借了你一100萬,最後用超發貨幣的方式還給你錢,100萬縮水到1萬,由你來承受通貨膨脹的損失,你又怎麼辦?

有沒有不被任何政府、組織機構控制,能公開透明的完成仲裁,記錄了就不被篡改,沒有跑路風險的第三方呢?

別著急,我們的主角區塊鏈技術解決就是這樣的問題——你們之間的交易可以被所有在這個區塊鏈系統的人見證,大家的小賬本里頭都會記錄你們的交易。B如果否認收了A的錢,或者A說自己借了300塊錢,都會被路人甲乙丙丁質疑。具體是如何做到的呢?

1)系統給每個人都發了個小賬本,讓每個人都有記賬的權利,咱們稱之為分布式記賬。

2)為了鼓勵大家幫別人記賬,系統代碼設定將比特幣這樣的代幣獎勵給記賬者,為了防止一堆人記賬堵死,還將代幣設為有限個,甲乙丙丁需要通過系統規定的機制進行計算,算的最快最好的才能獲得記賬的權利,記錄之後通過系統廣播給大家,所有人復制一份相同的賬本,這個通過計算獲得獎勵的過程就叫挖礦,記賬的路人甲乙丙丁就是礦工。

3)有一天,最初記錄這筆交易的甲Game Over了,這個賬本卻還是存在在其他人的賬本里,A和B誰想否認都不行。我們把通過代碼寫好了如何仲裁和分配,無需銀行、政府、企業等中心化組織機構作為第三方見證(去中心化),直接點對點(P2P)交易的方式,稱為去中心化。

4)系統把多個交易打包成區塊,按時間順序鏈接起來成為最後人手一本的賬本,這就是區塊鏈技術

其實把區塊鏈簡單理解為賬本不過是最淺顯的解讀了,把它的每個特點拆分開來,所能應用的領域很多很多。

現在傳統金融行業、券商、投資機構正在跑步入場,物聯網, 游戲 ,儲存,版權,防偽,徵信,支付,預測市場(賭博之類)、社區等眾多領域已經開始了區塊鏈的 探索 應用。

互聯網讓萬物皆可連,區塊鏈能否讓所連皆可信呢?

我用天地自然運化的奇石解讀一下區塊鏈:

所有科學、哲學、道義⋯⋯天地都包涵著。任何一個事物、任何一種文化都與天地道化有關。

區塊鏈自然逃不脫天地運化法:即順然、隨然、無窮、無常。

它就是這塊奇石,其表面整體上的數據運化,一是,整體向著無形無象。二是線點守著一個規律:即無常之道。就是說它們每條線,每個點,追求的都不是一個閉合的目標和一個局限的目的。這樣說大家我好理解了:一個畫家要畫一隻雞,是有目的的,有終結相的,而奇石,大自然造化時,是沒有終結相的。所以相不閉合,線、點數據也不終結。區塊連接之技術,就是這個天運之道。無常運化無形無象,永無終結。(無中心化,就是無形無相,形式不封閉,結構不封閉,思想不封閉⋯⋯如「石」辦事就行)。

山東曲阜孔子靈石館

大家好,我是皮皮,我在這里用幾個生活小例子給大家解讀一下什麼叫區塊鏈?

去中心化,不可篡改級,分布式存貯的,以加密信息做鏈接地址的數據區塊鏈接系統,叫區塊鏈

這玩意本來就是許多高 科技 的復合品,沒法簡單,再簡單也是一大段話,而且未必能說清楚

區塊鏈(Blockchain)嚴格的定義是指通過基於密碼學技術設計的共識機制方式,在對等網路中多個節點共同維護一個持續增長,由時間戳和有序記錄數據塊所構建的鏈式列表賬本的分布式資料庫技術。該技術方案讓參與系統中的任意多個節點,把一段時間系統內全部信息交流的數據,通過密碼學演算法計算和記錄到一個數據塊(block),並且生成該數據塊的指紋用於鏈接(chain)下個數據塊和校驗,系統所有參與節點來共同認定記錄是否為真。

區塊鏈是一種類似於NoSQL(非關系型資料庫)這樣的技術解決方案統稱,並不是某種特定技術,能夠通過很多編程語言和架構來實現區塊鏈技術。並且實現區塊鏈的方式種類也有很多,目前常見的包括POW(Proof of Work,工作量證明),POS(Proof of Stake,權益證明),DPOS(Delegate Proof of Stake,股份授權證明機制)等。

區塊鏈的概念首次在論文《比特幣:一種點對點的電子現金系統(Bitcoin: A Peer-to-Peer Electronic Cash System)》中提出,作者為自稱中本聰(Satoshi Nakamoto)的個人(或團體)。因此可以把比特幣看成區塊鏈的首個在金融支付領域中的應用。

【通俗解釋】

無論多大的系統或者多小的網站,一般在它背後都有資料庫。那麼這個資料庫由誰來維護?在一般情況下,誰負責運營這個網路或者系統,那麼就由誰來進行維護。如果是微信資料庫肯定是騰訊團隊維護,淘寶的資料庫就是阿里的團隊在維護。大家一定認為這種方式是天經地義的,但是區塊鏈技術卻不是這樣。

如果我們把資料庫想像成是一個賬本:比如支付寶就是很典型的賬本,任何數據的改變就是記賬型的。資料庫的維護我們可以認為是很簡單的記賬方式。在區塊鏈的世界也是這樣,區塊鏈系統中的每一個人都有機會參與記賬。系統會在一段時間內,可能選擇十秒鍾內,也可能十分鍾,選出這段時間記賬最快最好的人,由這個人來記賬,他會把這段時間資料庫的變化和賬本的變化記在一個區塊(block)中,我們可以把這個區塊想像成一頁紙上,系統在確認記錄正確後,會把過去賬本的數據指紋鏈接(chain)這張紙上,然後把這張紙發給整個系統裡面其他的所有人。然後周而復始,系統會尋找下一個記賬又快又好的人,而系統中的其他所有人都會獲得整個賬本的副本。這也就意味著這個系統每一個人都有一模一樣的賬本,這種技術,我們就稱之為區塊鏈技術(Blockchain),也稱為分布式賬本技術。

由於每個人(計算機)都有一模一樣的賬本,並且每個人(計算機)都有著完全相等的權利,因此不會由於單個人(計算機)失去聯系或宕機,而導致整個系統崩潰。既然有一模一樣的賬本,就意味著所有的數據都是公開透明的,每一個人可以看到每一個賬戶上到底有什麼數字變化。它非常有趣的特性就是,其中的數據無法篡改。因為系統會自動比較,會認為相同數量最多的賬本是真的賬本,少部分和別人數量不一樣的賬本是虛假的賬本。在這種情況下,任何人篡改自己的賬本是沒有任何意義的,因為除非你能夠篡改整個系統裡面大部分節點。如果整個系統節點只有五個、十個節點也許還容易做到,但是如果有上萬個甚至上十萬個,並且還分布在互聯網上的任何角落,除非某個人能控制世界上大多數的電腦,否則不太可能篡改這樣大型的區塊鏈。

【要素】

結合區塊鏈的定義,我們認為必須具有如下四點要素才能被稱為公開區塊鏈技術,如果只具有前3點要素,我們將認為其為私有區塊鏈技術(私有鏈)。

1、點對點的對等網路(權力對等、物理點對點連接)

2、可驗證的數據結構(可驗證的PKC體系,不可篡改資料庫)

3、分布式的共識機制(解決拜占庭將軍問題,解決雙重支付)

4、納什均衡的博弈設計(合作是演化穩定的策略)

【特性】

結合定義區塊鏈的定義,區塊鏈會現實出四個主要的特性:去中心化(Decentralized)、去信任(Trustless)、集體維護(Collectively maintain)、可靠資料庫(Reliable Database)。並且由四個特性會引申出另外2個特性:開源(Open Source)、隱私保護(Anonymity)。如果一個系統不具備這些特徵,將不能視其為基於區塊鏈技術的應用。

去中心化(Decentralized):整個網路沒有中心化的硬體或者管理機構,任意節點之間的權利和義務都是均等的,且任一節點的損壞或者失去都會不影響整個系統的運作。因此也可以認為區塊鏈系統具有極好的健壯性。

去信任(Trustless):參與整個系統中的每個節點之間進行數據交換是無需互相信任的,整個系統的運作規則是公開透明的,所有的數據內容也是公開的,因此在系統指定的規則范圍和時間范圍內,節點之間是不能也無法欺騙其它節點。

集體維護(Collectively maintain):系統中的數據塊由整個系統中所有具有維護功能的節點來共同維護的,而這些具有維護功能的節點是任何人都可以參與的。

可靠資料庫(Reliable Database):整個系統將通過分資料庫的形式,讓每個參與節點都能獲得一份完整資料庫的拷貝。除非能夠同時控制整個系統中超過51%的節點,否則單個節點上對資料庫的修改是無效的,也無法影響其他節點上的數據內容。因此參與系統中的節點越多和計算能力越強,該系統中的數據安全性越高。

開源(Open Source):由於整個系統的運作規則必須是公開透明的,所以對於程序而言,整個系統必定會是開源的。

隱私保護(Anonymity):由於節點和節點之間是無需互相信任的,因此節點和節點之間無需公開身份,在系統中的每個參與的節點的隱私都是受到保護的。

【區塊鏈意義之一 :解決拜占庭將軍問題】

區塊鏈解決的核心問題不是「數字貨幣」,而是在信息不對稱、不確定的環境下,如何建立滿足經濟活動賴以發生、發展的「信任」生態體系。而這個問題稱之為「拜占庭將軍問題」,也可稱為「拜占庭容錯」或者「兩軍問題」,這是一個分布式系統中進行信息機交互時面臨的難題,即在整個網路中的任意節點都無法信任與之通信的對方時,如何能創建出共識基礎來進行安全的信息交互而無需擔心數據被篡改。區塊鏈使用演算法證明機制來保證整個網路的安全,藉助它,整個系統中的所有節點能夠在去信任的環境下自動安全的交換數據。更多介紹請參見《比特幣與拜占庭將軍問題》。

【區塊鏈意義之二:實現跨國價值轉移】

互聯網誕生最初,最早核心解決的問題是信息製造和傳輸,我們可以通過互聯網將信息快速生成並且復制到全世界每一個有著網路的角落,但是它尚始終不能解決價值轉移和信用轉移。這里所謂的價值轉移是指,在網路中每個人都能夠認可和確認的方式,將某一部分價值精確的從某一個地址轉移到另一個地址,而且必須確保當價值轉移後,原來的地址減少了被轉移的部分,而新的地址增加了所轉移的價值。這里說的價值可以是貨幣資產,也可以是某種實體資產或者虛擬資產(包括有價證券、金融衍生品等)。而這操作的結果必須獲得所有參與方的認可,且其結果不能受到任何某一方的操縱。

在目前的互聯網中也有各種各樣的金融體系,也有許多政府銀行提供或者第三方提供的支付系統,但是它還是依靠中心化的方案來解決。所謂中心化的方案,就是通過某個公司或者政府信用作為背書,將所有的價值轉移計算放在一個中心伺服器(集群)中,盡管所有的計算也是由程序自動完成,但是卻必須信任這個中心化的人或者機構。事實上通過中心化的信用背書來解決,也只能將信用局限在一定的機構、地區或者國家的范圍之內。由此可以看出,必須要解決的這個根本問題,那就是信用。所以價值轉移的核心問題是跨國信用共識。

在如此紛繁復雜的全球體系中,要憑空建立一個全球性的信用共識體系是很難的,由於每個國家的政治、經濟和文化情況不同,對於兩個國家的企業和政府完全互信是幾乎做不到的,這也就意味著無論是以個人抑或企業政府的信用進行背書,對於跨國之間的價值交換即使可以完成,也有著巨大的時間和經濟成本。但是在漫長的人類 歷史 中,無論每個國家的宗教、政治和文化是如何的不同,唯一能取得共識的是數學(基礎科學)。因此,可以毫不誇張的說,數學(演算法)是全球文明的最大公約數,也是全球人類獲得最多共識的基礎。如果我們以數學演算法(程序)作為背書,所有的規則都建立一個公開透明的數學演算法(程序)之上,能夠讓所有不同政治文化背景的人群獲得共識。

【未來的發展】

互聯網將使得全球之間的互動越來越緊密,伴隨而來的就是巨大的信任鴻溝。目前現有的主流資料庫技術架構都是私密且中心化的,在這個架構上是永遠無法解決價值轉移和互信問題。所以區塊鏈技術有可能將成為下一代資料庫架構。通過去中心化技術,將能夠在大數據的基礎上完成數學(演算法)背書、全球互信這個巨大的進步。

區塊鏈技術作為一種特定分布式存取數據技術,它通過網路中多個參與計算的節點開共同參與數據的計算和記錄,並且互相驗證其信息的有效性(防偽)。從這一點來,區塊鏈技術也是一種特定的資料庫技術。互聯網剛剛進入大數據時代,但是從目前來看,大數據還處於非常基礎的階段。但是當進入到區塊鏈資料庫階段,將進入到真正的強信任背書的大數據時代。這裡面的所有數據都獲得堅不可摧的質量,任何人都沒有能力也沒有必要去質疑。

也許我們現在正處在一個重大的轉折點之上——和工業革命所帶來的深刻變革幾乎相同的重大轉折的早期階段。不僅僅是新技術指數級、數字化和組合式的進步與變革,更多的驚喜也許還會在我們前面。在未來的24個月里,這個星球所增長的計算機算力和記錄的數據將會超過所有 歷史 階段的總和。在過去的24個月里,這個增值可能已經超過了1000倍。這些數字化的數據信息還在以比摩爾定律更快的速度增長。區塊鏈技術將不僅僅應用在金融支付領域,而是將會擴展到目前所有應用范圍,諸如去中心化的微博、微信、搜索、租房,甚至是打車軟體都有可能會出現。因為區塊鏈將可以讓人類無地域限制的、去信任的方式來進行大規模協作。

區塊鏈是一種技術,基於這項技術產生很多應用,包括與數據和信息相關的一切行業業務,比特幣就是其中最為人熟知的一種應用。對於區塊鏈的通俗解釋就是,假如在網上買一隻口紅,首先找到心儀的產品和賣家下單,先把錢給中間平台,等到賣家發貨買家確認收貨以後,中間平台再把錢轉給賣家,因為信任問題買賣家之間都依賴於中間平台,而區塊鏈作為去中心化的分布式賬本資料庫,則著力於去掉這個中間平台但同時又解決信任問題。在區塊鏈中每個人擁有自己的記賬本,用來記錄發生的每一件事,假如在交易中出現賣家拿錢不發貨的行為,這一條記錄將永久存在不可修改,不需要互相交換信息,區塊鏈的世界會選擇在同一個時間節點記錄最快質量最好的那個人的記賬本進行復制發送並串聯,最後越疊越厚形成區塊。

大家在談論虛擬貨幣時,往往離不開區塊鏈這個概念,那麼區塊鏈到底是個神馬玩意呢?

區塊鏈是一種底層技術,本質上是一個去中心化的分布式賬本資料庫。聽起來好像十分高端,遙不可及,其實是很容易理解的。

舉個例子,假如要在淘寶上購買商品,那麼一般首先要做的就是打開淘寶,找到想要的商品並下單將錢支付給作為交易中介的淘寶。等收到商品並確認收貨後淘寶便會將貨款打給賣家。這本來只是我和賣家的交易,但卻多了個「中心」,即淘寶。

在交易進行的過程中,這個「中心」擁有無限大的權力,甚至隨意修改賬單。因此,「中心」往往需要強大的後台為其背書。

於是,有一個名叫中本聰的男人想要幹掉這個權力無窮大的中心,他想創造一個去中心化的系統,在這個系統里,每個人都是中心,都有記賬的權力。於是,他創造了比特幣。

在比特幣的系統中,每個人都有一個小賬本用以記錄發生的每一筆交易。一筆交易只有經過大部分人確認後才有效。如果賣家不發貨,那麼每個人的小賬本都會將這件事記錄下來,讓他無處可逃。

這時候大家可能會有疑問,既然只是一個公開的賬本,那麼為什麼又要叫區塊鏈呢?這就涉及到了共識問題,區塊鏈系統是一個由眾多「中心」組成的系統,整個區塊鏈是屬於所有參與記賬的個體的。這時候就產生了新的問題,一個系統必須要有秩序才能長遠的存在。假如記賬者可以不計成本地胡作非為,那就可能出現本來只是購買一台手機,但收到的卻是一台特斯拉的情況。

於是,中本聰發明了一種名為PoW的共識方式。這種方式提高了記賬者記賬的成本,讓其不能輕易作惡。PoW通過密碼學的方式要求記賬者需要通過競爭計算能力來獲取記賬權,第一個計算出結果的記賬者即可獲得一個由若干筆交易打包而來的區塊的記賬權,同時獲得一定的代幣作為獎勵。這就是我們俗稱的「挖礦」。

既然記賬者已經將一個包含了若干筆交易的區塊記錄了下來,那麼系統就需要進行整理排序,不可能讓無數的區塊雜亂無章地分布在系統中。於是就需要把所有區塊按照時間順序首尾相連鏈接鏈接起來,這時,區塊鏈便誕生了。區塊鏈的核心是技術。

㈩ 區塊鏈 --- 共識演算法

PoW演算法是一種防止分布式服務資源被濫用、拒絕服務攻擊的機制。它要求節點進行適量消耗時間和資源的復雜運算,並且其運算結果能被其他節點快速驗算,以耗用時間、能源做擔保,以確保服務與資源被真正的需求所使用。

PoW演算法中最基本的技術原理是使用哈希演算法。假設求哈希值Hash(r),若原始數據為r(raw),則運算結果為R(Result)。

R = Hash(r)

哈希函數Hash()的特性是,對於任意輸入值r,得出結果R,並且無法從R反推回r。當輸入的原始數據r變動1比特時,其結果R值完全改變。在比特幣的PoW演算法中,引入演算法難度d和隨機值n,得到以下公式:

Rd = Hash(r+n)

該公式要求在填入隨機值n的情況下,計算結果Rd的前d位元組必須為0。由於哈希函數結果的未知性,每個礦工都要做大量運算之後,才能得出正確結果,而算出結果廣播給全網之後,其他節點只需要進行一次哈希運算即可校驗。PoW演算法就是採用這種方式讓計算消耗資源,而校驗僅需一次。

 

PoS演算法要求節點驗證者必須質押一定的資金才有挖礦打包資格,並且區域鏈系統在選定打包節點時使用隨機的方式,當節點質押的資金越多時,其被選定打包區塊的概率越大。

POS模式下,每個幣每天產生1幣齡,比如你持有100個幣,總共持有了30天,那麼,此時你的幣齡就為3000。這個時候,如果你驗證了一個POS區塊,你的幣齡就會被清空為0,同時從區塊中獲得相對應的數字貨幣利息。

節點通過PoS演算法出塊的過程如下:普通的節點要成為出塊節點,首先要進行資產的質押,當輪到自己出塊時,打包區塊,然後向全網廣播,其他驗證節點將會校驗區塊的合法性。

 

DPoS演算法和PoS演算法相似,也採用股份和權益質押。

但不同的是,DPoS演算法採用委託質押的方式,類似於用全民選舉代表的方式選出N個超級節點記賬出塊。

選民把自己的選票投給某個節點,如果某個節點當選記賬節點,那麼該記賬節點往往在獲取出塊獎勵後,可以採用任意方式來回報自己的選民。

這N個記賬節點將輪流出塊,並且節點之間相互監督,如果其作惡,那麼會被扣除質押金。

通過信任少量的誠信節點,可以去除區塊簽名過程中不必要的步驟,提高了交易的速度。
 

拜占庭問題:

拜占庭是古代東羅馬帝國的首都,為了防禦在每塊封地都駐扎一支由單個將軍帶領的軍隊,將軍之間只能靠信差傳遞消息。在戰爭時,所有將軍必須達成共識,決定是否共同開戰。

但是,在軍隊內可能有叛徒,這些人將影響將軍們達成共識。拜占庭將軍問題是指在已知有將軍是叛徒的情況下,剩餘的將軍如何達成一致決策的問題。

BFT:

BFT即拜占庭容錯,拜占庭容錯技術是一類分布式計算領域的容錯技術。拜占庭假設是對現實世界的模型化,由於硬體錯誤、網路擁塞或中斷以及遭到惡意攻擊等原因,計算機和網路可能出現不可預料的行為。拜占庭容錯技術被設計用來處理這些異常行為,並滿足所要解決的問題的規范要求。

拜占庭容錯系統

發生故障的節點被稱為 拜占庭節點 ,而正常的節點即為 非拜占庭節點

假設分布式系統擁有n台節點,並假設整個系統拜占庭節點不超過m台(n ≥ 3m + 1),拜占庭容錯系統需要滿足如下兩個條件:

另外,拜占庭容錯系統需要達成如下兩個指標:

PBFT即實用拜占庭容錯演算法,解決了原始拜占庭容錯演算法效率不高的問題,演算法的時間復雜度是O(n^2),使得在實際系統應用中可以解決拜占庭容錯問題
 

PBFT是一種狀態機副本復制演算法,所有的副本在一個視圖(view)輪換的過程中操作,主節點通過視圖編號以及節點數集合來確定,即:主節點 p = v mod |R|。v:視圖編號,|R|節點個數,p:主節點編號。

PBFT演算法的共識過程如下:客戶端(Client)發起消息請求(request),並廣播轉發至每一個副本節點(Replica),由其中一個主節點(Leader)發起提案消息pre-prepare,並廣播。其他節點獲取原始消息,在校驗完成後發送prepare消息。每個節點收到2f+1個prepare消息,即認為已經准備完畢,並發送commit消息。當節點收到2f+1個commit消息,客戶端收到f+1個相同的reply消息時,說明客戶端發起的請求已經達成全網共識。

具體流程如下

客戶端c向主節點p發送<REQUEST, o, t, c>請求。o: 請求的具體操作,t: 請求時客戶端追加的時間戳,c:客戶端標識。REQUEST: 包含消息內容m,以及消息摘要d(m)。客戶端對請求進行簽名。

主節點收到客戶端的請求,需要進行以下交驗:

a. 客戶端請求消息簽名是否正確。

非法請求丟棄。正確請求,分配一個編號n,編號n主要用於對客戶端的請求進行排序。然後廣播一條<<PRE-PREPARE, v, n, d>, m>消息給其他副本節點。v:視圖編號,d客戶端消息摘要,m消息內容。<PRE-PREPARE, v, n, d>進行主節點簽名。n是要在某一個范圍區間內的[h, H],具體原因參見 垃圾回收 章節。

副本節點i收到主節點的PRE-PREPARE消息,需要進行以下交驗:

a. 主節點PRE-PREPARE消息簽名是否正確。

b. 當前副本節點是否已經收到了一條在同一v下並且編號也是n,但是簽名不同的PRE-PREPARE信息。

c. d與m的摘要是否一致。

d. n是否在區間[h, H]內。

非法請求丟棄。正確請求,副本節點i向其他節點包括主節點發送一條<PREPARE, v, n, d, i>消息, v, n, d, m與上述PRE-PREPARE消息內容相同,i是當前副本節點編號。<PREPARE, v, n, d, i>進行副本節點i的簽名。記錄PRE-PREPARE和PREPARE消息到log中,用於View Change過程中恢復未完成的請求操作。

主節點和副本節點收到PREPARE消息,需要進行以下交驗:

a. 副本節點PREPARE消息簽名是否正確。

b. 當前副本節點是否已經收到了同一視圖v下的n。

c. n是否在區間[h, H]內。

d. d是否和當前已收到PRE-PPREPARE中的d相同

非法請求丟棄。如果副本節點i收到了2f+1個驗證通過的PREPARE消息,則向其他節點包括主節點發送一條<COMMIT, v, n, d, i>消息,v, n, d, i與上述PREPARE消息內容相同。<COMMIT, v, n, d, i>進行副本節點i的簽名。記錄COMMIT消息到日誌中,用於View Change過程中恢復未完成的請求操作。記錄其他副本節點發送的PREPARE消息到log中。

主節點和副本節點收到COMMIT消息,需要進行以下交驗:

a. 副本節點COMMIT消息簽名是否正確。

b. 當前副本節點是否已經收到了同一視圖v下的n。

c. d與m的摘要是否一致。

d. n是否在區間[h, H]內。

非法請求丟棄。如果副本節點i收到了2f+1個驗證通過的COMMIT消息,說明當前網路中的大部分節點已經達成共識,運行客戶端的請求操作o,並返回<REPLY, v, t, c, i, r>給客戶端,r:是請求操作結果,客戶端如果收到f+1個相同的REPLY消息,說明客戶端發起的請求已經達成全網共識,否則客戶端需要判斷是否重新發送請求給主節點。記錄其他副本節點發送的COMMIT消息到log中。
 

如果主節點作惡,它可能會給不同的請求編上相同的序號,或者不去分配序號,或者讓相鄰的序號不連續。備份節點應當有職責來主動檢查這些序號的合法性。

如果主節點掉線或者作惡不廣播客戶端的請求,客戶端設置超時機制,超時的話,向所有副本節點廣播請求消息。副本節點檢測出主節點作惡或者下線,發起View Change協議。

View Change協議

副本節點向其他節點廣播<VIEW-CHANGE, v+1, n, C , P , i>消息。n是最新的stable checkpoint的編號, C 2f+1驗證過的CheckPoint消息集合, P 是當前副本節點未完成的請求的PRE-PREPARE和PREPARE消息集合。

當主節點p = v + 1 mod |R|收到 2f 個有效的VIEW-CHANGE消息後,向其他節點廣播<NEW-VIEW, v+1, V , O >消息。 V 是有效的VIEW-CHANGE消息集合。 O 是主節點重新發起的未經完成的PRE-PREPARE消息集合。PRE-PREPARE消息集合的選取規則:

副本節點收到主節點的NEW-VIEW消息,驗證有效性,有效的話,進入v+1狀態,並且開始 O 中的PRE-PREPARE消息處理流程。
 

在上述演算法流程中,為了確保在View Change的過程中,能夠恢復先前的請求,每一個副本節點都記錄一些消息到本地的log中,當執行請求後副本節點需要把之前該請求的記錄消息清除掉。

最簡單的做法是在Reply消息後,再執行一次當前狀態的共識同步,這樣做的成本比較高,因此可以在執行完多條請求K(例如:100條)後執行一次狀態同步。這個狀態同步消息就是CheckPoint消息。

副本節點i發送<CheckPoint, n, d, i>給其他節點,n是當前節點所保留的最後一個視圖請求編號,d是對當前狀態的一個摘要,該CheckPoint消息記錄到log中。如果副本節點i收到了2f+1個驗證過的CheckPoint消息,則清除先前日誌中的消息,並以n作為當前一個stable checkpoint。

這是理想情況,實際上當副本節點i向其他節點發出CheckPoint消息後,其他節點還沒有完成K條請求,所以不會立即對i的請求作出響應,它還會按照自己的節奏,向前行進,但此時發出的CheckPoint並未形成stable。

為了防止i的處理請求過快,設置一個上文提到的 高低水位區間[h, H] 來解決這個問題。低水位h等於上一個stable checkpoint的編號,高水位H = h + L,其中L是我們指定的數值,等於checkpoint周期處理請求數K的整數倍,可以設置為L = 2K。當副本節點i處理請求超過高水位H時,此時就會停止腳步,等待stable checkpoint發生變化,再繼續前進。
 

在區塊鏈場景中,一般適合於對強一致性有要求的私有鏈和聯盟鏈場景。例如,在IBM主導的區塊鏈超級賬本項目中,PBFT是一個可選的共識協議。在Hyperledger的Fabric項目中,共識模塊被設計成可插拔的模塊,支持像PBFT、Raft等共識演算法。
 

 

Raft基於領導者驅動的共識模型,其中將選舉一位傑出的領導者(Leader),而該Leader將完全負責管理集群,Leader負責管理Raft集群的所有節點之間的復制日誌。
 

下圖中,將在啟動過程中選擇集群的Leader(S1),並為來自客戶端的所有命令/請求提供服務。 Raft集群中的所有節點都維護一個分布式日誌(復制日誌)以存儲和提交由客戶端發出的命令(日誌條目)。 Leader接受來自客戶端的日誌條目,並在Raft集群中的所有關注者(S2,S3,S4,S5)之間復制它們。

在Raft集群中,需要滿足最少數量的節點才能提供預期的級別共識保證, 這也稱為法定人數。 在Raft集群中執行操作所需的最少投票數為 (N / 2 +1) ,其中N是組中成員總數,即 投票至少超過一半 ,這也就是為什麼集群節點通常為奇數的原因。 因此,在上面的示例中,我們至少需要3個節點才能具有共識保證。

如果法定仲裁節點由於任何原因不可用,也就是投票沒有超過半數,則此次協商沒有達成一致,並且無法提交新日誌。

 

數據存儲:Tidb/TiKV

日誌:阿里巴巴的 DLedger

服務發現:Consul& etcd

集群調度:HashiCorp Nomad
 

只能容納故障節點(CFT),不容納作惡節點

順序投票,只能串列apply,因此高並發場景下性能差
 

Raft通過解決圍繞Leader選舉的三個主要子問題,管理分布式日誌和演算法的安全性功能來解決分布式共識問題。

當我們啟動一個新的Raft集群或某個領導者不可用時,將通過集群中所有成員節點之間協商來選舉一個新的領導者。 因此,在給定的實例中,Raft集群的節點可以處於以下任何狀態: 追隨者(Follower),候選人(Candidate)或領導者(Leader)。

系統剛開始啟動的時候,所有節點都是follower,在一段時間內如果它們沒有收到Leader的心跳信號,follower就會轉化為Candidate;

如果某個Candidate節點收到大多數節點的票,則這個Candidate就可以轉化為Leader,其餘的Candidate節點都會回到Follower狀態;

一旦一個Leader發現系統中存在一個Leader節點比自己擁有更高的任期(Term),它就會轉換為Follower。

Raft使用基於心跳的RPC機制來檢測何時開始新的選舉。 在正常期間, Leader 會定期向所有可用的 Follower 發送心跳消息(實際中可能把日誌和心跳一起發過去)。 因此,其他節點以 Follower 狀態啟動,只要它從當前 Leader 那裡收到周期性的心跳,就一直保持在 Follower 狀態。

Follower 達到其超時時間時,它將通過以下方式啟動選舉程序:

根據 Candidate 從集群中其他節點收到的響應,可以得出選舉的三個結果。

共識演算法的實現一般是基於復制狀態機(Replicated state machines),何為 復制狀態機

簡單來說: 相同的初識狀態 + 相同的輸入 = 相同的結束狀態 。不同節點要以相同且確定性的函數來處理輸入,而不要引入一下不確定的值,比如本地時間等。使用replicated log是一個很不錯的注意,log具有持久化、保序的特點,是大多數分布式系統的基石。

有了Leader之後,客戶端所有並發的請求可以在Leader這邊形成一個有序的日誌(狀態)序列,以此來表示這些請求的先後處理順序。Leader然後將自己的日誌序列發送Follower,保持整個系統的全局一致性。注意並不是強一致性,而是 最終一致性

日誌由有序編號(log index)的日誌條目組成。每個日誌條目包含它被創建時的任期號(term),和日誌中包含的數據組成,日誌包含的數據可以為任何類型,從簡單類型到區塊鏈的區塊。每個日誌條目可以用[ term, index, data]序列對表示,其中term表示任期, index表示索引號,data表示日誌數據。

Leader 嘗試在集群中的大多數節點上執行復制命令。 如果復製成功,則將命令提交給集群,並將響應發送回客戶端。類似兩階段提交(2PC),不過與2PC的區別在於,leader只需要超過一半節點同意(處於工作狀態)即可。

leader follower 都可能crash,那麼 follower 維護的日誌與 leader 相比可能出現以下情況

當出現了leader與follower不一致的情況,leader強制follower復制自己的log, Leader會從後往前試 ,每次AppendEntries失敗後嘗試前一個日誌條目(遞減nextIndex值), 直到成功找到每個Follower的日誌一致位置點(基於上述的兩條保證),然後向後逐條覆蓋Followers在該位置之後的條目 。所以丟失的或者多出來的條目可能會持續多個任期。
 

要求候選人的日誌至少與其他節點一樣最新。如果不是,則跟隨者節點將不投票給候選者。

意味著每個提交的條目都必須存在於這些伺服器中的至少一個中。如果候選人的日誌至少與該多數日誌中的其他日誌一樣最新,則它將保存所有已提交的條目,避免了日誌回滾事件的發生。

即任一任期內最多一個leader被選出。這一點非常重要,在一個復制集中任何時刻只能有一個leader。系統中同時有多餘一個leader,被稱之為腦裂(brain split),這是非常嚴重的問題,會導致數據的覆蓋丟失。在raft中,兩點保證了這個屬性:

因此, 某一任期內一定只有一個leader
 

當集群中節點的狀態發生變化(集群配置發生變化)時,系統容易受到系統故障。 因此,為防止這種情況,Raft使用了一種稱為兩階段的方法來更改集群成員身份。 因此,在這種方法中,集群在實現新的成員身份配置之前首先更改為中間狀態(稱為聯合共識)。 聯合共識使系統即使在配置之間進行轉換時也可用於響應客戶端請求,它的主要目的是提升分布式系統的可用性。

熱點內容
賓士車主去梅奔中心 發布:2025-06-22 22:42:55 瀏覽:980
幣圈交易平台app排名前十名 發布:2025-06-22 22:42:17 瀏覽:299
Eth轉賬幾天沒轉出去怎麼辦 發布:2025-06-22 22:30:04 瀏覽:474
萊特幣注冊賬號 發布:2025-06-22 22:20:43 瀏覽:963
中國法定數字貨幣概念股 發布:2025-06-22 22:18:05 瀏覽:692
政府計劃投資區塊鏈 發布:2025-06-22 22:08:47 瀏覽:788
極路由區塊鏈收益 發布:2025-06-22 22:06:21 瀏覽:896
Btc哈希值是什麼意思 發布:2025-06-22 21:53:44 瀏覽:437
usdt交易源碼 發布:2025-06-22 21:52:01 瀏覽:772
最小提幣數量200usdt 發布:2025-06-22 21:36:26 瀏覽:216