spss調節去中心化
Ⅰ SPSS進行中介效應分析用標准化和中心化的區別
1、中介效應分析不需要數據中心化和標准化;
2、強行中心化或中心化,只有非標准化系數不一樣,標准化系是一樣的。
(南心 提供)
Ⅱ 做調節中介效應時,SPSSAU會自動將自變數和調節變數中心化處理嗎
SPSSAU默認是不會進行中心化處理,數據處理裡面的生成變數功能可以進行中心化處理。
Ⅲ SPSS中心化到底是減去什麼的均值
是的,減去該項目對應的個案的均值
然後用中心化之後的數據來做回歸,不是中心化又加總
Ⅳ 如何做SPSS的調節效應
顯變數的調節效應分析方法:分為四種情況討論。當自變數是類別變數,調節變數也是類別變數時,用兩因素交互效應的方差分析,交互效應即調節效應;調節變數是連續變數時,自變數使用偽變數,將自變數和調節變數中心化,做Y=aX+bM+cXM+e 的層次回歸分析:1、做Y對X和M的回歸,得測定系數R12。2、做Y對X、M和XM的回歸得R22,若R22顯著高於R12,則調節效應顯著。或者,作XM的回歸系數檢驗,若顯著,則調節效應顯著;當自變數是連續變數時,調節變數是類別變數,分組回歸:按 M的取值分組,做 Y對 X的回歸。若回歸系數的差異顯著,則調節效應顯著,調節變數是連續變數時,同上做Y=aX +bM +cXM +e的層次回歸分析。
Ⅳ spss中,變數去中心化是變數減去該變數的均值,那麼zscore又是什麼呢
中心化是減去均值,Z分數是再除以標准差,二者都是中心化的方法。
Ⅵ spss去中心化和中心化是一樣的嗎
對的, 各種翻譯會有偏差而已
Ⅶ spss做調節時的中心化處理,「變數-平均數」 這一步驟中的變數是選擇已經處理過缺失值的原始數據嗎
是的沒錯
Ⅷ 如何用SPSS做中介效應與調節效應
調節變數可以是定性的,也可以是定量的。在做調節效應分析時,通常要將自變數和調節變數做中心化變換。簡要模型:Y = aX + bM + cXM + e 。Y 與X 的關系由回歸系數a + cM 來刻畫,它是M 的線性函數, c 衡量了調節效應(moderating effect) 的大小。如果c 顯著,說明M 的調節效應顯著。 2、調節效應的分析方法 顯變數的調節效應分析方法:分為四種情況討論。當自變數是類別變數,調節變數也是類別變數時,用兩因素交互效應的方差分析,交互效應即調節效應;調節變數是連續變數時,自變數使用偽變數,將自變數和調節變數中心化,做 Y=aX+bM+cXM+e 的層次回歸分析:1、做Y對X和M 的回歸,得測定系數R1 2 。2、做Y對X、M 和XM 的回歸得R2 2 ,若R2 2 顯著高於R1 2 ,則調節效應顯著。或者, 作XM 的回歸系數檢驗,若顯著,則調節效應顯著;當自變數是連續變數時,調節變數是類別變數,分組回歸:按 M 的取值分組,做 Y 對 X 的回歸。若回歸系數的差異顯著,則調節效應顯著,調節變數是連續變數時,同上做Y=aX +bM +cXM +e 的層次回歸分析。 潛變數的調節效應分析方法:分兩種情形:一是調節變數是類別變數,自變數是潛變數;二是調節變數和自變數都是潛變數。當調節變數是類別變數時,做分組結構 方程分析。做法是,先將兩組的結構方程回歸系數限制為相等,得到一個χ 2 值和相應的自由度。然後去掉這個限制,重新估計模型,又得到一個χ 2 值和相應的自 由度。前面的χ 2 減去後面的χ 2 得到一個新的χ 2,其自由度就是兩個模型的自由度之差。如果χ 2 檢驗結果是統計顯著的,則調節效應顯著;當調節變數和自變 量都是潛變數時,有許多不同的分析方法,最方便的是Marsh,Wen 和Hau 提出的無約束的模型。 3.中介變數的定義 自變數X 對因變數Y 的影響,如果X 通過影響變數M 來影響Y,則稱M 為中介變數。 Y=cX+e1, M=aX+ e2 , Y= c′X+bM+e3。其中,c 是X 對Y 的總效應,ab 是經過中介變數M 的中介效應,c′是直接效應。當只有一個中介變數時,效應之間有 c=c′+ab,中介效應的大小用c-c′=ab 來衡量。 4、中介效應分析方法 中介效應是間接效應,無論變數是否涉及潛變數,都可以用結構方程模型分析中介效應。步驟為:第一步檢驗系統c,如果c 不顯著,Y 與X 相關不顯著,停止中介 效應分析,如果顯著進行第二步;第二步一次檢驗a,b,如果都顯著,那麼檢驗c′,c′顯著中介效應顯著,c′不顯著則完全中介效應顯著;如果a,b至少 有一個不顯著,做Sobel 檢驗,顯著則中介效應顯著,不顯著則中介效應不顯著。Sobel 檢驗的統計量是z=^a^b/sab ,中 ^a, ^b 分別是 a, b 的估計, sab=^a2sb2 +b2sa2, sa,sb 分別是 ^a, ^b 的標准誤。 5. 調節變數與中介變數的比較 調節變數M 中介變數M 研究目的 X 何時影響Y 或何時影響較大 X 如何影響Y 關聯概念 調節效應、交互效應 中介效應、間接效應 什麼情況下考慮 X 對Y 的影響時強時弱 X 對Y 的影響較強且穩定 典型模型 Y=aM+bM+cXM+e M=aX+e2 Y=c′X+bM+e3 模型中M 的位置 X,M 在Y 前面,M 可以在X 前面 M 在X 之後、Y 之前 M 的功能 影響Y 和X 之間關系的方向(正或負) 和強弱 代表一種機制,X 通過它影響Y M 與X、Y 的關系 M 與X、Y 的相關可以顯著或不顯著(後者較理想) M 與X、Y 的相關都顯著 效應 回歸系數c 回歸系數乘積ab 效應估計 ^c ^a^b 效應檢驗 c 是否等於零 ab 是否等於零 檢驗策略 做層次回歸分析,檢驗偏回歸系數c 的顯著性(t 檢驗);或者檢驗測定系數的變化(F 檢驗) 做依次檢驗,必要時做 Sobel 檢驗 6. 中介效應與調節效應的SPSS 操作方法 處理數據的方法 第一做描述性統計,包括M SD 和內部一致性信度a(用分析里的scale 里的 realibility analsys) 第二將所有變數做相關,包括統計學變數和假設的X,Y,M 第三做回歸分析。(在回歸中選線性回歸linear) 要先將自變數和M 中心化,即減去各自的平均數 1、現將M(調節變數或者中介變數)、Y 因變數,以及與自變數、因變數、M 調節變數其中任何一個變數相關的人口學變數輸入indpendent 2、再按next 將X 自變數輸入(中介變數到此為止) 3、要做調節變數分析,還要將X與M 的乘機在next 里輸入作進一步回歸。檢驗主要看F 是否顯著
Ⅸ spss做回歸都需要中心化嗎
1、因變數不需要做中心化轉換;
2、第一步是自變數進入回歸方程;第二步是自變數和調節變數一起進入;第三步是自變數、調節變數、交互項一起進入;
3、將調節變數分成高低組,做自變數與因變數的回歸分析,再比較高低組自變數對因變數的影響系數大小,進行斜率檢驗.