stata中介效應去中心化
Ⅰ bootstrap檢驗中介效應如何解讀結果stata
採用Preacher 和 Hayes ( 2008 ) 的Bootstrapping 中介效應檢驗方法(設置 5000 次迭代),該方法提供中介效應的 95% 置信區間估計,如果區間估計含有 0 就表示中介效應不顯著,如果區間估計不含有 0 則表示中介效應顯著。
此外對中介效果量的計算結果表明,4 種效果量的置信區間都不包括0,因此心理彈性在自尊與應對方式間存在顯著的中介作用。
(1)stata中介效應去中心化擴展閱讀:
注意事項:
很多統計量是不能用bootstrap的,比如常見的非參數kernel回歸,以及一些目標函數不是非常平滑的估計量,例如quantile回歸、maximum score estimators等等。
bootstrap的抽樣方法除了最簡單的有放回抽樣之外,還有各種其他的抽樣方法,有參數的、非參數的,有bolck,有resial-based。這些方法如果擴展起來就有點復雜了,如果是要做test,那麼不同的抽樣方法會導致不同的size和power。
Ⅱ 如何運用SPSS及AMOS進行中介效應與調節效應分析
3
調節變數可以是定性的,也可以是定量的.在做調節效應分析時,通常要將自變數和調節變數做中心化變換.簡要模型:Y = aX + bM + cXM + e .Y 與X 的關系由回歸系數a + cM 來刻畫,它是M 的線性函數,c 衡量了調節效應(moderating effect) 的大小.如果c 顯著,說明M 的調節效應顯著.2、調節效應的分析方法 顯變數的調節效應分析方法:分為四種情況討論.當自變數是類別變數,調節變數也是類別變數時,用兩因素交互效應的方差分析,交互效應即調節效應;調節變數是連續變數時,自變數使用偽變數,將自變數和調節變數中心化,做 Y=aX+bM+cXM+e 的層次回歸分析:1、做Y對X和M 的回歸,得測定系數R1 2 .2、做Y對X、M 和XM 的回歸得R2 2 ,若R2 2 顯著高於R1 2 ,則調節效應顯著.或者,作XM 的回歸系數檢驗,若顯著,則調節效應顯著;當自變數是連續變數時,調節變數是類別變數,分組回歸:按 M 的取值分組,做 Y 對 X 的回歸.若回歸系數的差異顯著,則調節效應顯著,調節變數是連續變數時,同上做Y=aX +bM +cXM +e 的層次回歸分析.潛變數的調節效應分析方法:分兩種情形:一是調節變數是類別變數,自變數是潛變數;二是調節變數和自變數都是潛變數.當調節變數是類別變數時,做分組結構 方程分析.做法是,先將兩組的結構方程回歸系數限制為相等,得到一個χ 2 值和相應的自由度.然後去掉這個限制,重新估計模型,又得到一個χ 2 值和相應的自 由度.前面的χ 2 減去後面的χ 2 得到一個新的χ 2,其自由度就是兩個模型的自由度之差.如果χ 2 檢驗結果是統計顯著的,則調節效應顯著;當調節變數和自變 量都是潛變數時,有許多不同的分析方法,最方便的是Marsh,Wen 和Hau 提出的無約束的模型.3.中介變數的定義 自變數X 對因變數Y 的影響,如果X 通過影響變數M 來影響Y,則稱M 為中介變數.Y=cX+e1,M=aX+ e2 ,Y= c′X+bM+e3.其中,c 是X 對Y 的總效應,ab 是經過中介變數M 的中介效應,c′是直接效應.當只有一個中介變數時,效應之間有 c=c′+ab,中介效應的大小用c-c′=ab 來衡量.4、中介效應分析方法 中介效應是間接效應,無論變數是否涉及潛變數,都可以用結構方程模型分析中介效應.步驟為:第一步檢驗系統c,如果c 不顯著,Y 與X 相關不顯著,停止中介 效應分析,如果顯著進行第二步;第二步一次檢驗a,b,如果都顯著,那麼檢驗c′,c′顯著中介效應顯著,c′不顯著則完全中介效應顯著;如果a,b至少 有一個不顯著,做Sobel 檢驗,顯著則中介效應顯著,不顯著則中介效應不顯著.Sobel 檢驗的統計量是z=^a^b/sab ,中 ^a,^b 分別是 a,b 的估計,sab=^a2sb2 +b2sa2,sa,sb 分別是 ^a,^b 的標准誤.5.調節變數與中介變數的比較 調節變數M 中介變數M 研究目的 X 何時影響Y 或何時影響較大 X 如何影響Y 關聯概念 調節效應、交互效應 中介效應、間接效應 什麼情況下考慮 X 對Y 的影響時強時弱 X 對Y 的影響較強且穩定 典型模型 Y=aM+bM+cXM+e M=aX+e2 Y=c′X+bM+e3 模型中M 的位置 X,M 在Y 前面,M 可以在X 前面 M 在X 之後、Y 之前 M 的功能 影響Y 和X 之間關系的方向(正或負) 和強弱 代表一種機制,X 通過它影響Y M 與X、Y 的關系 M 與X、Y 的相關可以顯著或不顯著(後者較理想) M 與X、Y 的相關都顯著 效應 回歸系數c 回歸系數乘積ab 效應估計 ^c ^a^b 效應檢驗 c 是否等於零 ab 是否等於零 檢驗策略 做層次回歸分析,檢驗偏回歸系數c 的顯著性(t 檢驗);或者檢驗測定系數的變化(F 檢驗) 做依次檢驗,必要時做 Sobel 檢驗 6.中介效應與調節效應的SPSS 操作方法 處理數據的方法 第一做描述性統計,包括M SD 和內部一致性信度a(用分析里的scale 里的 realibility analsys) 第二將所有變數做相關,包括統計學變數和假設的X,Y,M 第三做回歸分析.(在回歸中選線性回歸linear) 要先將自變數和M 中心化,即減去各自的平均數 1、現將M(調節變數或者中介變數)、Y 因變數,以及與自變數、因變數、M 調節變數其中任何一個變數相關的人口學變數輸入indpendent 2、再按next 將X 自變數輸入(中介變數到此為止) 3、要做調節變數分析,還要將X與M 的乘機在next 里輸入作進一步回歸.檢驗主要看F 是否顯著
Ⅲ 如何用stata做中介效應檢驗
如何用stata做中介效應檢驗
How to perform Sobel-Goodman mediation tests in Stata?The purpose of the Sobel-Goodman..
Ⅳ 如何用stata做中介效應檢驗
SPSS的bootstrap方法只能是分環節進行,需要分布進行回歸分析。結構方程模型Amos等可以非常方便的做中介效應。(南心網Bootstrap中介效應分析)
Ⅳ 各位高手,請問stata做中介效應的命令是什麼
Stata是一套提供其使用者數據分析、數據管理以及繪制專業圖表的完整及整合性統計軟體。它提供許許多多功能,包含線性混合模型、均衡重復反復及多項式普羅比模式。1.sort指令是STATA資料庫的維護的排序指令。附圖2.tsset指令是時間序列數據的估計命令。如何創建一個截面數據文件?先把數據轉移到stata中,然後用tsset命令。tssettime,yearly(或者weekly、monthly、quarterly)此時,一定要保證表示時間的那一列數據(即年份)的名稱為time。 時間序列數據的回歸主要需要注意以下幾點:多重共線性(當樣本量較小時,例如小於100)和序列相關性。而且需要考察t統計值、R2(adj-R2)、F統計量、D.W.值。 首先用reg命令進行回歸,例如:regyx1x2x3x4x5,並考察D.W.值(使用estatdwatson這一命令),如果D.W.值嚴重遠離2,那麼要進行調整(調整方法如黃色底紋),直到調整到2附近,然後考察回歸結果是否符合經濟學含義,倘若不符合,那麼要注意是否受到多重共線性的影響(通過相關系數和vif值來判斷)。在處理多重共線性時,可以用類似於處理截面數據的方法(剔除變數法),同時還要看D.W.值。此外,還可以用差分法來處理多重共線性(此方法用得不多)。 檢驗DW值的命令:estatdwatson 用廣義差分法考慮序列相關性的命令(即調整DW值的命令):regyx1x2x3x4x5L.y(後面還可以運用L.yL2.y) 用序列相關穩健標准誤法考慮序列相關性的命令(即調整DW值的命令):regyx1x2x3x4x5,robust 考慮多重共線性的方法除了以上截面數據中用到的方法以外,還可以用差分法,然後再看vif值。regD.yD.x1D.x2D.x3D.x4D.x5
Ⅵ 如何用SPSS做中介效應與調節效應
調節變數可以是定性的,也可以是定量的。在做調節效應分析時,通常要將自變數和調節變數做中心化變換。簡要模型:Y = aX + bM + cXM + e 。Y 與X 的關系由回歸系數a + cM 來刻畫,它是M 的線性函數, c 衡量了調節效應(moderating effect) 的大小。如果c 顯著,說明M 的調節效應顯著。 2、調節效應的分析方法 顯變數的調節效應分析方法:分為四種情況討論。當自變數是類別變數,調節變數也是類別變數時,用兩因素交互效應的方差分析,交互效應即調節效應;調節變數是連續變數時,自變數使用偽變數,將自變數和調節變數中心化,做 Y=aX+bM+cXM+e 的層次回歸分析:1、做Y對X和M 的回歸,得測定系數R1 2 。2、做Y對X、M 和XM 的回歸得R2 2 ,若R2 2 顯著高於R1 2 ,則調節效應顯著。或者, 作XM 的回歸系數檢驗,若顯著,則調節效應顯著;當自變數是連續變數時,調節變數是類別變數,分組回歸:按 M 的取值分組,做 Y 對 X 的回歸。若回歸系數的差異顯著,則調節效應顯著,調節變數是連續變數時,同上做Y=aX +bM +cXM +e 的層次回歸分析。 潛變數的調節效應分析方法:分兩種情形:一是調節變數是類別變數,自變數是潛變數;二是調節變數和自變數都是潛變數。當調節變數是類別變數時,做分組結構 方程分析。做法是,先將兩組的結構方程回歸系數限制為相等,得到一個χ 2 值和相應的自由度。然後去掉這個限制,重新估計模型,又得到一個χ 2 值和相應的自 由度。前面的χ 2 減去後面的χ 2 得到一個新的χ 2,其自由度就是兩個模型的自由度之差。如果χ 2 檢驗結果是統計顯著的,則調節效應顯著;當調節變數和自變 量都是潛變數時,有許多不同的分析方法,最方便的是Marsh,Wen 和Hau 提出的無約束的模型。 3.中介變數的定義 自變數X 對因變數Y 的影響,如果X 通過影響變數M 來影響Y,則稱M 為中介變數。 Y=cX+e1, M=aX+ e2 , Y= c′X+bM+e3。其中,c 是X 對Y 的總效應,ab 是經過中介變數M 的中介效應,c′是直接效應。當只有一個中介變數時,效應之間有 c=c′+ab,中介效應的大小用c-c′=ab 來衡量。 4、中介效應分析方法 中介效應是間接效應,無論變數是否涉及潛變數,都可以用結構方程模型分析中介效應。步驟為:第一步檢驗系統c,如果c 不顯著,Y 與X 相關不顯著,停止中介 效應分析,如果顯著進行第二步;第二步一次檢驗a,b,如果都顯著,那麼檢驗c′,c′顯著中介效應顯著,c′不顯著則完全中介效應顯著;如果a,b至少 有一個不顯著,做Sobel 檢驗,顯著則中介效應顯著,不顯著則中介效應不顯著。Sobel 檢驗的統計量是z=^a^b/sab ,中 ^a, ^b 分別是 a, b 的估計, sab=^a2sb2 +b2sa2, sa,sb 分別是 ^a, ^b 的標准誤。 5. 調節變數與中介變數的比較 調節變數M 中介變數M 研究目的 X 何時影響Y 或何時影響較大 X 如何影響Y 關聯概念 調節效應、交互效應 中介效應、間接效應 什麼情況下考慮 X 對Y 的影響時強時弱 X 對Y 的影響較強且穩定 典型模型 Y=aM+bM+cXM+e M=aX+e2 Y=c′X+bM+e3 模型中M 的位置 X,M 在Y 前面,M 可以在X 前面 M 在X 之後、Y 之前 M 的功能 影響Y 和X 之間關系的方向(正或負) 和強弱 代表一種機制,X 通過它影響Y M 與X、Y 的關系 M 與X、Y 的相關可以顯著或不顯著(後者較理想) M 與X、Y 的相關都顯著 效應 回歸系數c 回歸系數乘積ab 效應估計 ^c ^a^b 效應檢驗 c 是否等於零 ab 是否等於零 檢驗策略 做層次回歸分析,檢驗偏回歸系數c 的顯著性(t 檢驗);或者檢驗測定系數的變化(F 檢驗) 做依次檢驗,必要時做 Sobel 檢驗 6. 中介效應與調節效應的SPSS 操作方法 處理數據的方法 第一做描述性統計,包括M SD 和內部一致性信度a(用分析里的scale 里的 realibility analsys) 第二將所有變數做相關,包括統計學變數和假設的X,Y,M 第三做回歸分析。(在回歸中選線性回歸linear) 要先將自變數和M 中心化,即減去各自的平均數 1、現將M(調節變數或者中介變數)、Y 因變數,以及與自變數、因變數、M 調節變數其中任何一個變數相關的人口學變數輸入indpendent 2、再按next 將X 自變數輸入(中介變數到此為止) 3、要做調節變數分析,還要將X與M 的乘機在next 里輸入作進一步回歸。檢驗主要看F 是否顯著
Ⅶ 如何用stata做中介效應檢驗
如何用stata做中介效應檢驗
How to perform Sobel-Goodman mediation tests in Stata?The purpose of the Sobel-Goodman...
參考地址:http://www.360doc.com/content/16/0308/16/31392768_540527838.shtml