周長的算力
⑴ 五角星的周長怎麼算
演算法:周長=邊長×10
原理:五角星的每一條邊相等,五角星一共有十條邊,周長為所有邊的和,所以周長=邊長×10。
規則的五角星五個頂點均勻地分布在圓上。
(1)周長的算力擴展閱讀
五星紅旗是《中華人民共和國憲法》規定的中華人民共和國國旗。其中紅色象徵革命;五星呈黃色,有象徵中國人為黃種人之意。
大星代表中國共產黨顆小星代表工人、農民、知識分子、民族資產階級。
四顆小星環拱於大星之右,並各有一個角尖正對大星的中心點,象徵中國共產黨領導下的革命人民大團結和人民對黨的擁護。
⑵ 三年級周長的計算公式
公式編輯
1.圓:C=πd=2πr (d為直徑,r為半徑,π)
2.三角形的周長C = a+b+c(abc為三角形的三條邊)
3.四邊形:C=a+b+c+d(abcd為四邊形的邊長)
4.長方形:C=2(a+b) (a為長,b為寬)
5.正方形:C=4a(a為正方形的邊長)
6.多邊形:C=所有邊長之和。
7.扇形的周長:C = 2R+nπR÷180˚ (n=圓心角角度) = 2R+kR (k=弧度)
(2)周長的算力擴展閱讀
環繞有限面積的區域邊緣的長度積分,叫做周長,也就是圖形一周的長度。多邊形的周長的長度也相等於圖形所有邊的和,圓的周長=πd=2πr (d為直徑,r為半徑,π),扇形的周長 = 2R+nπR÷180˚ (n=圓心角角度) = 2R+kR (k=弧度)。
如果以同一面積的三角形而言,以等邊三角形的周界最短; 如果以同一面積的四邊形而言,以正方形的周界是最短; 如果以同一面積的五邊形而言,以正五邊形的周界最短; 如果以同一面積的任意多邊形而言,以正圓形的周界最短。周長只能用於二維圖形(平面、曲面)上,三維圖形(立體) 如柱體、錐體、球體等都不能以周界表示其邊界大小,而是要用總表面面積。
總表面面積 = 該立體所有面的面積和。
⑶ 圓的周長如何計算
圓的周長公式:圓的周長C =πX直徑 =πX半徑X2(π=3.14)
當圓的直徑為50時S=3.14X 50= 157
通常用圓規來畫圓。 同圓內圓的直徑、半徑長度永遠相同,圓有無數條半徑和無數條直徑。圓是軸對稱、中心對稱圖形。對稱軸是直徑所在的直線。
圓形一周的長度,就是圓的周長。能夠重合的兩個圓叫等圓有無數條對稱軸。圓是一個正n邊形(n為無限大的正整數),邊長無限接近0但永遠無法等於0。
(3)周長的算力擴展閱讀:
扇形弧長L=圓心角(弧度制)×R= nπR/180(θ為圓心角)(R為扇形半徑)
扇形面積S=nπ R²/360=LR/2(L為扇形的弧長)
圓錐底面半徑 r=nR/360(r為底面半徑)(n為圓心角)
直線和圓位置關系:
1、直線和圓無公共點,稱相離。 AB與圓O相離,d>r。
2、直線和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d<r。
3、直線和圓有且只有一公共點,稱相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。圓心與切點的連線垂直於切線。AB與⊙O相切,d=r。(d為圓心到直線的距離)
⑷ 圓的周長和面積的公式是什麼
圓的周長:C=2πr=πd(r為半徑,d為直徑)。
圓的面積計算公式:
(4)周長的算力擴展閱讀:
圓的性質
⑴圓是軸對稱圖形,其對稱軸是任意一條通過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。
垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的2條弧。
垂徑定理的逆定理:平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的2條弧。
⑵有關圓周角和圓心角的性質和定理
① 在同圓或等圓中,如果兩個圓心角,兩個圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那麼他們所對應的其餘各組量都分別相等。
②在同圓或等圓中,相等的弧所對的圓周角等於它所對的圓心角的一半(圓周角與圓心角在弦的同側)。
直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
圓心角計算公式:θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。
即圓心角的度數等於它所對的弧的度數;圓周角的度數等於它所對的弧的度數的一半。
③ 如果一條弧的長是另一條弧的2倍,那麼其所對的圓周角和圓心角是另一條弧的2倍。
⑶有關外接圓和內切圓的性質和定理
①一個三角形有唯一確定的外接圓和內切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形三個頂點距離相等;
②內切圓的圓心是三角形各內角平分線的交點,到三角形三邊距離相等。
③R=2S△÷L(R:內切圓半徑,S:三角形面積,L:三角形周長)。
④兩相切圓的連心線過切點。(連心線:兩個圓心相連的直線)
⑤圓O中的弦PQ的中點M,過點M任作兩弦AB,CD,弦AC與BD分別交PQ於X,Y,則M為XY之中點。
(4)如果兩圓相交,那麼連接兩圓圓心的線段(直線也可)垂直平分公共弦。
(5)弦切角的度數等於它所夾的弧的度數的一半。
(6)圓內角的度數等於這個角所對的弧的度數之和的一半。
(7)圓外角的度數等於這個角所截兩段弧的度數之差的一半。
(8)周長相等,圓面積比正方形、長方形、三角形的面積大。
⑸ 圓的周長怎麼計算
C=2πr
C=πd
⑴圓是軸對稱圖形,其對稱軸是任意一條通過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。
垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧。逆定理:平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧。
⑵有關圓周角和圓心角的性質和定理
① 在同圓或等圓中,如果兩個圓心角,兩個圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那麼他們所對應的其餘各組量都分別相等。
②一條弧所對的圓周角等於它所對的圓心角的一半。
直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
圓心角計算公式:θ=(L/2πr)×360°=180°L/πr=L/r(弧度)(角度制與弧度制:360°=2π)
即圓心角的度數等於它所對的弧的度數;圓周角的度數等於它所對的弧的度數的一半。
③ 如果一條弧的長是另一條弧的2倍,那麼其所對的圓周角和圓心角是另一條弧的2倍。
⑶有關外接圓和內切圓的性質和定理
①一個三角形有唯一確定的外接(∵三點確定一圓)
圓和內切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形三個頂點距離相等;
②內切圓的圓心是三角形各內角平分線的交點,到三角形三邊距離相等。
③R=2S△÷L(R:內切圓半徑,S△:三角形面積,L:三角形周長)
④兩相切圓的連心線過切點(連心線:兩個圓心相連的直線)
⑤圓O中的弦PQ的中點M,過點M任作兩弦AB,CD,弦AD與BC分別交PQ於X,Y,則M為XY之中點。
(4)如果兩圓相交,那麼連接兩圓圓心的線段(直線也可)垂直平分公共弦。
(5)弦切角的度數等於它所夾的弧的度數的一半。
(6)圓內角的度數等於這個角所對的弧的度數之和的一半。
(7)圓外角的度數等於這個角所截兩段弧的度數之差的一半。
(8)周長相等,圓面積比長方形、正方形、三角形的面積大。
(5)周長的算力擴展閱讀
任意一個圓的周長與它直徑的比值是一個固定的數,我們把它叫做圓周率,用字母π(pai)表示。它是一個無限不循環小數(無理數),π=3.1415926535897……但在實際運用中一般只取它的近似值,即π≈3.14.如果用C表示圓的周長:C=πd或C=2πr.《周髀算經》上說"周三徑一",把圓周率看成3,但是這只是一個近似值。
美索不達米亞人在作第一個輪子的時候,也只知道圓周率是3。魏晉時期的劉徽於公元263年給《九章算術》作注時,發現"周三徑一"只是圓內接正六邊形周長和直徑的比值。他創立了割圓術,認為圓內接正多邊形邊數無限增加時,周長就越逼近圓周長。
他算到圓內接正3072邊形的圓周率,π= 3927/1250。劉徽把極限的概念運用於解決實際的數學問題之中,這在世界數學史上也是一項重大的成就。在1500年前,祖沖之(公元429-500年)在前人的計算基礎上繼續推算,求出圓周率在3.1415926與3.1415927之間,是世界上最早的七位小數精確值,比歐洲大約早了1000年,他還用兩個分數值來表示圓周率:22/7稱為約率,355/113稱為密率。
在歐洲,直到1000年後的十六世紀,德國人鄂圖(公元1573年)和安托尼茲才得到這個數值。現在有了電子計算機,圓周率已經算到了小數點後上億億位了。
⑹ 圓的周長怎麼算
圓周長的計算
1、圓周長=圓周率×直徑,字母公式:C=πd。
2、圓周長=圓周率×半徑×2,字母公式:C=2πr。
圍成圓的曲線的長就是圓的周長。圓周長的長短,取決於圓的直徑(半徑)。
圓周率是指圓周長和它直徑的比值。
在一個平面內,一動點以一定點為中心,以一定長度為距離旋轉一周所形成的封閉曲線叫做圓。圓有無數個點。
在同一平面內,到定點的距離等於定長的點的集合叫做圓。圓可以表示為集合{M||MO|=r},圓的標准方程是(x - a) ² + (y - b) ² = r ²。其中,o是圓心,r 是半徑。
圓是一種幾何圖形。根據定義,通常用圓規來畫圓。 同圓內圓的直徑、半徑長度永遠相同,圓有無數條半徑和無數條直徑。圓是軸對稱、中心對稱圖形。
對稱軸是直徑所在的直線。 同時,圓又是「正無限多邊形」,而「無限」只是一個概念。當多邊形的邊數越多時,其形狀、周長、面積就都越接近於圓。所以,世界上沒有真正的圓,圓實際上只是概念性的圖形。
把圓分成若乾等份,可以拼成一個近似的長方形。長方形的寬相當於圓的半徑。
⑺ 圓柱的周長怎麼求
所謂圓柱的周長,是指圓柱底面(截面)的周長。
圓柱的底面周長是一個圓,那麼
圓的周長=圓周率×直徑
c=πd
圓的周長=圓周率×2×半徑
c=2πr
在同一個平面內有一條定直線和一條動線,當這個平面繞著這條定直線旋轉一周時,這條動線所成的面叫做旋轉面,這條定直線叫做旋轉面的軸,這條動線叫作旋轉面的母線。如果母線是和軸平行的一條直線,那麼所生成的旋轉面叫做圓柱面。
如果用垂直於軸的兩個平面去截圓柱面,那麼兩個截面和圓柱面所圍成的幾何體叫做直圓柱.圓柱體,簡稱為圓柱。
1、以矩形的一邊所在直線為旋轉軸,其餘三邊旋轉形成的面所圍成的旋轉體叫做圓柱(circular cylinder),即AG矩形的一條邊為軸,旋轉360°所得的幾何體就是圓柱。
其中AG叫做圓柱的軸,AG的長度叫做圓柱的高,所有平行於AG的線段叫做圓柱的母線,DA和D'G旋轉形成的兩個圓叫做圓柱的底面,DD'旋轉形成的曲面叫做圓柱的側面。
2、在同一個平面內有一條定直線和一條動線,當這個平面繞著這條定直線旋轉一周時,這條動線所成的面叫做旋轉面,這條定直線叫做旋轉面的軸,這條動線叫做旋轉面的母線。如果母線是和軸平行的一條直線,那麼所生成的旋轉面叫做圓柱面。
如果用垂直於軸的兩個平面去截圓柱面,那麼兩個截面和圓柱面所圍成的幾何體叫做直圓柱,簡稱圓柱。
(7)周長的算力擴展閱讀
在同一個平面內有一條定直線和一條動線,當這個平面繞著這條定直線旋轉一周時,這條動線所成的面叫做旋轉面,這條定直線叫做旋轉面的軸,這條動線叫做旋轉面的母線。如果母線是和軸平行的一條直線,那麼所生成的旋轉面叫做圓柱面。
如果用垂直於軸的兩個平面去截圓柱面,那麼兩個截面和圓柱面所圍成的幾何體叫做直圓柱,簡稱圓柱。
⑻ 所有圖形的周長和面積的公式
1、長方形、正方形的周長和面積公式:
長方形的周長=(長+寬)×2 C=(a+b)×2
正方形的周長=邊長×4 C=4a
長方形的面積=長×寬 S=ab
正方形的面積=邊長×邊長 S=a·a= a²
2、三角形、平行四邊形、梯形的面積公式:
三角形的面積=底×高÷2 S=ah÷2
平行四邊形的面積=底×高 S=ah
梯形的面積=(上底+下底)×高÷2
S=(a+b)h÷2
3、圓的周長和面積公式:
圓的周長=直徑×π
公式:L=πd=2πr
圓的面積=半徑×半徑×π
公式:S=πr²
4、圓柱的側面積和表面積公式:
圓柱的側面積:
圓柱的側面積等於底面的周長乘高。
公式:S=ch=πdh=2πrh
圓柱的表面積:
圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。
公式:S=ch+2s=ch+2πr²
(8)周長的算力擴展閱讀
1、圓柱圓錐的體積公式:
圓柱的體積:
圓柱的體積等於底面積乘高。
公式:V=Sh
圓錐的體積=1/3底面×積高。
公式:V=1/3Sh
2、分數的加、減法則:
同分母的分數相加減,只把分子相加減,分母不變。
異分母的分數相加減,先通分,然後再加減。
3、分數的乘法則:
用分子的積做分子,用分母的積做分母。
4、分數的除法則:
除以一個數等於乘以這個數的倒數。
⑼ 圓的周長怎麼算
圓的周長公式:
(9)周長的算力擴展閱讀
圓的性質:
1、圓是軸對稱圖形,其對稱軸是任意一條通過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。
垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的2條弧。
垂徑定理的逆定理:平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的2條弧。
2、有關圓周角和圓心角的性質和定理。
在同圓或等圓中,如果兩個圓心角,兩個圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那麼他們所對應的其餘各組量都分別相等。
在同圓或等圓中,相等的弧所對的圓周角等於它所對的圓心角的一半(圓周角與圓心角在弦的同側)。
3、弦切角的度數等於它所夾的弧的度數的一半。
4、圓內角的度數等於這個角所對的弧的度數之和的一半。
5、圓外角的度數等於這個角所截兩段弧的度數之差的一半。
6、周長相等,圓面積比正方形、長方形、三角形的面積大。