擁有大數據算力演算法的企業
Ⅰ 國內大數據行業有哪些比較知名的公司
海鰻雲旅遊大數據平台,就是專業做旅遊大數據的公司,擁有自己的旅遊大數據平台。
Ⅱ 國內有哪些大數據公司
「大數據」近幾年來可謂蓬勃發展,它不僅是企業趨勢,也是一個改變了人類生活的技術創新。大數據對行業用戶的重要性也日益突出。掌握數據資產,進行智能化決策,已成為企業脫穎而出的關鍵。因此,越來越多的企業開始重視大數據戰略布局,並重新定義自己的核心競爭力。
在當前的互聯網領域,大數據的應用已經十分廣泛,尤其以企業為主,企業成為大數據應用的主體。大數據真能改變企業的運作方式嗎?答案毋庸置疑是肯定的。隨著企業開始利用大數據,我們每天都會看到大數據新的奇妙的應用,幫助人們真正從中獲益。大數據的應用已廣泛深入我們生活的方方面面,涵蓋醫療、交通、金融、教育、體育、零售等各行各業。
Ⅲ 國內做大數據解決方案的公司有哪些
隨著「大數據時代」的來臨,企業越來越重視數據的作用,數據給企業帶來的價值也越來越多。本文檔將介紹大數據給企業帶來的機遇與挑戰以及企業的大數據解決方案。
第一步先搞清楚什麼是大數據?他不是簡單的大量數據或海量數據,而是有著4V特徵的數據金礦。他給我們的企業會帶來機遇與挑戰。
第二步我們根據大數據的特徵,分析企業大數據平台要迎接大數據的挑戰,應該具備什麼樣的能力。
第三部分,基於大數據平台要求,我們提出一個企業大數據的技術解決方案,介紹解決方案是如何解決大數據難題。
最後我看一看大數據應用當前存在的問題,未來將會怎樣發展。
什麼是大數據?
結束語
隨著高性能計算機、海量數據的存儲和管理的流程的不斷優化,技術能夠解決的問題終將不會成為問題。真正會制約或者成為大數據發展和應用瓶頸的有三個環節:
第一、數據收集和提取的合法性,數據隱私的保護和數據隱私應用之間的權衡。
任何企業或機構從人群中提取私人數據,用戶都有知情權,將用戶的隱私數據用於商業行為時,都需要得到用戶的認可。然而,目前,中國乃至全世界對於用戶隱私應當如何保護、商業規則應當如何制定、觸犯用戶的隱私權應當如何懲治、法律規范應當如何制定等等一系列管理問題都**滯後於大數據的發展速度。未來很多大數據業務在最初發展階段將會遊走在灰色地帶,當商業運作初具規模並開始對大批消費者和公司都產生影響之後,相關的法律法規以及市場規范才會被迫加速制定出來。可以預計的是,盡管大數據技術層面的應用可以無限廣闊,但是由於受到數據採集的限制,能夠用於商業應用、服務於人們的數據要遠遠小於理論上大數據能夠採集和處理的數據。數據源頭的採集受限將**限制大數據的商業應用。
第二、大數據發揮協同效應需要產業鏈各個環節的企業達成競爭與合作的平衡。
大數據對基於其生態圈中的企業提出了更多的合作要求。如果沒有對整體產業鏈的宏觀把握,單個企業僅僅基於自己掌握的獨立數據,無法了解產業鏈各個環節數據之間的關系,對消費者做出的判斷和影響也十分有限。在一些信息不對稱比較明顯的行業,例如銀行業以及保險業,企業之間數據共享的需求更為迫切。例如,銀行業和保險業通常都需要建立一個行業共享的資料庫,讓其成員能夠了解到單個用戶的信用記錄,消除擔保方和消費者之間的信息不對稱,讓交易進行的更為順利。然而,在很多情況下,這些需要共享信息的企業之間競爭和合作的關系同時存在,企業在共享數據之前,需要權衡利弊、避免在共享數據的同時喪失了其競爭優勢。此外,當很多商家合作起來,很容易形成賣家同盟而導致消費者利益受到損失,影響到競爭的公平性。大數據最具有想像力的發展方向是將不同的行業的數據整合起來,提供全方位立體的數據繪圖,力圖從系統的角度了解並重塑用戶需求。然而,交叉行業數據共享需要平衡太多企業的利益關系,如果沒有中立的第三方機構出面,協調所有參與企業之間的關系、制定數據共性及應用的規則,將**限制大數據的用武之地。權威第三方中立機構的缺乏將制約大數據發揮出其最大的潛力。
第三、大數據結論的解讀和應用。
大數據可以從數據分析的層面上揭示各個變數之間可能的關聯,但是數據層面上的關聯如何具象到行業實踐中?如何制定可執行方案應用大數據的結論?這些問題要求執行者不但能夠解讀大數據,同時還需深諳行業發展各個要素之間的關聯。這一環節基於大數據技術的發展但又涉及到管理和執行等各方面因素。在這一環節中,人的因素成為制勝關鍵。從技術角度,執行人需要理解大數據技術,能夠解讀大數據分析的結論;從行業角度,執行人要非常了解行業各個生產環節的流程的關系、各要素之間的可能關聯,並且將大數據得到的結論和行業的具體執行環節一一對應起來;從管理的角度,執行人需要制定出可執行的解決問題的方案,並且確保這一方案和管理流程沒有沖突,在解決問題的同時,沒有製造出新的問題。這些需求,不但要求執行人深諳技術,同時應當是一個卓越的管理者,有系統論的思維,能夠從復雜系統的角度關聯地看待大數據與行業的關系。此類人才的稀缺性將制約大數據的發展。
Ⅳ 求助:哪些公司可以提供大數據處理分析解決方案
上海獻峰網路指出:你要的大數據分析解決方案大全都在這
從所周知,大數據已經不簡簡單單是數據大的事實了,而最重要的現實是對大數據進行分析,只有通過分析才能獲取很多智能的,深入的,有價值的信息。那麼越來越多的應用涉及到大數據,而這些大數據的屬性,包括數量,速度,多樣性等等都是呈現了大數據不斷增長的復雜性,所以大數據的分析方法在大數據領域就顯得尤為重要,可以說是決定最終信息是否有價值的決定性因素。基於如此的認識,大數據分析普遍存在的方法理論有哪些呢?
一、大數據分析的五個基本方面
1. Analytic Visualizations(可視化分析)
不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。
2. Data Mining Algorithms(數據挖掘演算法)
可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。
3. Predictive Analytic Capabilities(預測性分析能力)
數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。
4. Semantic Engines(語義引擎)
我們知道由於非結構化數據的多樣性帶來了數據分析的新的挑戰,我們需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從「文檔」中智能提取信息。
5. Data Quality and Master Data Management(數據質量和數據管理)
數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。
假如大數據真的是下一個重要的技術革新的話,我們最好把精力關注在大數據能給我們帶來的好處,而不僅僅是挑戰。
二、大數據處理
周濤博士說:大數據處理數據時代理念的三大轉變:要全體不要抽樣,要效率不要絕對精確,要相關不要因果。
具體的大數據處理方法其實有很多,但是根據長時間的實踐,筆者總結了一個基本的大數據處理流程,並且這個流程應該能夠對大家理順大數據的處理有所幫助。整個處理流程可以概括為四步,分別是採集、導入和預處理、統計和分析,以及挖掘。
採集
大數據的採集是指利用多個資料庫來接收發自客戶端(Web、App或者感測器形式等)的數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間進行負載均衡和分片的確是需要深入的思考和設計。
導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些海量數據進行有效的分析,還是應該將這些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。
導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
統計/分析
統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC 的GreenPlum、Oracle的Exadata,以及基於MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。
統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
挖掘
與前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數據上面進行基於各種演算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的K-Means、用於統計學習的SVM和用於分類的Naive Bayes,主要使用的工具有Hadoop的Mahout等。
該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並且計算涉及的數據量和計算量都很大,還有,常用數據挖掘演算法都以單線程為主。
Ⅳ 國內比較好的大數據 公司有哪些
「大數據」近幾年來可謂蓬勃發展,它不僅是企業趨勢,也是一個改變了人類生活的技術創新。大數據對行業用戶的重要性也日益突出。掌握數據資產,進行智能化決策,已成為企業脫穎而出的關鍵。因此,越來越多的企業開始重視大數據戰略布局,並重新定義自己的核心競爭力。
4. 大數據處理之四:挖掘
與前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數
據上面進行基於各種演算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的Kmeans、用於
統計學習的SVM和用於分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並
且計算涉及的數據量和計算量都很大,常用數據挖掘演算法都以單線程為主。
Ⅵ 國內做大數據的公司有哪些
1、上海市大數據股份有限公司(簡稱「上海大數據股份」),是經上海市人民政府批准成立的國有控股混合所有制企業。
致力於成為智慧城市建設的主力軍、國內大數據應用領域的領軍企業和全球領先的公共大數據管理和價值挖掘解決方案提供商,滿足政府對公共數據治理和提升城市管理及公共服務水平的要求,構建公共大數據與商業數據服務、以及政企數據融合的橋梁,促進社會經濟發展。
2、輝略(上海)大數據科技有限公司,目前在中國交通(城市智能信號燈優化模型與平台,交通預算決策系統模型等)、環境(PM2.5污染檢測和治理)、醫療(醫院WIFI定位模型,病歷匹配模型等)、汽車(用戶購買轉化率模型)等領域進行大數據項目運營與模型開發。
3、成都市大數據股份有限公司成立於2013年,作為成都市實施國家大數據發展戰略的載體,2018年完成股份制改革並掛牌新三板,成都產業集團全資持股,主要涉及數據運營、投資並購、信息技術三大業務方向。
(6)擁有大數據算力演算法的企業擴展閱讀:
大數據發展的一些趨勢:
趨勢一:數據的資源化
何為資源化,是指大數據成為企業和社會關注的重要戰略資源,並已成為大家爭相搶奪的新焦點。因而,企業必須要提前制定大數據營銷戰略計劃,搶占市場先機。
趨勢二:與雲計算的深度結合
大數據離不開雲處理,雲處理為大數據提供了彈性可拓展的基礎設備,是產生大數據的平台之一。自2013年開始,大數據技術已開始和雲計算技術緊密結合,預計未來兩者關系將更為密切。除此之外,物聯網、移動互聯網等新興計算形態,也將一齊助力大數據革命,讓大數據營銷發揮出更大的影響力。
Ⅶ 大數據公司排名是什麼樣的
阿里雲、華為雲、網路、騰訊。
3、網路:作為國內綜合搜索的巨頭、行業老大,它擁有海量的數據,同時在自然語言處理能力和機器深度學習領域擁有豐富經驗。
4、騰訊:在大數據領域騰訊也是不可忽略的一支重要力量,尤其是社交領域,只是想想QQ和微信的用戶量就覺得可怕。
大數據是寶藏,人工智慧是工匠。大數據給了我們前所未有的收集海量信息的可能,因為數據交互廣闊,存儲空間近乎無限,所以我們再也不用因「沒地方放」而不得棄掉那些「看似無用」的數據。
當數據變得多多益善,當移動設備、穿戴設備以及其他一切設備都變成了數據收集的「介面」,我們便可以盡可能的讓數據的海洋變得浩瀚無垠,因為那裡面「全都是寶」。
Ⅷ 國內大數據公司有哪些
國內大數據主力陣營:
1.阿里巴巴
阿里巴巴擁有交易數據和信用數據,更多是在搭建數據的流通、收集和分享的底層架構。
2.華為華為雲服務
整合了高性能的計算和存儲能力,為大數據的挖掘和分析提供專業穩定的IT基礎設施平台,近來華為大數據存儲實現了統一管理40PB文件系統
3.網路
網路的優勢體現在海量的數據、沉澱十多年的用戶行為數據、自然語言處理能力和深度學習領域的前沿研究。近來網路正式發布大數據引擎,將在政府、醫療、金融、零售、教育等傳統領域率先開展對外合作。
4.浪潮
浪潮互聯網大數據採集中心已經採集超過2PB數據,並已建立5大類數據分類處理演算法。近日成功發布海量存儲系統的最新代表產品AS130000。
5.騰訊
騰訊擁有用戶關系數據和基於此產生的社交數據,騰訊的思路主要是用數據改進產品,注重QZONE、微信、電商等產品的後端數據打通。
Ⅸ 國內做企業大數據比較全的有哪些公司
隨著互聯網的發展,大數據宛如一股洪流注入全球的政治、經濟、生活當中,帶來了生機與活力。大數據所帶來的影響,正如專家所言,就像幾個世紀之前發明的顯微鏡把人類對自然界的觀察和測量水平推進到了「細胞」級別一樣,給社會帶來了歷史性的進步和變革。
大數據的價值體現在以下幾個方面:
1)對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷
2) 做小而美模式的中小微企業可以利用大數據做服務轉型
3) 面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值
北京智海創訊推出的觀向數據和觀向報表,可以為用戶提供數據採集、分析、可視化的整體解決方案,有興趣的話可以免費試用。也可以網路私信我 開通賬號試用
Ⅹ 國內大數據風控方面做的比較好的企業有哪些數據的獲得途徑有哪些
大數據風控主要有兩點,一是風控模型,二是數據。模型是各企業的核心機密,無從得知,基本會從信用歷史、職業特徵、收入分析等諸多方面入手;數據由於數據孤島現象,是目前各企業重要的資產。數據來源大致可分為三個方面:一是用戶提交的包括身份信息、職業信息、收入信息等數據;二是外部數據,包括從政府機構獲取的數據以及合作金融、電商等機構提供的第三方數據;三是自身行業生態鏈中產生的數據,如淘寶的購物數據。就我接觸到的行業,大數據風控一是互聯網消費金融公司做消費金融風控,二是用於做大數據徵信進而衍生出小額貸款、互聯網消費分期等業務。國內知名企業有:阿爾法象、螞蟻金服、京東金融等。做個人徵信的知名企業有芝麻信用、前海徵信、考拉徵信,這些企業有自己核心數據;專業做大數據風控的公司基本是初創公司,其風控仍有待檢驗,包括聚信立、Wecash閃銀、量化派等。